首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of incorporation of dietary oils with different n6/n3 ratio and polyunsaturated fatty acids content into rat liver and brain microsomes has been studied. The investigation of membrane fatty acid composition of liver microsomes and that of brain microsomes gave different results. In particular, liver microsomes of rats fed fish oil showed a relatively higher content of 20:5n3 and 22:6n3, and a lower content of 20:4n6. Under these conditions, a reduced glucose-6-phosphatase activity was measured. Brain microsomal fatty acid composition was only slightly affected by dietary lipid intake. The 5'-nucleotidase activity of those particles was similar, although statistically different values were found in fish-oil-fed rats and in olive-oil-fed rats. The effects of membrane fatty acid composition on membrane-bound enzyme activity are discussed.  相似文献   

2.
Paraoxonase 1 (PON1) is a serum enzyme closely associated with high-density lipoprotein (HDL), which may protect against atherosclerosis by hydrolyzing lipid peroxides and several organophosphorus compounds. The purpose of the present study was to test the hypothesis that lipid peroxidation modifies the activity and protein mass of PON1 in humans and rats. Our findings revealed that the bulk of the activity monitored by the hydrolysis of paraoxon and phenyl acetate was confined to liver intracellular endoplasmic reticulum-derived microsomes and was mostly recovered in circulating HDL3. Confirmation was obtained by the determination of PON1 expression by Western blot. It is noteworthy that PON1 levels were consistently decreased in human sera, HDL, and liver microsomes compared with rat counterparts. Concomitant with iron-ascorbate-mediated lipid peroxidation, there was a decline in PON1 activity and protein in both HDL3 and microsomes, which was attenuated by butylated hydroxytoluene antioxidant treatment. The current data indicate that PON1 localization in microsomes and HDL3 could represent a selective cellular and lipoprotein response to oxidative stress. This was tested by the iron-ascorbate oxygen-radical generating system. It is also proposed that the increased PON1 level may have a function related to the well-known atherosclerosis resistance of rats.  相似文献   

3.
Phosphatidylcholine-specific transfer protein from beef liver has been used to replace native phosphatidylcholine (PC) molecules from intact human erythrocytes by a variety of PC species differing in fatty acid composition. These replacements changed neither the total phospholipid content of the membrane, nor the composition of this fraction in terms of the various phospholipid classes. The morphology of the erythrocyte was not modified when native PC was replaced by 1-palmitoyl,2-oleoyl PC, 1-palmitoyl,2-linoleoyl PC, egg PC, or PC isolated from rat liver microsomes. Replacement with the disaturated species 1,2-dimyristoyl PC, 1,2-dipalmitoyl PC, and 1,2-distearoyl PC resulted in the formation of echinocytes and, at higher levels of replacement, in spheroechinocytes. Echinocyte-like erythrocytes were also observed after replacement with 1-palmitoyl,2-arachidonoyl PC, whereas stomatocytes were formed upon replacement with PC species containing two unsaturated fatty acids, e.g., 1,2-dioleoyl PC and 1,2-dilinoleoyl PC. The observations show that the erythrocyte membrane structure and the overall discoid cell shape of the human erythrocyte are optimally stabilized by PC species that contain one saturated and one mono- or diunsaturated fatty acid, and that the cell tolerates only limited variations in the species composition of its PC.  相似文献   

4.
In the studies described here rat liver microsomes containing labeled palmitic, stearic, oleic or linoleic acids were incubated with fatty acid binding protein (FABP) and the rate of removal of14C-labeled fatty acids from the membrane by the soluble protein was measured using a model system. More unsaturated than saturated fatty acids were removed from native liver microsomes incubated with similar amounts of FABP. Thein vitro peroxidation of microsomal membranes mediated by ascorbate-Fe++, modified its fatty acid composition with a considerable decrease of the peroxidizability index. These changes in the microsomes facilitated the removal of oleic and linoeic acids by FABP, but the removal of palmitic and stearic acids was not modified. This effect is proposed to result from a perturbation of membrane structure following peroxidation with release of free fatty acids from susceptible domains.Abbreviations BSA bovine serum albumin - FABP fatty acid binding protein  相似文献   

