首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.

Background and Aims

It is well known that genome size differs among species. However, information on the variation and dynamics of genome size in wild populations and on the early phase of genome size divergence between taxa is currently lacking. Genome size dynamics, heritability and phenotype effects are analysed here in a wild population of Festuca pallens (Poaceae).

Methods

Genome size was measured using flow cytometry with DAPI dye in 562 seedlings from 17 maternal plants varying in genome size. The repeatability of genome size measurements was verified at different seasons through the use of different standards and with propidium iodide dye; the range of variation observed was tested via analysis of double-peaks. Additionally, chromosome counts were made in selected seedlings.

Key Results and Conclusions

Analysis of double-peaks showed that genome size varied up to 1·188-fold within all 562 seedlings, 1·119-fold within the progeny of a single maternal plant and 1·117-fold in seedlings from grains of a single inflorescence. Generally, genome sizes of seedlings and their mothers were highly correlated. However, in maternal plants with both larger and smaller genomes, genome sizes of seedlings were shifted towards the population median. This was probably due to the frequency of available paternal genomes (pollen grains) in the population. There was a stabilizing selection on genome size during the development of seedlings into adults, which may be important for stabilizing genome size within species. Furthermore, a positive correlation was found between genome size and the development rate of seedlings. A larger genome may therefore provide a competitive advantage, perhaps explaining the higher proportion of plants with larger genomes in the population studied. The reason for the observed variation may be the recent induction of genome size variation, e.g. by activity of retrotransposons, which may be preserved in the long term by the segregation of homeologous chromosomes of different sizes during gametogenesis.Key words: Nuclear DNA content, intraspecific variation, genome size evolution, heritability, stabilizing selection, grasses, flow cytometry  相似文献   

2.

Background and Aims

Genome duplication is a central process in plant evolution and contributes to patterns of variation in genome size within and among lineages. Studies that combine cytogeography with genome size measurements contribute to our basic knowledge of cytotype distributions and their associations with variation in genome size.

Methods

Ploidy and genome size were assessed with direct chromosome counts and flow cytometry for 78 populations within the Claytonia perfoliata complex, comprised of three diploid taxa with numerous polyploids that range to the decaploid level. The relationship between genome size and temperature and precipitation was investigated within and across cytotypes to test for associations between environmental factors and nuclear DNA content.

Key Results

A euploid series (n = 6) of diploids to octoploids was documented through chromosome counts, and decaploids were suggested by flow cytometry. Increased variation in genome size among populations was found at higher ploidy levels, potentially associated with differential contributions of diploid parental genomes, variation in rates of genomic loss or gain, or undetected hybridization. Several accessions were detected with atypical genome sizes, including a diploid population of C. parviflora ssp. grandiflora with an 18 % smaller genome than typical, and hexaploids of C. perfoliata and C. parviflora with genomes 30 % larger than typical. There was a slight but significant association of larger genome sizes with colder winter temperature across the C. perfoliata complex as a whole, and a strong association between lower winter temperatures and large genome size for tetraploid C. parviflora.

Conclusions

The C. perfoliata complex is characterized by polyploids ranging from tetraploid to decaploid, with large magnitude variation in genome size at higher ploidy levels, associated in part with environmental variation in temperature.  相似文献   

3.
Ma PF  Guo ZH  Li DZ 《PloS one》2012,7(1):e30297

Background

Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change.

Methodology/Principal Findings

We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold) in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses.

Conclusions/Significance

Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using Illumina sequencing technology. The parallel episodic evolution of mt and chloroplast genomes in grasses is consistent with lineage effects.  相似文献   

4.

Background and Aims

Hieracium subgenus Hieracium is one of the taxonomically most intricate groups of vascular plants, due to polyploidy and a diversity of breeeding systems (sexuality vs. apomixis). The aim of the present study was to analyse nuclear genome size in a phylogenetic framework and to assess relationships between genome size and ploidy, breeding system and selected ecogeographic features.

