首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Helicobacter pylori infections cause gastric ulcers and play a major role in the development of gastric cancer. In 2001, the first protein interactome was published for this species, revealing over 1500 binary protein interactions resulting from 261 yeast two-hybrid screens. Here we roughly double the number of previously published interactions using an ORFeome-based, proteome-wide yeast two-hybrid screening strategy. We identified a total of 1515 protein–protein interactions, of which 1461 are new. The integration of all the interactions reported in H. pylori results in 3004 unique interactions that connect about 70% of its proteome. Excluding interactions of promiscuous proteins we derived from our new data a core network consisting of 908 interactions. We compared our data set to several other bacterial interactomes and experimentally benchmarked the conservation of interactions using 365 protein pairs (interologs) of E. coli of which one third turned out to be conserved in both species.Helicobacter pylori is a Gram-negative, microaerophilic bacterium that colonizes the stomach, an unusual highly acidic niche for microorganisms. In 1983, Warren and Marshall found it to be associated with gastric inflammation and duodenal ulcer disease (1, 2). A chronic infection with H. pylori can lead to development of stomach carcinoma and MALT lymphoma (reviewed in (3)). Hence, the World Health Organization has classified H. pylori as a class I carcinogen (4). It is estimated that half of the world′s population harbors H. pylori but with large variations in the geographical and socioeconomic distribution while causing annually 700,000 deaths worldwide (reviewed in (5)).The pathogenesis of H. pylori has been extensively studied, including the effector CagA, cytotoxin VacA, its adhesins and urease (reviewed in (3, 57)). The latter allows the bacterium to neutralize the stomach acid through ammonia production. However, H. pylori is not a classical model organism and thus many gaps in our knowledge still exist.The genome of H. pylori reference strain 26695 was completely sequenced in 1997 (8) and encodes 1587 proteins of which about 950 (61%) have been assigned functions (excluding “putatives”; Uniprot, CMR (9)). These numbers indicate that a large fraction of the proteins of H. pylori has not been functionally characterized.Protein–protein interactions (PPIs)1 are required for nearly all biological processes. Unbiased interactomes are helpful to understand proteins or pathways and how they are linking poorly or uncharacterized proteins via their interactions. For instance, our study of the Treponema pallidum interactome (10) has led to the characterization of several previously “unknown” proteins such as YbeB, a ribosomal silencing factor (11), or TP0658, a regulator of flagellar translation and assembly (12, 13). However, only a few other comprehensive bacterial interactome studies have been published to date, including Campylobacter jejuni (14), Synechocystis sp. (15), Mycobacterium tuberculosis (16), Mesorhizobium loti (17), and recently Escherichia coli (18). In addition, partial interactomes are available for Bacillus subtilis (19) and H. pylori (20). Most of them used the yeast two-hybrid (Y2H) screening technology (21) which allows the pairwise detection of PPIs. Furthermore, a few other studies (2225) systematically identified protein complexes and their compositions in bacteria.In 2001, Rain and colleagues have established a partial interactome of H. pylori, the first published protein interaction network of a bacterium (20). In this study, 261 bait constructs were screened against a random prey pool library resulting in the detection of over 1500 PPIs. Although this network likely represents a small fraction of all PPIs that occur in H. pylori, many downstream studies were motivated by these results (see below).Recent studies have disproved the notion that Y2H data sets are of poor quality (26, 27). Similarly, a high false-negative rate can be avoided by multiple Y2H expression vector systems (2830) or protein fragments as opposed to full-length constructs (31). The aim of this study was to systematically screen the H. pylori proteome for binary protein interactions using a complementary approach to that of Rain et al. to produce an extended protein–protein interaction map of H. pylori. As a result, we have roughly doubled the number of known binary protein–protein interactions for H. pylori in this study.  相似文献   

3.