5.
The changes in linoleyl-CoA desaturase activity of rat liver microsomes were studied after a single intraperitoneal injection of 11-deoxycorticosterone or aldosterone at physiological doses. Fatty acid of plasma and different liver fractions, and physical properties of microsomal membranes were also investigated. It was found that the specific activity of delta 6 desaturase decreased 4-fold 24 hr after the injection of aldosterone or deoxycorticosterone. Pretreatment of the rats with aldosterone led to a significant decrease in the percent distribution of palmitic, arachidonic, docosapentaenoic and docosahexenoic acids, with a concomitant increase in palmitoleic, oleic and linoleic acids in plasma and liver homogenates, microsomes and cytosol fractions. A similar pattern was observed after deoxycorticosterone administration. The changes resulted in a decreased unsaturation index of all fractions studied and were well-correlated with the increase observed in fluorescence depolarization of the hydrophobic probe 1,6-diphenylhexatriene in liver microsomal membranes. The interlipid and lipid/protein ratios in microsomes remained constant after hormonal treatment. These results are consistent with the idea that the inhibition of delta 6 desaturase activity and the alterations in fatty acid composition induced by mineralocorticoids, are solely responsible for the measured decrease in liver microsomal membrane fluidity.  相似文献   

6.
Male rats were fed diets containing olive (OO) or evening primrose (EPO) oil (10% w/w), with or without added cholesterol (1% w/w). After 6-week feeding, the lipid and fatty acid compositions, fluidity, and fatty acid desaturating and cholesterol biosynthesis/esterification related enzymes of liver microsomes were determined. Both the OO and EPO diets, without added cholesterol, increased the contents of oleic and arachidonic acids, respectively, of rat liver microsomes. The results were consistent with the increases in delta 9 and delta 6 desaturation of n-6 essential fatty acids and the lower microviscosity in the EPO group. Dietary cholesterol led to an increase in the cholesterol content of liver microsomes as well as that of phosphatidylcholine (PC). The cholesterol/phospholipid and PC/PE (phosphatidylethanolamine) ratios were also elevated. Fatty acid composition changes were expressed as the accumulation of monounsaturated fatty acids, with accompanying milder depletion of saturated fatty acids in rat liver microsomes. In addition, the arachidonic acid content was lowered, with a concomitant increase in linoleic acid, which led to a significant decrease in the 20:4/18:2 ratio in comparison to in animals fed the cholesterol-free diets. Cholesterol feeding also increased delta 9 desaturase activity as well as membrane microviscosity, whereas it decreased delta 6 and delta 5 desaturase activities. There was a very strong correlation between fluidity and the unsaturation index reduction in the membrane. Furthermore, the activity of hydroxymethylglutaryl-CoA reductase increased and the activity of acyl-CoA:cholesterol acyltransferase decreased in liver microsomes from both cholesterol-fed groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Although omega-3 (n-3) fatty acids negatively regulate triglyceride biosynthesis, the mechanisms mediating this effect are poorly understood, and emerging evidence suggests that stearoyl-CoA desaturase (Scd1) is required for de novo triglyceride biosynthesis. To investigate this mechanism, we determined the effects of perinatal n-3 deficiency and postnatal repletion on rat liver Scd1 mRNA expression and activity indices (liver 16:1/16:0 and 18:1/18:0 ratios), and determined relationships with postprandial (non-fasting) plasma triglyceride levels. Rats were fed conventional diets with or without the n-3 fatty acid precursor α-linolenic acid (ALA, 18:3n-3) during perinatal development (E0-P100), and a subset of rats fed the ALA- diet were switched to the ALA+ diet post-weaning (P21-P100, repletion). Compared with controls, rats fed the ALA- diet exhibited significantly lower liver long-chain n-3 fatty acid compositions and elevations in monounsaturated fatty acid composition, both of which were normalized in repleted rats. Liver Scd1 mRNA expression and activity indices (16:1/16:0 and 18:1/18:0 ratios) were significantly greater in n-3 deficient rats compared with controls and repleted rats. Among all rats, liver Scd1 mRNA expression was positively correlated with liver 18:1/18:0 and 16:1/16:0 ratios. Plasma triglyceride levels, but not glucose or insulin levels, were significantly greater in n-3 deficient rats compared with controls and repleted rats. Liver Scd1 mRNA expression and activity indices were positively correlated with plasma triglyceride levels. These preclinical findings demonstrate that n-3 fatty acid status is an important determinant of liver Scd1 mRNA expression and activity, and suggest that down-regulation of Scd1 is a mechanism by which n-3 fatty acids repress constitutive triglyceride biosynthesis.  相似文献   