Methods

Holoploid and monoploid genome sizes (C- and Cx-values) of 215 cultivated plants from 89 field populations of 42 so-called ‘basic’ Hieracium species were determined using propidium iodide flow cytometry. Chromosome counts were available for all analysed plants, and all plants were tested experimentally for their mode of reproduction (sexuality vs. apomixis). For constructing molecular phylogenetic trees, the external transcribed spacer region of nuclear ribosomal DNA was used.

Key Results

The mean 2C values differed up to 2·37-fold among different species (from 7·03 pg in diploid to 16·67 in tetraploid accessions). The 1Cx values varied 1·22-fold (between 3·51 and 4·34 pg). Variation in 1Cx values between conspecific (species in a broad sense) accessions ranged from 0·24% to 7·2%. Little variation (not exceeding the approximate measurement inaccurracy threshold of 3·5%) was found in 33 species, whereas variation higher than 3·5% was detected in seven species. Most of the latter may have a polytopic origin. Mean 1Cx values of the three cytotypes (2n, 3n and 4n) differed significantly (average of 3·93 pg in diploids, 3·82 pg in triploids and 3·78 pg in tetraploids) indicating downsizing of genomes in polyploids. The pattern of genome size variation correlated well with two major phylogenetic clades which were composed of species with western or eastern European origin. The monoploid genome size in the ‘western’ species was significantly lower than in the ‘eastern’ ones. Correlation of genome size with latitude, altitude and selected ecological characters (light and temperature) was not significant. A longitudinal component was only apparent for the whole data set, but absent within the major lineages.

Conclusions

Phylogeny was the most important factor explaining the pattern of genome size variation in Hieracium sensu stricto, species of western European origin having significantly lower genome size in comparison with those of eastern European origin. Any correlation with ecogeographic variables, including longitude, was outweighed by the divergence of the genus into two major phylogenetic lineages.Key words: Apomixis, chromosome numbers, Compositae, genome size, hawkweeds, Hieracium subgenus Hieracium, mode of reproduction, nuclear DNA content, phylogeny, polyploidy  相似文献   

5.
Bragg JG  Chisholm SW 《PloS one》2008,3(10):e3550

Background

Phages infecting marine picocyanobacteria often carry a psbA gene, which encodes a homolog to the photosynthetic reaction center protein, D1. Host encoded D1 decays during phage infection in the light. Phage encoded D1 may help to maintain photosynthesis during the lytic cycle, which in turn could bolster the production of deoxynucleoside triphosphates (dNTPs) for phage genome replication.

Methodology / Principal Findings

To explore the consequences to a phage of encoding and expressing psbA, we derive a simple model of infection for a cyanophage/host pair — cyanophage P-SSP7 and Prochlorococcus MED4— for which pertinent laboratory data are available. We first use the model to describe phage genome replication and the kinetics of psbA expression by host and phage. We then examine the contribution of phage psbA expression to phage genome replication under constant low irradiance (25 µE m−2 s−1). We predict that while phage psbA expression could lead to an increase in the number of phage genomes produced during a lytic cycle of between 2.5 and 4.5% (depending on parameter values), this advantage can be nearly negated by the cost of psbA in elongating the phage genome. Under higher irradiance conditions that promote D1 degradation, however, phage psbA confers a greater advantage to phage genome replication.

Conclusions / Significance

These analyses illustrate how psbA may benefit phage in the dynamic ocean surface mixed layer.  相似文献   

6.

Background

Multipartite mitochondrial genomes are very rare in animals but have been found previously in two insect orders with highly rearranged genomes, the Phthiraptera (parasitic lice), and the Psocoptera (booklice/barklice).

Results

We provide the first report of a multipartite mitochondrial genome architecture in a third order with highly rearranged genomes: Thysanoptera (thrips). We sequenced the complete mitochondrial genomes of two divergent members of the Scirtothrips dorsalis cryptic species complex. The East Asia 1 species has the single circular chromosome common to animals while the South Asia 1 species has a genome consisting of two circular chromosomes. The fragmented South Asia 1 genome exhibits extreme chromosome size asymmetry with the majority of genes on the large, 14.28 kb, chromosome and only nad6 and trnC on the 0.92 kb mini-circle chromosome. This genome also features paralogous control regions with high similarity suggesting a very recent origin of the nad6 mini-circle chromosome in the South Asia 1 cryptic species.