Helicobacter pylori infection of the human stomach is associated with disease-causing inflammation that elicits DNA damage in both bacterial and host cells. Bacteria must repair their DNA to persist. The H. pylori AddAB helicase-exonuclease is required for DNA repair and efficient stomach colonization. To dissect the role of each activity in DNA repair and infectivity, we altered the AddA and AddB nuclease (NUC) domains and the AddA helicase (HEL) domain by site-directed mutagenesis. Extracts of Escherichia coli expressing H. pylori addANUCB or addABNUC mutants unwound DNA but had approximately half of the exonuclease activity of wild-type AddAB; the addANUCBNUC double mutant lacked detectable nuclease activity but retained helicase activity. Extracts with AddAHELB lacked detectable helicase and nuclease activity. H. pylori with the single nuclease domain mutations were somewhat less sensitive to the DNA-damaging agent ciprofloxacin than the corresponding deletion mutant, suggesting that residual nuclease activity promotes limited DNA repair. The addANUC and addAHEL mutants colonized the stomach less efficiently than the wild type; addBNUC showed partial attenuation. E. coli ΔrecBCD expressing H. pylori addAB was recombination-deficient unless H. pylori recA was also expressed, suggesting a species-specific interaction between AddAB and RecA and also that H. pylori AddAB participates in both DNA repair and recombination. These results support a role for both the AddAB nuclease and helicase in DNA repair and promoting infectivity.Infection of the stomach with Helicobacter pylori causes a variety of diseases including gastritis, peptic ulcers, and gastric cancer (1). A central feature of the pathology of these conditions is the establishment of a chronic inflammatory response that acts both on the host and the infecting bacteria (2). Both epithelial (3, 4) and lymphoid (5, 6) cells in the gastric mucosa of infected individuals release DNA-damaging agents that can introduce double-stranded (ds)2 breaks into the bacterial chromosome (7). The ds breaks must be repaired for the bacteria to survive and establish chronic colonization of the stomach. Homologous recombination is required for the faithful repair of DNA damage and bacterial survival. Alteration of the expression of one of a series of cell surface proteins on H. pylori occurs by an apparent gene conversion of babA, the frequency of which is reduced in repair-deficient strains (8, 9). This change in the cell surface, which may allow H. pylori to evade the host immune response, is a second means by which recombination can promote efficient colonization of the stomach by H. pylori.The initiation or presynaptic steps of recombination at dsDNA breaks in most bacteria involves the coordinated action of nuclease and helicase activities provided by one of two multisubunit enzymes, the AddAB and RecBCD enzymes (10). Escherichia coli recBCD null mutants have reduced cell viability, are hypersensitive to DNA-damaging agents, and are homologous recombination-deficient (1114). Similarly, H. pylori addA and addB null mutants are hypersensitive to DNA-damaging agents, have reduced frequencies of babA gene conversion, and colonize the stomach of mice less efficiently than wild-type strains (8).The activities of RecBCD enzyme from E. coli (1519) and AddAB from H. pylori (8) or Bacillus subtilis (2023) indicate some common general features of the presynaptic steps of DNA repair. In the case of E. coli, repair begins when the RecBCD enzyme binds to a dsDNA end and unwinds the DNA using its ATP-dependent helicase activities (17, 24). Single-stranded (ss) DNA produced during unwinding, with or without accompanying nuclease, is coated with RecA protein (16, 25). This recombinogenic substrate engages in strand exchange with a homologous intact duplex to form a joint molecule. Joint molecules are thought to be converted into intact, recombinant DNA either by replication or by cutting and ligation of exchanged strands (26).Although the AddAB and RecBCD enzymes appear to play similar roles in promoting recombination and DNA repair, they differ in several ways. RecBCD is a heterotrimer, composed of one copy of the RecB, RecC, and RecD gene products (27), whereas AddAB has two subunits, encoded by the addA and addB genes (21, 28). The enzyme subunit(s) responsible for helicase activity can be inferred from the presence of conserved protein domains or the activity of purified proteins. AddA, RecB, and RecD are superfamily I helicases with six highly conserved helicase motifs, including the conserved Walker A box found in many enzymes that bind ATP (2932). A Walker A box is defined by the consensus sequence (G/A)XXGXGKT (X is any amino acid (29). RecBCD enzymes in which the conserved Lys in this motif is changed to Gln have a reduced affinity for ATP binding (33, 34) and altered helicase activity (17, 3537).A nuclease domain with the conserved amino acid sequence LDYK is found in RecB, AddA, AddB, and many other nucleases (38). The conserved Asp plays a role in Mg2+ binding at the active site; Mg2+ is required for nuclease activity (39). The recB1080 mutation, which changes codon 1080 from the conserved Asp in this motif to Ala, eliminates nuclease activity (39).We have recently shown that addA and addB deletion mutants are hypersensitive to DNA-damaging agents and impaired in colonization of the mouse stomach compared with wild-type strains (8). To determine the roles of the individual helicase and nuclease activities of H. pylori AddAB in DNA repair and infectivity, we used site-directed mutagenesis to inactivate the conserved nuclease domains of addA and addB and the conserved ATPase (helicase) domain of AddA. Here, we report that loss of the AddAB helicase is sufficient to impair H. pylori DNA repair and infectivity and, when the genes are expressed in E. coli, homologous recombination. AddAB retains partial activity in biochemical and genetic assays when either of the two nuclease domains is inactivated but loses all detectable nuclease activity when both domains are inactivated. Remarkably, H. pylori AddAB can produce recombinants in E. coli only in the presence of H. pylori RecA, suggesting a species-specific interaction in which AddAB facilitates the production of ssDNA-coated with RecA protein. Our results show that both the helicase and nuclease activities are required for the biological roles of H. pylori AddAB.  相似文献   

4.