8.
The present study investigates in a experimental system in vitro the relationship between the non-enzymatic (ascorbate-Fe2+) and enzymatic (NADPH) lipid peroxidation in rat liver microsomes and nuclei. Chemiluminescence was measured as cpm/mg protein during 180 min at 37 degrees C. Approximately 50-55% of the fatty acids located in rat liver microsomes and nuclei are polyunsaturated with a prevalence of C18:2 n6 and C20:4 n6. The values of total light emission during the non-enzymatic and enzymatic lipid peroxidation were highest in microsomes than in nuclei. A significant decrease of C20:4 n6 and C22:6 n3 in rat liver microsomes and nuclei was observed during the lipid ascorbate-Fe2+-dependent peroxidation, whereas a significant decrease of C20:4 n6 in rat liver microsomes was observed during enzymatic lipid peroxidation. Over the time course studies, analysis of chemiluminescence in microsomes and nuclei demonstrated that the lipid peroxidation in the presence of ascorbate-Fe2+ reach a maximum at 50 and 30 min, respectively, whereas in the presence of NADPH it reachs a maximum at 20 min in both organelles. In liver microsomes and nuclei the peroxidizability index (pi) which indicates the degree of vulnerability to degradation of a selected membrane showed statistically significant differences between control versus ascorbate-Fe2+ when microsomes or nuclei were compared. Our results indicate that non-enzymatic (ascorbate-Fe2+) and enzymatic (NADPH) lipid peroxidation are operative in rat liver microsomes and nuclei but the sensitivities of both organelles to lipid peroxidation evidenced by chemiluminescence was greater in the presence of ascorbate-Fe2+ when compared with NADPH.  相似文献   

9.
Male rats were fed diets containing olive or marine fish oils (10% w/w) with or without added cholesterol (1% w/w). After six weeks of feeding, the major fatty acid composition, fluidity, fatty acid desaturating and cholesterol biosynthesis/esterification related enzymes of liver microsomes were determined. Both olive oil and marine fish oil diets, without added cholesterol, enriched content of oleic and docosahexaenoic acids, respectively, of rat liver microsomes. The results were consistent with reduction in delta 6 and delta 5 desaturation of n-6 essential fatty acids and higher fluidity in the marine origin oil group. Inclusion of cholesterol into diets resulted in decreased membrane arachidonic acid content, with concomitant increase in linoleic acid content. Cholesterol feeding also decreased delta 6 and delta 5 desaturase activities, as well as membrane fluidity. Furthermore, the activity of acyl-CoA:cholesterol acyltransferase decreased, whereas the activity of hydroxymethylglutaryl-CoA reductase increased, in liver microsomes from both cholesterol-fat groups.  相似文献   