Conclusions

Thysanoptera, along with the other minor paraenopteran insect orders should be considered models for rapid mitochondrial genome evolution, including fragmentation. Continued use of these models will facilitate a greater understanding of recombination and other mitochondrial genome evolutionary processes across eukaryotes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1672-4) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background

Nucleomorphs are residual nuclei derived from eukaryotic endosymbionts in chlorarachniophyte and cryptophyte algae. The endosymbionts that gave rise to nucleomorphs and plastids in these two algal groups were green and red algae, respectively. Despite their independent origin, the chlorarachniophyte and cryptophyte nucleomorph genomes share similar genomic features such as extreme size reduction and a three-chromosome architecture. This suggests that similar reductive evolutionary forces have acted to shape the nucleomorph genomes in the two groups. Thus far, however, only a single chlorarachniophyte nucleomorph and plastid genome has been sequenced, making broad evolutionary inferences within the chlorarachniophytes and between chlorarachniophytes and cryptophytes difficult. We have sequenced the nucleomorph and plastid genomes of the chlorarachniophyte Lotharella oceanica in order to gain insight into nucleomorph and plastid genome diversity and evolution.

Results

The L. oceanica nucleomorph genome was found to consist of three linear chromosomes totaling ~610 kilobase pairs (kbp), much larger than the 373 kbp nucleomorph genome of the model chlorarachniophyte Bigelowiella natans. The L. oceanica plastid genome is 71 kbp in size, similar to that of B. natans. Unexpectedly long (~35 kbp) sub-telomeric repeat regions were identified in the L. oceanica nucleomorph genome; internal multi-copy regions were also detected. Gene content analyses revealed that nucleomorph house-keeping genes and spliceosomal intron positions are well conserved between the L. oceanica and B. natans nucleomorph genomes. More broadly, gene retention patterns were found to be similar between nucleomorph genomes in chlorarachniophytes and cryptophytes. Chlorarachniophyte plastid genomes showed near identical protein coding gene complements as well as a high level of synteny.

Conclusions

We have provided insight into the process of nucleomorph genome evolution by elucidating the fine-scale dynamics of sub-telomeric repeat regions. Homologous recombination at the chromosome ends appears to be frequent, serving to expand and contract nucleomorph genome size. The main factor influencing nucleomorph genome size variation between different chlorarachniophyte species appears to be expansion-contraction of these telomere-associated repeats rather than changes in the number of unique protein coding genes. The dynamic nature of chlorarachniophyte nucleomorph genomes lies in stark contrast to their plastid genomes, which appear to be highly stable in terms of gene content and synteny.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-374) contains supplementary material, which is available to authorized users.  相似文献   

8.

Background and Aims

The genus Fritillaria (Liliaceae) comprises species with extremely large genomes (1C = 30 000–127 000 Mb) and a bicontinental distribution. Most North American species (subgenus Liliorhiza) differ from Eurasian Fritillaria species by their distinct phylogenetic position and increased amounts of heterochromatin. This study examined the contribution of major repetitive elements to the genome obesity found in Fritillaria and identified repeats contributing to the heterochromatin arrays in Liliorhiza species.

Methods

Two Fritillaria species of similar genome size were selected for detailed analysis, one from each phylogeographical clade: F. affinis (1C = 45·6 pg, North America) and F. imperialis (1C = 43·0 pg, Eurasia). Fosmid libraries were constructed from their genomic DNAs and used for identification, sequence characterization, quantification and chromosome localization of clones containing highly repeated sequences.

Key Results and Conclusions

Repeats corresponding to 6·7 and 4·7 % of the F. affinis and F. imperialis genome, respectively, were identified. Chromoviruses and the Tat lineage of Ty3/gypsy group long terminal repeat retrotransposons were identified as the predominant components of the highly repeated fractions in the F. affinis and F. imperialis genomes, respectively. In addition, a heterogeneous, extremely AT-rich satellite repeat was isolated from F. affinis. The FriSAT1 repeat localized in heterochromatic bands makes up approx. 26 % of the F. affinis genome and substantial genomic fractions in several other Liliorhiza species. However, no evidence of a relationship between heterochromatin content and genome size variation was observed. Also, this study was unable to reveal any predominant repeats which tracked the increasing/decreasing trends of genome size evolution in Fritillaria. Instead, the giant Fritillaria genomes seem to be composed of many diversified families of transposable elements. We hypothesize that the genome obesity may be partly determined by the failure of removal mechanisms to counterbalance effectively the retrotransposon amplification.  相似文献   

9.

