首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The cholesterol content of the endoplasmic reticulum (ER) and the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) imbedded therein respond homeostatically within minutes to changes in the level of plasma membrane cholesterol. We have now examined the roles of sterol regulatory element-binding protein (SREBP)-dependent gene expression, side chain oxysterol biosynthesis, and cholesterol precursors in the short term regulation of ER cholesterol levels and HMGR activity. We found that SREBP-dependent gene expression is not required for the response to changes in cell cholesterol of either the pool of ER cholesterol or the rate of cholesterol esterification. It was also found that the acute proteolytic inactivation of HMGR triggered by cholesterol loading required the conversion of cholesterol to 27-hydroxycholesterol. High levels of exogenous 24,25-dihydrolanosterol drove the inactivation of HMGR; lanosterol did not. However, purging endogenous 24,25-dihydrolanosterol, lanosterol, and other biosynthetic sterol intermediates by treating cells with NB-598 did not greatly affect either the setting of their ER cholesterol pool or the inactivation of their HMGR. In summary, neither SREBP-regulated genes nor 27-hydroxycholesterol is involved in setting the ER cholesterol pool. On the other hand, 27-hydroxycholesterol, rather than cholesterol itself or biosynthetic precursors of cholesterol, stimulates the rapid inactivation of HMGR in response to high levels of cholesterol.  相似文献   

2.
Mevalonic aciduria (MA) and hyper-IgD and periodic fever syndrome (HIDS) are two inherited disorders both caused by depressed mevalonate kinase (MK) activity. MK is the first enzyme to follow the highly regulated 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase (HMGR), which catalyzes the rate-limiting step in the isoprenoid/cholesterol biosynthesis pathway. In fibroblasts of MA patients, but not of HIDS patients, HMGR activity is elevated under normal growth conditions. This activity is down-regulated when cells are supplemented with the isoprenoid precursors geraniol, farnesol, and geranylgeraniol, and a mixture of 25-hydroxycholesterol and cholesterol. This indicates that the regulation of the pathway in these cells is not disturbed. The elevated HMGR activity is probably due to a shortage of non-sterol isoprenoid end products, as indicated by normal HMGR mRNA levels in MA fibroblasts. Furthermore, the HMGR activity in MA cells was more sensitive to geranylgeraniol suppression and less sensitive to sterol suppression than the HMGR activity in low density lipoprotein receptor-deficient cells. HMGR activity in MA cells was down-regulated also by addition of its product mevalonate to the culture medium. Thus, it appears that the elevation of mevalonate levels, which are high in MA patients and moderate in HIDS patients, allows the cells to compensate for the depressed MK activity. Indeed, the isoprenylation of Ras and RhoA protein appeared normal in HIDS and MA fibroblasts under normal conditions but showed increased sensitivity toward inhibition of HMGR by simvastatin. Our results indicate that MK-deficient cells maintain the flux through the isoprenoid/cholesterol biosynthesis pathway by elevating intracellular mevalonate levels.  相似文献   

3.
4.
This review considers the hypothesis that a small portion of plasma membrane cholesterol regulates reverse cholesterol transport in coordination with overall cellular homeostasis. It appears that almost all of the plasma membrane cholesterol is held in stoichiometric complexes with bilayer phospholipids. The minor fraction of cholesterol that exceeds the complexation capacity of the phospholipids is called active cholesterol. It has an elevated chemical activity and circulates among the organelles. It also moves down its chemical activity gradient to plasma HDL, facilitated by the activity of ABCA1, ABCG1, and SR-BI. ABCA1 initiates this process by perturbing the organization of the plasma membrane bilayer, thereby priming its phospholipids for translocation to apoA-I to form nascent HDL. The active excess sterol and that activated by ABCA1 itself follow the phospholipids to the nascent HDL. ABCG1 similarly rearranges the bilayer and sends additional active cholesterol to nascent HDL, while SR-BI simply facilitates the equilibration of the active sterol between plasma membranes and plasma proteins. Active cholesterol also flows downhill to cytoplasmic membranes where it serves both as a feedback signal to homeostatic ER proteins and as the substrate for the synthesis of mitochondrial 27-hydroxycholesterol (27HC). 27HC binds the LXR and promotes the expression of the aforementioned transport proteins. 27HC-LXR also activates ABCA1 by competitively displacing its inhibitor, unliganded LXR. 4 Considerable indirect evidence suggests that active cholesterol serves as both a substrate and a feedback signal for reverse cholesterol transport. Direct tests of this novel hypothesis are proposed.  相似文献   