10.
The effect of intraperitoneal administration of alpha-tocopherol (100 mg/kg wt/24 h) on ascorbate (0.4 mM) induced lipid peroxidation of mitochondria and microsomes isolated from rat liver and testis was studied. Special attention was paid to the changes produced on the highly polyunsaturated fatty acids C20:4 n6 and C22:6 n3 in liver and C20:4 n6 and C22:5 n6 in testis. The lipid peroxidation of liver mitochondria or microsomes produced a significant decrease of C20:4 n6 and C22:6 n3 in the control group, whereas changes in the fatty acid composition of the alpha-tocopherol treated group were not observed. The light emission was significantly higher in the control than in the alpha-tocopherol treated group. The lipid peroxidation of testis microsomes isolated from the alpha-tocopherol group produced a significant decrease of C20:4 n6 , C22:5 n6 and C22:6 n3, these changes were not observed in testis mitochondria. The light emission of both groups was similar. The treatment with alpha-tocopherol at the dose and times indicated showed a protector effect on the polyunsaturated fatty acids of liver mitochondria, microsomes and testis mitochondria, whereas those fatty acids situated in testis microsomes were not protected during non enzymatic ascorbate-Fe2+ lipid peroxidation. The protector effect observed by alpha-tocopherol treatment in the fatty acid composition of rat testis mitochondria but not in microsomes could be explained if we consider that the sum of C20:4 n6 + C22:5 n6 in testis microsomes is 2-fold than that present in mitochondria.  相似文献   

11.
12.
The effect of chronic hyperprolactinemia on the delta6- and delta5-desaturation activity, total lipid and fatty acid composition, as well as fluorescence anisotropy, was studied in liver microsomes from anterior pituitary-grafted rats. We observed a depression in delta6-desaturation activity but no changes in the delta5-desaturation activity in the grafted animals. The microsomal fraction from the hyperprolactinemic rats contained significantly less amount of linoleic acid and a higher content of 20:4 n-6, 22:5 n-6 and 22:6 n-3 acids. Lipid rotational mobility was increased in microsomes as well as in liposomes obtained from the microsomes of transplanted animals. The fluidifying effect induced by PRL was located in the deepest zone of the membrane. The results obtained indicate that high levels of prolactin induce changes in polyunsaturated fatty acid distribution in liver microsomes, which regulates the lipid rotational mobility and hence membrane fluidity.  相似文献   

13.
The lipid composition of rough and smooth microsomal membranes, zymogen granule membranes, and a plasmalemmal fraction from the guinea pig pancreatic exocrine cell has been determined. As a group, membranes of the smooth variety (i.e., smooth microsomes, zymogen granule membranes, and the plasmalemma) were similar in their content of phospholipids, cholesterol and neutral lipids, and in the ratio of total lipids to membrane proteins. In contrast, rough microsomal membranes contained much less sphingomyelin and cholesterol and possessed a smaller lipid/protein ratio. All membrane fractions were unusually high in their content of lysolecithin (up to ~20% of the total phospholipids) and of neutral lipids, especially fatty acids. The lysolecithin content was shown to be due to the hydrolysis of membrane lecithin by pancreatic lipase; the fatty acids, liberated by the action of lipase on endogenous triglyceride stores, are apparently scavenged by the membranes from the suspending media. Similar artifactually high levels of lysolecithin and fatty acids were noted in hepatic microsomes incubated with pancreatic postmicrosomal supernatant. E 600, an inhibitor of lipase, largely prevented the appearance of lysolecithin and fatty acids in pancreatic microsomes and in liver microsomes treated with pancreatic supernatant.  相似文献   

14.
Abstract: We measured long-chain fatty acid:coenzyme A (CoA) ligase (EC 6.2.1.3) activity with four fatty acids in brain homogenates, and cellular and subcellular fractions to determine whether there are differences in activity that could be correlated with differences in fatty acid composition and metabolism. In rat brain homogenates, ligase activity varied appreciably with the four acids, with 18:2 > 18:1 > 16:0 > 22:1 (nmol acyl-CoA formed/min/mg protein; 1.46, 1.20, 0.96, and 0.57, respectively). This order was similar under all incubation conditions tested, including variable pH and fatty acid concentrations. The relative specific activities (RSA, 16:0 = 1.0) with the four substrates were similar in rat brain homogenate, mitochondria, and microsomes, with the highest specific activities in the latter fraction. The RSA were also similar in ox brain homogenates, in rabbit brain microsomes prepared from gray and white matter, in neurons isolated from rat brain, and in cultured neuroblastoma cells. Rat liver homogenates had a significantly different pattern of RSA. These results indicate that the ligase(s) has a preference for certain fatty acids, but suggest that the major control of fatty acid composition and metabolism is a function of subsequent metabolic steps.  相似文献   