Background and Aims

It is known that the miniature inverted-repeat terminal element (MITE) preferentially inserts into low-copy-number sequences or genic regions. Characterization of the second largest subunit of low-copy nuclear RNA polymerase II (RPB2) has indicated that MITE and indels have shaped the homoeologous RPB2 loci in the St and H genome of Eymus species in Triticeae. The aims of this study was to determine if there is MITE in the RPB2 gene in Hordeum genomes, and to compare the gene evolution of RPB2 with other diploid Triticeae species. The sequences were used to reconstruct the phylogeny of the genus Hordeum.

Methods

RPB2 regions from all diploid species of Hordeum, one tetraploid species (H. brevisubulatum) and ten accessions of diploid Triticeae species were amplified and sequenced. Parsimony analysis of the DNA dataset was performed in order to reveal the phylogeny of Hordeum species.

Key Results

MITE was detected in the Xu genome. A 27–36 bp indel sequence was found in the I and Xu genome, but deleted in the Xa and some H genome species. Interestingly, the indel length in H genomes corresponds well to their geographical distribution. Phylogenetic analysis of the RPB2 sequences positioned the H and Xa genome in one monophyletic group. The I and Xu genomes are distinctly separated from the H and Xa ones. The RPB2 data also separated all New World H genome species except H. patagonicum ssp. patagonicum from the Old World H genome species.

Conclusions

MITE and large indels have shaped the RPB2 loci between the Xu and H, I and Xa genomes. The phylogenetic analysis of the RPB2 sequences confirmed the monophyly of Hordeum. The maximum-parsimony analysis demonstrated the four genomes to be subdivided into two groups.Key words: Molecular evolution, RPB2, Hordeum, transposable element, phylogeny  相似文献   

10.

Background

Genome size evolution is a complex process influenced by polyploidization, satellite DNA accumulation, and expansion of retroelements. How this process could be affected by different reproductive strategies is still poorly understood.

Methodology/Principal Findings

We analyzed differences in the number and distribution of major repetitive DNA elements in two closely related species, Silene latifolia and S. vulgaris. Both species are diploid and possess the same chromosome number (2n = 24), but differ in their genome size and mode of reproduction. The dioecious S. latifolia (1C = 2.70 pg DNA) possesses sex chromosomes and its genome is 2.5× larger than that of the gynodioecious S. vulgaris (1C = 1.13 pg DNA), which does not possess sex chromosomes. We discovered that the genome of S. latifolia is larger mainly due to the expansion of Ogre retrotransposons. Surprisingly, the centromeric STAR-C and TR1 tandem repeats were found to be more abundant in S. vulgaris, the species with the smaller genome. We further examined the distribution of major repetitive sequences in related species in the Caryophyllaceae family. The results of FISH (fluorescence in situ hybridization) on mitotic chromosomes with the Retand element indicate that large rearrangements occurred during the evolution of the Caryophyllaceae family.

Conclusions/Significance

Our data demonstrate that the evolution of genome size in the genus Silene is accompanied by the expansion of different repetitive elements with specific patterns in the dioecious species possessing the sex chromosomes.  相似文献   

11.

Background

Genome evolution in the gymnosperm lineage of seed plants has given rise to many of the most complex and largest plant genomes, however the elements involved are poorly understood.