Helicobacter pylori CagA plays a key role in gastric carcinogenesis. Upon delivery into gastric epithelial cells, CagA binds and deregulates SHP-2 phosphatase, a bona fide oncoprotein, thereby causing sustained ERK activation and impaired focal adhesions. CagA also binds and inhibits PAR1b/MARK2, one of the four members of the PAR1 family of kinases, to elicit epithelial polarity defect. In nonpolarized gastric epithelial cells, CagA induces the hummingbird phenotype, an extremely elongated cell shape characterized by a rear retraction defect. This morphological change is dependent on CagA-deregulated SHP-2 and is thus thought to reflect the oncogenic potential of CagA. In this study, we investigated the role of the PAR1 family of kinases in the hummingbird phenotype. We found that CagA binds not only PAR1b but also other PAR1 isoforms, with order of strength as follows: PAR1b > PAR1d ≥ PAR1a > PAR1c. Binding of CagA with PAR1 isoforms inhibits the kinase activity. This abolishes the ability of PAR1 to destabilize microtubules and thereby promotes disassembly of focal adhesions, which contributes to the hummingbird phenotype. Consistently, PAR1 knockdown potentiates induction of the hummingbird phenotype by CagA. The morphogenetic activity of CagA was also found to be augmented through inhibition of non-muscle myosin II. Because myosin II is functionally associated with PAR1, perturbation of PAR1-regulated myosin II by CagA may underlie the defect of rear retraction in the hummingbird phenotype. Our findings reveal that CagA systemically inhibits PAR1 family kinases and indicate that malfunctioning of microtubules and myosin II by CagA-mediated PAR1 inhibition cooperates with deregulated SHP-2 in the morphogenetic activity of CagA.Infection with Helicobacter pylori strains bearing cagA (cytotoxin-associated gene A)-positive strains is the strongest risk factor for the development of gastric carcinoma, the second leading cause of cancer-related death worldwide (13). The cagA gene is located within a 40-kb DNA fragment, termed the cag pathogenicity island, which is specifically present in the genome of cagA-positive H. pylori strains (46). In addition to cagA, there are ∼30 genes in the cag pathogenicity island, many of which encode a bacterial type IV secretion system that delivers the cagA-encoded CagA protein into gastric epithelial cells (710). Upon delivery into gastric epithelial cells, CagA is localized to the plasma membrane, where it undergoes tyrosine phosphorylation at the C-terminal Glu-Pro-Ile-Tyr-Ala motifs by Src family kinases or c-Abl kinase (1114). The C-terminal Glu-Pro-Ile-Tyr-Ala-containing region of CagA is noted for the structural diversity among distinct H. pylori isolates. Oncogenic potential of CagA has recently been confirmed by a study showing that systemic expression of CagA in mice induces gastrointestinal and hematological malignancies (15).When expressed in gastric epithelial cells, CagA induces morphological transformation termed the hummingbird phenotype, which is characterized by the development of one or two long and thin protrusions resembling the beak of the hummingbird. It has been thought that the hummingbird phenotype is related to the oncogenic action of CagA (7, 1619). Pathophysiological relevance for the hummingbird phenotype in gastric carcinogenesis has recently been provided by the observation that infection with H. pylori carrying CagA with greater ability to induce the hummingbird phenotype is more closely associated with gastric carcinoma (2023). Elevated motility of hummingbird cells (cells showing the hummingbird phenotype) may also contribute to invasion and metastasis of gastric carcinoma.In host cells, CagA interacts with the SHP-2 phosphatase, C-terminal Src kinase, and Crk adaptor in a tyrosine phosphorylation-dependent manner (16, 24, 25) and also associates with Grb2 adaptor and c-Met in a phosphorylation-independent manner (26, 27). Among these CagA targets, much attention has been focused on SHP-2 because the phosphatase has been recognized as a bona fide oncoprotein, gain-of-function mutations of which are found in various human malignancies (17, 18, 28). Stable interaction of CagA with SHP-2 requires CagA dimerization, which is mediated by a 16-amino acid