5.
6.
In man, hepatic mitochondrial sterol 27-hydroxylase and microsomal cholesterol 7-hydroxylase initiate distinct pathways of bile acid biosynthesis from cholesterol, the “acidic” and “neutral” pathways, respectively. A similar acidic pathway in the rat has been hypothesized, but its quantitative importance and ability to be regulated at the level of sterol 27-hydroxylase are uncertain. In this study, we explored the molecular regulation of sterol 27-hydroxylase and the acidic pathway of bile acid biosynthesis in primary cultures of adult rat hepatocytes. mRNA and protein turnover rates were approximately 10-fold slower for sterol 27-hydroxylase than for cholesterol 7-hydroxylase. Sterol 27-hydroxylase mRNA was not spontaneously expressed in culture. The sole requirement for preserving sterol 27-hydroxylase mRNA at the level of freshly isolated hepatocytes (0 h) after 72 h was the addition of dexamethasone (0.1 μM; > 7-fold induction). Sterol 27-hydroxylase mRNA, mass and specific activity were not affected by thyroxine (1.0 μM), dibutyryl-cAMP (50 μM), nor squalestatin 1 (150 nM-1.0 μM), an inhibitor of cholesterol biosynthesis. Taurocholate (50 μM), however, repressed sterol 27-hydroxylase mRNA levels by 55%. Sterol 27-hydroxylase specific activity in isolated mitochondria was increased > 10-fold by the addition of 2-hydroxypropyl-β-cyclodextrin. Under culture conditions designed to maximally repress cholesterol 7-hydroxylase and bile acid synthesis from the neutral pathway but maintain sterol 27-hydroxylase mRNA and activity near 0 h levels, bile acid synthesis from [14C]cholesterol remained relatively high and consisted of β-muricholate, the product of chenodeoxycholate in the rat. We conclude that rat liver harbors a quantitatively important alternative pathway of bile acid biosynthesis and that its initiating enzyme, sterol 27-hydroxylase, may be slowly regulated by glucocorticoids and bile acids.  相似文献   

7.
3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes the formation of mevalonate, the committed step in the biosynthesis of sterols and isoprenoids. The activity of HMGR is controlled through synthesis, degradation and phosphorylation to maintain the concentration of mevalonate-derived products. In addition to the physiological regulation of HMGR, the human enzyme has been targeted successfully by drugs in the clinical treatment of high serum cholesterol levels. Three crystal structures of the catalytic portion of human HMGR in complexes with HMG-CoA, with HMG and CoA, and with HMG, CoA and NADP(+), provide a detailed view of the enzyme active site. Catalytic portions of human HMGR form tight tetramers. The crystal structure explains the influence of the enzyme's oligomeric state on the activity and suggests a mechanism for cholesterol sensing. The active site architecture of human HMGR is different from that of bacterial HMGR; this may explain why binding of HMGR inhibitors to bacterial HMGRs has not been reported.  相似文献   

8.
Clofibrate is a hypolipidemic drug belonging to the peroxisome proliferator (PP) family. PPs are well-recognized hepatocarcinogens, though only for rodents and not for humans. Their oncogenicity is usually ascribed to mitogenic or antiapoptotic action. However, we have reported that clofibrate can trigger fast and extensive apoptosis in rodent and human tumor cell lines. The present study examines the possible mechanisms involved in clofibrate-induced apoptosis in AH-130 hepatoma cells. The results show that the apoptogenic effect of clofibrate does not depend on induction of peroxisome proliferator activated receptors (PPARs), but on interference with HMG-CoA reductase (HMGR), a key enzyme that regulates cholesterol biosynthesis and production of isoprenoid units for protein farnesylation. The level and activity of HMGR mRNA are reduced in clofibrate-treated AH-130 cells and apoptosis can be partially prevented by addition of mevalonate. Moreover, cholesterol and cholesterol ester content decreases early in mitochondria, and cytocrome c is released in the cytosol. On the contrary, perturbations at the level of protein farnesylation are not important in determining the fast apoptogenic effect, since treatment of AH-130 cells with an inhibitor of farnesyltransferase induces apoptosis only after 4 h. In conclusion, inhibition of HMGR and decreased cholesterol content are crucial events in clofibrate-induced apoptosis in AH-130 hepatoma cells.  相似文献   