Methodology/Principal Findings

Gymny is a previously undescribed retrotransposon family in Pinus that is related to Athila elements in Arabidopsis. Gymny elements are dispersed throughout the modern Pinus genome and occupy a physical space at least the size of the Arabidopsis thaliana genome. In contrast to previously described retroelements in Pinus, the Gymny family was amplified or introduced after the divergence of pine and spruce (Picea). If retrotransposon expansions are responsible for genome size differences within the Pinaceae, as they are in angiosperms, then they have yet to be identified. In contrast, molecular divergence of Gymny retrotransposons together with other families of retrotransposons can account for the large genome complexity of pines along with protein-coding genic DNA, as revealed by massively parallel DNA sequence analysis of Cot fractionated genomic DNA.

Conclusions/Significance

Most of the enormous genome complexity of pines can be explained by divergence of retrotransposons, however the elements responsible for genome size variation are yet to be identified. Genomic resources for Pinus including those reported here should assist in further defining whether and how the roles of retrotransposons differ in the evolution of angiosperm and gymnosperm genomes.  相似文献   

12.

Background

Frankia is a genus of soil actinobacteria forming nitrogen-fixing root-nodule symbiotic relationships with non-leguminous woody plant species, collectively called actinorhizals, from eight dicotyledonous families. Frankia strains are classified into four host-specificity groups (HSGs), each of which exhibits a distinct host range. Genome sizes of representative strains of Alnus, Casuarina, and Elaeagnus HSGs are highly diverged and are positively correlated with the size of their host ranges.

Results

The content and size of 12 Frankia genomes were investigated by in silico comparative genome hybridization and pulsed-field gel electrophoresis, respectively. Data were collected from four query strains of each HSG and compared with those of reference strains possessing completely sequenced genomes. The degree of difference in genome content between query and reference strains varied depending on HSG. Elaeagnus query strains were missing the greatest number (22–32%) of genes compared with the corresponding reference genome; Casuarina query strains lacked the fewest (0–4%), with Alnus query strains intermediate (14–18%). In spite of the remarkable gene loss, genome sizes of Alnus and Elaeagnus query strains were larger than would be expected based on total length of the absent genes. In contrast, Casuarina query strains had smaller genomes than expected.

Conclusions

The positive correlation between genome size and host range held true across all investigated strains, supporting the hypothesis that size and genome content differences are responsible for observed diversity in host plants and host plant biogeography among Frankia strains. In addition, our results suggest that different dynamics of shuffling of genome content have contributed to these symbiotic and biogeographic adaptations. Elaeagnus strains, and to a lesser extent Alnus strains, have gained and lost many genes to adapt to a wide range of environments and host plants. Conversely, rather than acquiring new genes, Casuarina strains have discarded genes to reduce genome size, suggesting an evolutionary orientation towards existence as specialist symbionts.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-609) contains supplementary material, which is available to authorized users.  相似文献   

13.
Zwart MP  Dieu BT  Hemerik L  Vlak JM 《PloS one》2010,5(10):e13400

Background

White spot syndrome virus (WSSV) is the sole member of the novel Nimaviridae family, and the source of major economic problems in shrimp aquaculture. WSSV appears to have rapidly spread worldwide after the first reported outbreak in the early 1990s. Genomic deletions of various sizes occur at two loci in the WSSV genome, the ORF14/15 and ORF23/24 variable regions, and these have been used as molecular markers to study patterns of viral spread over space and time. We describe the dynamics underlying the process of WSSV genome shrinkage using empirical data and a simple mathematical model.

Methodology/Principal Findings

We genotyped new WSSV isolates from five Asian countries, and analyzed this information together with published data. Genome size appears to stabilize over time, and deletion size in the ORF23/24 variable region was significantly related to the time of the first WSSV outbreak in a particular country. Parameter estimates derived from fitting a simple mathematical model of genome shrinkage to the data support a geometric progression (k<1) of the genomic deletions, with k = 0.371±0.150.

Conclusions/Significance

The data suggest that the rate of genome shrinkage decreases over time before attenuating. Bioassay data provided support for a link between genome size and WSSV fitness in an aquaculture setting. Differences in genomic deletions between geographic WSSV isolates suggest that WSSV spread did not follow a smooth pattern of geographic radiation, suggesting spread of WSSV over long distances by commercial activities. We discuss two hypotheses for genome shrinkage, an adaptive and a neutral one. We argue in favor of the adaptive hypothesis, given that there is support for a link between WSSV genome size and fitness.  相似文献   

14.
15.