CagA-multimerization (CM)2 sequence present in the C-terminal region of CagA (29). Upon complex formation, CagA aberrantly activates SHP-2 and thereby elicits sustained ERK MAP kinase activation that promotes mitogenesis (30). Also, CagA-activated SHP-2 dephosphorylates and inhibits focal adhesion kinase (FAK), causing impaired focal adhesions. It has been shown previously that both aberrant ERK activation and FAK inhibition by CagA-deregulated SHP-2 are involved in induction of the hummingbird phenotype (31).Partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) is an evolutionally conserved serine/threonine kinase originally isolated in C. elegans (3234). Mammalian cells possess four structurally related PAR1 isoforms, PAR1a/MARK3, PAR1b/MARK2, PAR1c/MARK1, and PAR1d/MARK4 (3537). Among these, PAR1a, PAR1b, and PAR1c are expressed in a variety of cells, whereas PAR1d is predominantly expressed in neural cells (35, 37). These PAR1 isoforms phosphorylate microtubule-associated proteins (MAPs) and thereby destabilize microtubules (35, 38), allowing asymmetric distribution of molecules that are involved in the establishment and maintenance of cell polarity.In polarized epithelial cells, CagA disrupts the tight junctions and causes loss of apical-basolateral polarity (39, 40). This CagA activity involves the interaction of CagA with PAR1b/MARK2 (19, 41). CagA directly binds to the kinase domain of PAR1b in a tyrosine phosphorylation-independent manner and inhibits the kinase activity. Notably, CagA binds to PAR1b via the CM sequence (19). Because PAR1b is present as a dimer in cells (42), CagA may passively homodimerize upon complex formation with the PAR1 dimer via the CM sequence, and this PAR1-directed CagA dimer would form a stable complex with SHP-2 through its two SH2 domains.Because of the critical role of CagA in gastric carcinogenesis (7, 1619), it is important to elucidate the molecular basis underlying the morphogenetic activity of CagA. In this study, we investigated the role of PAR1 isoforms in induction of the hummingbird phenotype by CagA, and we obtained evidence that CagA-mediated inhibition of PAR1 kinases contributes to the development of the morphological change by perturbing microtubules and non-muscle myosin II.  相似文献   

5.
Infection with cagA-positive Helicobacter pylori is the strongest risk factor for the development of gastric carcinoma. The cagA gene product CagA, which is delivered into gastric epithelial cells, specifically binds to and aberrantly activates SHP-2 oncoprotein. CagA also interacts with and inhibits partitioning-defective 1 (PAR1)/MARK kinase, which phosphorylates microtubule-associated proteins to destabilize microtubules and thereby causes epithelial polarity defects. In light of the notion that microtubules are not only required for polarity regulation but also essential for the formation of mitotic spindles, we hypothesized that CagA-mediated PAR1 inhibition also influences mitosis. Here, we investigated the effect of CagA on the progression of mitosis. In the presence of CagA, cells displayed a delay in the transition from prophase to metaphase. Furthermore, a fraction of the CagA-expressing cells showed spindle misorientation at the onset of anaphase, followed by chromosomal segregation with abnormal division axis. The effect of CagA on mitosis was abolished by elevated PAR1 expression. Conversely, inhibition of PAR1 kinase elicited mitotic delay similar to that induced by CagA. Thus, CagA-mediated inhibition of PAR1, which perturbs microtubule stability and thereby causes microtubule-based spindle dysfunction, is involved in the prophase/metaphase delay and subsequent spindle misorientation. Consequently, chronic exposure of cells to CagA induces chromosomal instability. Our findings reveal a bifunctional role of CagA as an oncoprotein: CagA elicits uncontrolled cell proliferation by aberrantly activating SHP-2 and at the same time induces chromosomal instability by perturbing the microtubule-based mitotic spindle. The dual function of CagA may cooperatively contribute to the progression of multistep gastric carcinogenesis.Helicobacter pylori is a spiral-shaped bacterium first described in 1984 by Marshall and Warren (1). H. pylori inhabits at least half of the