9.
Abstract

The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is mainly involved in the regulation of cholesterol biosynthesis. HMGR catalyses the reduction of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) to mevalonate at the expense of two NADPH molecules in a two-step reversible reaction. In the present study, we constructed a model of human HMGR (hHMGR) to explore the conformational changes of HMGR in complex with HMG-CoA and NADPH. In addition, we analysed the complete sequence of the Flap domain using molecular dynamics (MD) simulations and principal component analysis (PCA). The simulations revealed that the Flap domain plays an important role in catalytic site activation and substrate binding. The apo form of hHMGR remained in an open state, while a substrate-induced closure of the Flap domain was observed for holo hHMGR. Our study also demonstrated that the phosphorylation of Ser872 induces significant conformational changes in the Flap domain that lead to a complete closure of the active site, suggesting three principal conformations for the first stage of hHMGR catalysis. Our results were consistent with previous proposed models for the catalytic mechanism of hHMGR.

Communicated by Ramaswamy H. Sarma  相似文献   

10.
The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) is an essential enzyme in cholesterol biosynthesis. To study the expression of HMGR and corresponding cholesterol content in liver, adipose and muscle, six Chinese local breed (Huai pig) and Landrace pigs were selected. The results indicated that significant differences of cholesterol content in adipose (P < 0.01), liver (P < 0.05) and muscle (P < 0.01) tissues were detected between pigs of differing genetic backgrounds. HMGR mRNA expression were noted for adipose, liver and muscle of the two vastly differing genetics. Moreover cholesterol content differed (P < 0.01) among tissues across breed. Likewise, HMGR mRNA expression was different between adipose and liver tissues, muscle and liver tissues in both breeds; however, no difference was noted between adipose and muscle tissues. Results from this study indicate that cholesterol content and HMGR mRNA expression are higher in Huai pig tissues suggesting this gene is expressed in a breed- and tissue-dependent manner in pigs. Understanding the causes of variation in HMGR gene expression may provide crucial information about cholesterol biosynthesis.  相似文献   

11.
The Niemann-Pick, Type C1 protein (NPC1) is required for the transport of lipoprotein-derived cholesterol from lysosomes to endoplasmic reticulum. The 1278-amino acid, polytopic membrane protein has not been purified, and its mechanism of action is unknown. Unexpectedly, we encountered NPC1 in a search for a membrane protein that binds 25-hydroxycholesterol (25-HC) and other oxysterols. A 25-HC-binding protein was purified more than 14,000-fold from rabbit liver membranes and identified as NPC1 by mass spectroscopy. We prepared recombinant human NPC1 and confirmed its ability to bind oxysterols, including those with a hydroxyl group on the 24, 25, or 27 positions. Hydroxyl groups on the 7, 19, or 20 positions failed to confer binding. Recombinant human NPC1 also bound [(3)H]cholesterol in a reaction inhibited by Nonidet P-40 above its critical micellar concentration. Low concentrations of unlabeled 25-HC abolished binding of [(3)H]cholesterol, but the converse was not true, i.e. unlabeled cholesterol, even at high concentrations, did not abolish binding of [(3)H]25-HC. NPC1 is not required for the known regulatory actions of oxysterols. Thus, in NPC1-deficient fibroblasts 25-HC blocked the processing of sterol regulatory element-binding proteins and activated acyl-CoA:cholesterol acyltransferase in a normal fashion. The availability of assays to measure NPC1 binding in vitro may further the understanding of ways in which oxysterols regulate intracellular lipid transport.  相似文献   

12.
We have developed a simple, precise, and ultrasensitive enzymatic method for measuring serum mevalonic acid (MVA) concentration, which is thought to be a good indicator of the in vivo cholesterol biosynthesis rate. This assay is based on an enzyme cycling reaction and makes use of HMG-CoA reductase (HMGR), thio-NAD, NADH, and CoA. MVA participates in the HMGR cycling reaction, and its level is measured based on the production of thio-NADH, which is determined from the change in absorbance at 405 nm. To achieve high specificity, we used mevalonate kinase (MVK) in addition to HMGR. Only substrates able to participate in both the HMGR cycling reaction and the MVK reaction are measured as MVA. The detection limit for MVA is 0.4 ng/ml (2.7 nmol/l), and the calibration curve for MVA is linear up to 44 ng/ml (300 nmol/l). Regression analysis with 40 serum samples showed the accuracy of quantifying MVA with this enzymatic assay to be comparable to that using LC-MS/MS (correlation: y = 0.83x + 0.24; r = 0.97). This procedure is simple, precise, and robust. It is also rapid and has a high throughput, making it potentially useful for clinical applications.  相似文献   