Background and Aims

Studying the spatial distribution of cytotypes and genome size in plants can provide valuable information about the evolution of polyploid complexes. Here, the spatial distribution of cytological races and the amount of DNA in Dianthus broteri, an Iberian carnation with several ploidy levels, is investigated.

Methods

Sample chromosome counts and flow cytometry (using propidium iodide) were used to determine overall genome size (2C value) and ploidy level in 244 individuals of 25 populations. Both fresh and dried samples were investigated. Differences in 2C and 1Cx values among ploidy levels within biogeographical provinces were tested using ANOVA. Geographical correlations of genome size were also explored.

Key Results

Extensive variation in chromosomes numbers (2n = 2x = 30, 2n = 4x = 60, 2n = 6x = 90 and 2n = 12x =180) was detected, and the dodecaploid cytotype is reported for the first time in this genus. As regards cytotype distribution, six populations were diploid, 11 were tetraploid, three were hexaploid and five were dodecaploid. Except for one diploid population containing some triploid plants (2n = 45), the remaining populations showed a single cytotype. Diploids appeared in two disjunct areas (south-east and south-west), and so did tetraploids (although with a considerably wider geographic range). Dehydrated leaf samples provided reliable measurements of DNA content. Genome size varied significantly among some cytotypes, and also extensively within diploid (up to 1·17-fold) and tetraploid (1·22-fold) populations. Nevertheless, variations were not straightforwardly congruent with ecology and geographical distribution.

Conclusions

Dianthus broteri shows the highest diversity of cytotypes known to date in the genus Dianthus. Moreover, some cytotypes present remarkable internal genome size variation. The evolution of the complex is discussed in terms of autopolyploidy, with primary and secondary contact zones.  相似文献   

16.

Background and Aims

Genome size is known to affect various plant traits such as stomatal size, seed mass, and flower or shoot phenology. However, these associations are not well understood for species with very large genomes, which are laregly represented by geophytic plants. No detailed associations are known between DNA base composition and genome size or species ecology.

Methods

Genome sizes and GC contents were measured in 219 geophytes together with tentative morpho-anatomical and ecological traits.

Key Results

Increased genome size was associated with earliness of flowering and tendency to grow in humid conditions, and there was a positive correlation between an increase in stomatal size in species with extremely large genomes. Seed mass of geophytes was closely related to their ecology, but not to genomic parameters. Genomic DNA GC content showed a unimodal relationship with genome size but no relationship with species ecology.

Conclusions

Evolution of genome size in geophytes is closely related to their ecology and phenology and is also associated with remarkable changes in DNA base composition. Although geophytism together with producing larger cells appears to be an advantageous strategy for fast development of an organism in seasonal habitats, the drought sensitivity of large stomata may restrict the occurrence of geophytes with very large genomes to regions not subject to water stress.  相似文献   

17.

Background

Segmental duplication is widely held to be an important mode of genome growth and evolution. Yet how this would affect the global structure of genomes has been little discussed.

Methods/Principal Findings

Here, we show that equivalent length, or , a quantity determined by the variance of fluctuating part of the distribution of the -mer frequencies in a genome, characterizes the latter''s global structure. We computed the s of 865 complete chromosomes and found that they have nearly universal but (-dependent) values. The differences among the of a chromosome and those of its coding and non-coding parts were found to be slight.

Conclusions

We verified that these non-trivial results are natural consequences of a genome growth model characterized by random segmental duplication and random point mutation, but not of any model whose dominant growth mechanism is not segmental duplication. Our study also indicates that genomes have a nearly universal cumulative “point” mutation density of about 0.73 mutations per site that is compatible with the relatively low mutation rates of (15)10/site/Mya previously determined by sequence comparison for the human and E. coli genomes.  相似文献   

18.

Background and Aims

Nutritional changes associated with the evolution of achlorophyllous, mycoheterotrophic plants have not previously been inferred with robust phylogenetic hypotheses. Variations in heterotrophy in accordance with the evolution of leaflessness were examined using a chlorophyllous–achlorophyllous species pair in Cymbidium (Orchidaceae), within a well studied phylogenetic background.