world''s human population. Clinically isolated H. pylori strains can be divided into two major subtypes based on their ability to produce a 120- to 145-kDa protein called cytotoxin-associated gene A antigen (CagA)2 (25). More than 90–95% of H. pylori strains isolated in East Asian countries such as Japan, Korea, and China are cagA-positive, whereas 40–50% of those isolated in Western countries are cagA-negative. Infection with a cagA-positive H. pylori strain is associated with severe atrophic gastritis, peptic ulcerations, and gastric adenocarcinoma (612).H. pylori cagA-positive strains deliver the CagA protein into host cells via the cag pathogenicity island-encoded type IV secretion system (4, 5, 13, 14). Translocated CagA then localizes to the inner surface of the plasma membrane, where it undergoes tyrosine phosphorylation by Src family kinases or Abl kinase at the Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs present in the C-terminal region of CagA (1517). Tyrosine-phosphorylated CagA then binds specifically to SHP-2 tyrosine phosphatase and deregulates its phosphatase activity (1821). Recent studies have revealed that gain-of-function mutations of SHP-2 are associated with a variety of human malignancies, indicating that SHP-2 is a bona fide human oncoprotein. Furthermore, transgenic expression of CagA in mice induces gastrointestinal and hematological malignancies in a manner that is dependent on CagA tyrosine phosphorylation (22). These findings suggest a critical role of CagA-SHP-2 interaction in the oncogenic potential of CagA.A polarized epithelial monolayer is characterized by the presence of well developed cell-cell interaction apparatuses such as tight junctions and adherens junctions. The tight junctions act as a paracellular barrier in polarized epithelial cells and play an essential role in the establishment and maintenance of epithelial cell polarity by delimiting the apical and basolateral membrane domains. CagA disrupts the tight junctions and causes loss of epithelial apical-basal polarity (23, 24). The disruption of tight junctions by CagA is mediated by the specific interaction of CagA with partitioning-defective 1 (PAR1) (25, 26). PAR1 is a serine/threonine kinase originally isolated in Caenorhabditis elegans and highly conserved from yeast to humans (27, 28). In mammals, there are four PAR1 isoforms, which may have redundant roles in polarity regulation. PAR1 acts as a master regulator for the regulation of cell polarity in various cell systems. During epithelial polarization, PAR1 specifically localizes to the basolateral membrane, whereas atypical PKC complexed with PAR3 and PAR6 (aPKC complex) specifically localizes to the apical membrane as well as the tight junctions (2931). This asymmetric distribution of the two kinases, PAR1 and aPKC complex, ensures formation and maintenance of epithelial apical-basal polarity. Notably, mammalian PAR1 kinases were originally identified as microtubule affinity-regulating kinases (MARKs), which phosphorylate microtubule-associated proteins (MAPs) such as Tau, MAP2, and MAP4 on their tubulin-binding repeats. The PAR1/MARK-dependent phosphorylation causes MAPs to detach from and thereby destabilize microtubules (32, 33). Importantly, microtubules form a mitotic spindle, which plays an indispensable role in chromosomal alignment and separation during mitosis, raising the possibility that PAR1 regulates mitosis through controlling stability of the mitotic spindle. Indeed, during mitosis, MAPs undergo a severalfold higher level of phosphorylation (34, 35), and microtubule dynamics increase ∼20-fold (36). This in turn raises the intriguing possibility that CagA influences chromosomal stability by subverting MAP phosphorylation through systemic inhibition of PAR1.In this study, the effects of CagA on microtubule-dependent cellular events, especially dynamics of the mitotic spindle and chromosomal segregation during mitosis, were examined. The results of this work provide evidence that CagA perturbs mitotic spindle checkpoint and thereby causes chromosomal instability. Given the role of chromosomal instability in cell transformation, the newly identified CagA activity may play a crucial role in the development of gastric carcinoma.  相似文献   

6.
7.
8.