15.
1. The cytochrome P-450 content (0.75 +/- 0.13 nmol/mg microsomal protein) in musk shrew (suncus, Suncus murinus) liver microsomes was lower than that (1.30 +/- 0.26) in rat liver microsomes, but it is approximately the same level as in the Mongolian gerbil (Meriones unguiculatus, 1.18 +/- 0.14), harvest mouse (Micromys minutus, 1.11 +/- 0.02) and rat. 2. The hydroxylation activity (based on cytochrome P-450) of medium-chain fatty acids (otanoic, decanoic, lauric and tridecanoic acids) is much higher in suncus, Mongolian gerbil and harvest mouse than in rat, with the exception of the activity of decanoic and tridecanoic acids in Mongolian gerbil. 3. This suggests that cytochrome P-450 species catalyzing the hydroxylation of medium-chain fatty acids are present in these laboratory animals in higher concentrations. 4. The aminopyrine N-demethylation activity based on microsomal protein or cytochrome P-450 in suncus is significantly lower than that in rat, but the N-demethylation activity in Mongolian gerbil and harvest mouse is approximately 1.7-2.0-fold greater than that in rat.  相似文献   

16.
An enzymatic basis for the formation of pulmonary surfactant lipids in rat has been presented. The free fatty acid pools in lung and liver consisted mainly of palmitic, stearic, oleic, and arachidonic acids with relatively less polyunsaturated fatty acids in lung than in liver. The acyl chain specificities of the acyl-CoA synthetase systems in lung and liver microsomes were similar in that most of fatty acids found in the free fatty acid pools were effectively activated by both systems. The acyl-CoA pools had compositions significantly different from those of the free fatty acid pools in lung and liver with relatively more stearate and less polyunsaturated fatty acids. The lung acyl-CoA pool contained mainly palmitate (29%), stearate (31%), and oleate (22%) with very little polyunsaturated acyl-CoAs to compete for esterification. The use of an equimolar mixture of palmitoyl-CoA and arachidonoyl-CoA to acylate the endogenous monoacyl-glycerophosphocholine isomers in the lung microsomes yielded both the 2-palmitate and 2-arachidonate diacyl forms, whereas the major products formed by liver microsomes were the 2-arachidonate and 1-palmitate forms. These results indicate that the 1-acyl isomer is the major monoacyl-glycerophosphocholine species serving as substrate in lung microsomes, whereas both 1-acyl and 2-acyl isomers are present in liver microsomes. Thus, the enrichment of saturated and oligoenoic acids in the acyl-CoA pool combined with the predominance of the 1-acyl isomer in the acyl acceptor pool and the relatively higher selectivity for palmitoyl-CoA by the 1-acyl-GPC acyltransferase activity of lung constitute an important basis for attributing some of the formation of pulmonary surfactant lipids in rats to acyltransferase action.  相似文献   

17.
The paraoxonase (PON) family contains three genes (PON1/2/3) that are believed to be involved in the protection against oxidative stress. PON1 and PON3 are circulating in serum attached to high-density lipoprotein fraction (HDL), whereas PON2 is ubiquitously expressed. The intestine is the second major organ that synthesizes lipoproteins; therefore, we examined PON mRNA expression and protein levels in gastrointestinal biopsies from humans, from C57BL6 mice, and from Caco-2 cells, a colon carcinoma-derived cell line that exhibits properties of intestinal epithelium at differentiation. PON 1/2/3 mRNA and proteins were present in human biopsies with variable expression among different gastrointestinal segments. Only PON2 and PON3 were present in mice. All PON mRNA, proteins, and enzymatic activities were present in Caco-2 cells. Oxidation of CaCo-2 cells with ferrum ascorbate had no significant effect on PON mRNA expression, but it increased paraoxonase and lactonase activity, whereas statinase activity was decreased. We showed polarized secretion of PON1 (basolateral) and PON2 (apical) into Caco-2 culture medium, raising the possibility that intestine is capable of producing and releasing PON1 and PON3 to the circulation, whereas PON2 is released at the brush-border membrane to intestinal lumen where it may perform another yet unclear function.  相似文献   