Methods

To estimate the level of mycoheterotrophy in chlorophyllous and achlorophyllous Cymbidium, natural 13C and 15N contents (a proxy for the level of heterotrophy) were measured in four Cymbidium species and co-existing autotrophic and mycoheterotrophic plants and ectomycorrhizal fungi from two Japanese sites.

Key Results

δ13C and δ15N values of the achlorophyllous C. macrorhizon and C. aberrans indicated that they are full mycoheterotrophs. δ13C and δ15N values of the chlorophyllous C. lancifolium and C. goeringii were intermediate between those of reference autotrophic and mycoheterotrophic plants; thus, they probably gain 30–50 % of their carbon resources from fungi. These data suggest that some chlorophyllous Cymbidium exhibit partial mycoheterotrophy (= mixotrophy).

Conclusions

It is demonstrated for the first time that mycoheterotrophy evolved after the establishment of mixotrophy rather than through direct shifts from autotrophy to mycoheterotrophy. This may be one of the principal patterns in the evolution of mycoheterotrophy. The results also suggest that the establishment of symbiosis with ectomycorrhizal fungi in the lineage leading to mixotrophic Cymbidium served as pre-adaptation to the evolution of the mycoheterotrophic species. Similar processes of nutritional innovations probably occurred in several independent orchid groups, allowing niche expansion and radiation in Orchidaceae, probably the largest plant family.  相似文献   

19.

Background and Aims

The genome size of an organism is determined by its capacity to tolerate genome expansion, given the species'' life strategy and the limits of a particular environment, and the ability for retrotransposon suppression and/or removal. In some giant-genomed bulb geophytes, this tolerance is explained by their ability to pre-divide cells in the dormant stages or by the selective advantage of larger cells in the rapid growth of their fleshy body. In this study, a test shows that the tendency for genome size expansion is a more universal feature of geophytes, and is a subject in need of more general consideration.

Methods

Differences in monoploid genome sizes were compared using standardized phylogenetically independent contrasts in 47 sister pairs of geophytic and non-geophytic taxa sampled across all the angiosperms. The genome sizes of 96 species were adopted from the literature and 53 species were newly measured using flow cytometry with propidium iodide staining.

Key Results

The geophytes showed increased genome sizes compared with their non-geophytic relatives, regardless of the storage organ type and regardless of whether or not vernal geophytes, polyploids or annuals were included in the analyses.

Conclusions

The universal tendency of geophytes to possess a higher genome size suggests the presence of a universal mechanism allowing for genome expansion. It is assumed that this is primarily due to the nutrient and energetic independence of geophytes perhaps allowing continuous synthesis of DNA, which is known to proceed in the extreme cases of vernal geophytes even in dormant stages. This independence may also be assumed as a reason for allowing large genomes in some parasitic plants, as well as the nutrient limitation of small genomes of carnivorous plants.  相似文献   

20.

Background

Mammalian genomes commonly harbor endogenous viral elements. Due to a lack of comparable genome-scale sequence data, far less is known about endogenous viral elements in avian species, even though their small genomes may enable important insights into the patterns and processes of endogenous viral element evolution.

Results

Through a systematic screening of the genomes of 48 species sampled across the avian phylogeny we reveal that birds harbor a limited number of endogenous viral elements compared to mammals, with only five viral families observed: Retroviridae, Hepadnaviridae, Bornaviridae, Circoviridae, and Parvoviridae. All nonretroviral endogenous viral elements are present at low copy numbers and in few species, with only endogenous hepadnaviruses widely distributed, although these have been purged in some cases. We also provide the first evidence for endogenous bornaviruses and circoviruses in avian genomes, although at very low copy numbers. A comparative analysis of vertebrate genomes revealed a simple linear relationship between endogenous viral element abundance and host genome size, such that the occurrence of endogenous viral elements in bird genomes is 6- to 13-fold less frequent than in mammals.

Conclusions

These results reveal that avian genomes harbor relatively small numbers of endogenous viruses, particularly those derived from RNA viruses, and hence are either less susceptible to viral invasions or purge them more effectively.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0539-3) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号