13.
Defects in Niemann-Pick, Type C-1 protein (NPC1) cause cholesterol, sphingolipids, phospholipids, and glycolipids to accumulate in lysosomes of liver, spleen, and brain. In cultured fibroblasts, NPC1 deficiency causes lysosomal retention of lipoprotein-derived cholesterol after uptake by receptor-mediated endocytosis. NPC1 contains 1278 amino acids that form 13 membrane-spanning helices and three large loops that project into the lumen of lysosomes. We showed earlier that NPC1 binds cholesterol and oxysterols. Here we localize the binding site to luminal loop-1, a 240-amino acid domain with 18 cysteines. When produced in cultured cells, luminal loop-1 was secreted as a soluble dimer. This loop bound [(3)H]cholesterol (K(d), 130 nM) and [(3)H]25-hydroxycholesterol (25-HC, K(d), 10 nM) with one sterol binding site per dimer. Binding of both sterols was competed by oxysterols (24-, 25-, and 27-HC). Unlabeled cholesterol competed strongly for binding of [(3)H]cholesterol, but weakly for [(3)H]25-HC binding. Binding of [(3)H]cholesterol but not [(3)H]25-HC was inhibited by detergents. We also studied NPC2, a soluble protein whose deficiency causes a similar disease phenotype. NPC2 bound cholesterol, but not oxysterols. Epicholesterol and cholesteryl sulfate competed for [(3)H]cholesterol binding to NPC2, but not NPC1. Glutamine 79 in luminal loop-1 of NPC-1 is important for sterol binding; a Q79A mutation abolished binding of [(3)H]cholesterol and [(3)H]25-HC to full-length NPC1. Nevertheless, the Q79A mutant restored cholesterol transport to NPC1-deficient Chinese hamster ovary cells. Thus, the sterol binding site on luminal loop-1 is not essential for NPC1 function in fibroblasts, but it may function in other cells where NPC1 deficiency produces more complicated lipid abnormalities.  相似文献   

14.
This study presents a design of a highly potent and competitive inhibitory peptide for 3-hydroxy-3-methylglutaryl CoA reductase (HMGR). HMGR is the major regulatory enzyme of cholesterol biosynthesis and the target enzyme of many investigations aimed at lowering the rate of cholesterol biosynthesis. In previous studies, the two hypocholesterolemic peptides (LPYP and IAVPGEVA) were isolated and identified from soy protein. Based on these peptide sequences, a number of peptides were designed previously by using the correlation between the conformational flexibility and bioactivity. The design method that was applied in previous studies was slightly modified for the purpose of the current research and 12 new peptides were designed and synthesized. Among all peptides, SFGYVAE showed the highest ability to inhibit HMGR. A kinetic analysis revealed that this peptide is a competitive inhibitor of HMG-CoA with an equilibrium constant of inhibitor binding (K i) of 12?±?0.4?nM. This is an overall 14,500-fold increase in inhibitory activity compared to the first isolated LPYP peptide from soybeans. Conformational data support a conformation of the designed peptides close to the bioactive conformation of the previously synthesized active peptides.  相似文献   

15.
The rat R2C Leydig tumor cell line is constitutively steroidogenic in nature, while the mouse MA-10 Leydig tumor cell line synthesizes large amounts of steroids only in response to hormonal stimulation. Earlier studies showed abundant cAMP-independent steroid production and constitutive expression of steroidogenic acute regulatory (StAR) protein in R2C cells. The objective of the current study was to identify possible genetic alterations in the R2C cell line responsible for rendering it a constitutively steroidogenic cell line, especially those that might have altered its cholesterol homeostatic mechanisms. Measurement of the levels of cholesterol esters and free cholesterol, precursors for steroidogenesis, indicated that R2C mitochondria were fourfold enriched in free cholesterol content compared with MA-10 mitochondria. In addition to the previously demonstrated increased expression of StAR protein, we show that R2C cells possess marginally enhanced protein kinase A activity, exhibit higher capacity to take up extracellular cholesterol esters, and express much higher levels of scavenger receptor-type B class 1 (SR-B1) and hormone sensitive lipase (HSL). These observations suggest that the high level of steroid biosynthesis in R2C cells is a result of the constitutive expression of the components involved in the uptake of cholesterol esters (SR-B1), their conversion to free cholesterol (HSL), and its mobilization to the inner mitochondrial membrane (StAR).  相似文献   