18.
Liver plasma membranes isolated from rats with chronic dietary iron overload showed a large modification of their phospholipid fatty acid composition. Specifically, a significant decrease in polyunsaturated fatty acids and a parallel increase in saturated fatty acids was observed. This pattern was consistent with thein vivo occurrence of lipoperoxidative reactions in the liver plasma membranes. However, neither change in the cholesterol/phospholipid molar ratio nor in the lipid/protein ratio was detected. Direct measurement of the plasma membrane fluidity state by electron spin resonance spectrometry did not reveal any difference between control and iron-treated rats. These findings indicate that chronic dietary iron overload can induce lipid peroxidation of rat liver plasma membranes, but this event does not bring about modification in the physical state of the membrane.  相似文献   

19.
Changes in lipid composition and function of subcellular organelles have been described in transplanted and primary tumours. We examine here the fatty acid composition of individual phospholipids (PL) in hyperplastic nodules and primary hepatoma induced by diethylnitrosamine (DEN), compared to that of normal liver and of transplantable Yoshida AH-130 hepatoma. Phosphatidylcholine and phosphatidylethanolamine fatty acid composition in mitochondria and microsomes from primary hepatoma were markedly different from normal liver; C18:0/C18:1 ratio was lower and the ratio between monosaturated and polyunsaturated fatty acids was higher. Linoleic acid content of mitochondrial cardiolipin, usually very high in normal rat liver, was notably lower in primary hepatoma. Cholesterol/phospholipid ratio in both microsomes and mitochondria from DEN-induced hepatoma was higher than in normal liver. Hyperplastic nodules showed no changes in cholesterol content whereas modifications in fatty acid composition were already observable. These modifications of membrane structure may be related to the functional changes found in nodular cells. Changes in fatty acid composition of membrane phospholipids, occurring in both primary hepatoma and preneoplastic nodules, might be one of the causes for decreased rate of lipid peroxidation peculiar to these tissues.  相似文献   

20.
1. The effects of unsaturated fatty acids on drug-metabolizing enzymes in vitro were measured by using rat and rabbit hepatic 9000g supernatant fractions. 2. Unsaturated fatty acids inhibited the hepatic microsomal metabolism of ;type I' drugs with inhibition increasing with unsaturation: arachidonic acid>linolenic acid>linoleic acid>oleic acid. Inhibition was independent of lipid peroxidation. Linoleic acid competitively inhibited the microsomal O-demethylation of p-nitroanisole and the N-demethylation of (+)-benzphetamine. 3. The hepatic microsomal metabolism of ;type II' substrates, aniline and (-)-amphetamine, was not affected by unsaturated fatty acids. 4. The rate of reduction of p-nitrobenzoic acid and Neoprontosil was accelerated by unsaturated fatty acids. 5. Linoleic acid up to 3.5mm did not decelerate the generation of NADPH by rat liver soluble fraction, nor the activity of NADPH-cytochrome c reductase of rat liver microsomes. Hepatic microsomal NADPH oxidase activity was slightly enhanced by added linoleic acid. 6. No measurable disappearance of exogenously added linoleic acid occurred when this fatty acid was incubated with rat liver microsomes and an NADPH source. 7. The unsaturated fatty acids used in this study produced type I spectra when added to rat liver microsomes, and affected several microsomal enzyme activities in a manner characteristic of type I ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号