16.
17.
3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is a rate-controlling enzyme in the mevalonate pathway which involved in biosynthesis of cholesterol and other isoprenoids. This enzyme catalyzes the conversion of HMG-CoA to mevalonate and is regarded as a drug target to treat hypercholesterolemia. In this study, ten qualitative pharmacophore models were generated based on chemical features in active inhibitors of HMGR. The generated models were validated using a test set. In a validation process, the best hypothesis was selected based on the statistical parameters and used for virtual screening of chemical databases to find novel lead candidates. The screened compounds were sorted by applying drug-like properties. The compounds that satisfied all drug-like properties were used for molecular docking study to identify their binding conformations at active site of HMGR. The final hit compounds were selected based on docking score and binding orientation. The HMGR structures in complex with the hit compounds were subjected to 10 ns molecular dynamics simulations to refine the binding orientation as well as to check the stability of the hits. After simulation, binding modes including hydrogen bonding patterns and molecular interactions with the active site residues were analyzed. In conclusion, four hit compounds with new structural scaffold were suggested as novel and potent HMGR inhibitors.  相似文献   

18.
19.
CYP27A1, an enzyme involved in regulating cellular cholesterol homeostasis, converts cholesterol into 27-hydroxycholesterol (27-HC). The relationship between CYP27A1 and cell proliferation was studied to determine the role of CYP27A1 in bladder cancer. The expression of CYP27A1 in three bladder cancer cell lines (T24, UM-UC-3 and 5637) were assessed by qRT-PCR and Western blotting, and cells with stable CYP27A1 expression were generated by lentiviral infection. Cell proliferation was detected by MTT assays, colony formation assays and a tumor xenograft model in vitro and in vivo, and the intracellular 27-HC and cholesterol secretion levels were detected by enzyme-linked immunosorbent assays (ELISA). The results revealed that CYP27A1 expression was downregulated in androgen receptor (AR)-positive T24/UM-UC-3 cells compared with AR-negative 5637 cell. After CYP27A1 expression was restored, cell proliferation was inhibited in vitro and in vivo because much more intracellular 27-HC was produced in the CYP27A1-overexpressing cells than in the control cells. Both T24 and UM-UC-3 cells treated with 27-HC showed similar results. In addition, CYP27A1/27HC could reduce the cellular cholesterol level in both T24 and UM-UC-3 cells by upregulating ATP-binding cassette transporters G1 and A1 (ABCG1 and ABCA1) through Liver X receptors (LXRs) pathway and downregulating low-density lipoprotein receptor (LDLR) expression. These findings all suggest that CYP27A1 is a critical cholesterol sensor in bladder cancer cells that may contribute significantly to bladder cancer proliferation.  相似文献   

20.
The metabolism of cholesterol in isolated intact pig liver mitochondria has been investigated. Six major cholesterol metabolites were identified by gas-liquid chromatography-mass spectrometry, the metabolic end product being 7 alpha-hydroxy-3-oxo-4-cholestenoic acid. Incubations with the synthesized intermediates suggested that the major pathway from cholesterol to this acid proceeds via the sequence of 26-hydroxylation, 7 alpha-hydroxylation, further oxidation of the side chain and oxidation/isomerization in the A-ring. The observed reactions prove that in addition to a sterol 26-hydroxylase, pig liver mitochondria contain significant amounts of a 7 alpha-hydroxylase active on side chain oxygenated 3 beta-hydroxy-delta 5-C27 steroids, an oxidoreductase active in the side chain of 26-hydroxylated steroids and a 3 beta-hydroxy-delta 5 steroid oxidoreductase active on 7 alpha-hydroxylated C27 steroids. Since 7 alpha-hydroxy-3-oxo-4-cholestenoic acid is believed to be an important precursor of chenodeoxycholic acid, this study shows that the first reactions in the biosynthesis of bile acids can be exclusively mitochondrial and thereby bypass microsomal cholesterol 7 alpha-hydroxylase as the rate-limiting enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号