The mechanism of resistance to N-phosphonoacetyl-l-aspartate (PALA), a potent inhibitor of aspartate carbamoyltransferase (which catalyzes the first committed step of de novo pyrimidine biosynthesis), in Helicobacter pylori was investigated. At a 1 mM concentration, PALA had no effects on the growth and viability of H. pylori. The inhibitor was taken up by H. pylori cells and the transport was saturable, with a Km of 14.8 mM and a Vmax of 19.1 nmol min−1 μl of cell water−1. By 31P nuclear magnetic resonance (NMR) spectroscopy, both PALA and phosphonoacetate were shown to have been metabolized in all isolates of H. pylori studied. A main metabolic end product was identified as inorganic phosphate, suggesting the presence of an enzyme activity which cleaved the carbon-phosphorus (C-P) bonds. The kinetics of phosphonate group cleavage was saturable, and there was no evidence for substrate inhibition at higher concentrations of either compound. C-P bond cleavage activity was temperature dependent, and the activity was lost in the presence of the metal chelator EDTA. Other cleavages of PALA were observed by 1H NMR spectroscopy, with succinate and malate released as main products. These metabolic products were also formed when N-acetyl-l-aspartate was incubated with H. pylori lysates, suggesting the action of an aspartase. Studies of the cellular location of these enzymes revealed that the C-P bond cleavage activity was localized in the soluble fraction and that the aspartase activity appeared in the membrane-associated fraction. The results suggested that the two H. pylori enzymes transformed the inhibitor into noncytotoxic products, thus providing the bacterium with a mechanism of resistance to PALA toxicity which appears to be unique.Helicobacter pylori has been established as the causative agent of chronic gastritis and a significant proportion of duodenal and gastric ulcers (14). Recently, the World Health Organization classified H. pylori as a group 1 carcinogen, owing to its role in the development of gastric cancer (10). The failure of some regimens in the treatment of H. pylori infection has motivated work in our laboratory directed at characterizing the physiology of the bacterium, with the aim of discovering potential sites for therapeutic intervention, including nucleotide biosynthetic pathways (24, 25).Earlier studies on the uptake of nucleotide precursors by H. pylori showed that there was relatively little acquisition of pyrimidine nucleotide precursors by the salvage of preformed bases and nucleosides (24). Uracil, a commonly salvaged pyrimidine base, is also not required for the growth of this bacterium (34), suggesting that the majority of its pyrimidine nucleotides are synthesized through the de novo pathway. In contrast, humans can utilize the de novo or salvage pathway for the synthesis of pyrimidine nucleotides. Inhibitors of H. pylori de novo pyrimidine biosynthesis may therefore be potentially effective therapeutic drugs, as the host could still efficiently acquire its nucleotide requirements by salvage. This potential was demonstrated earlier by the finding that the inhibition of de novo pyrimidine biosynthesis at the second enzyme of this pathway, dihydroorotase, resulted in the killing of H. pylori cells (35).Aspartate carbamoyltransferase (ACTase) (EC 2.1.3.2) catalyzes the first committed step in the de novo formation of pyrimidine nucleotides and is a key regulatory enzyme in bacteria (8). N-Phosphonoacetyl-l-aspartate (PALA) is a synthetic, transition state bisubstrate analogue of the intermediate of the ACTase-catalyzed reaction (5). PALA belongs to a group of organophosphorus compounds known as phosphonates, characterized by their extremely stable carbon-phosphorus (C-P) bond in place of the more common carbon-oxygen-phosphorus ester bond (39), which confers on them the advantage of inherent stability. Natural phosphonates are found in phosphonolipids, glycolipids, glycoproteins, and polysaccharides of many different organisms. PALA and other synthetic phosphonates have been produced for use as herbicides, antibacterial agents (1, 28), and even as agents of chemical warfare (38).PALA is a potent inhibitor of the ACTase-catalyzed reaction in a range of prokaryotic and eukaryotic organisms, including Escherichia coli (5), Pyrococcus abyssi (33), and Leishmania donovani (29), and in mammalian cells (36). Owing to its stability and toxic effects on a key regulatory enzyme, PALA has been employed as an antitumor agent to inhibit the growth of rapidly proliferating cancer cells (9, 36). The inhibitor was also suggested as a possible antimetabolite for the protozoan pathogen L. donovani due to its cytotoxic effects on this organism (29). However, we have not found any detailed studies investigating the effects of PALA on the viability of bacterial cells. Recent results indicated that PALA is a potent inhibitor of ACTase activity in H. pylori, with 50% inhibition of enzyme activity observed at 0.1 μM PALA, and that PALA binds to the enzyme over 2,500 times more tightly than carbamoyl phosphate (3). This finding suggested that ACTase in H. pylori was a potential target for therapeutic intervention. However, initial results in our laboratory showed that PALA did not have inhibitory effects on the growth and viability of the bacterium.The aim of this work was to elucidate the mechanism(s) for H. pylori resistance to the potentially toxic effects of PALA. The effects on growth and viability, the transport of the inhibitor into whole cells, and the metabolic fate of this compound inside the cell were investigated by radiotracer analyses and nuclear magnetic resonance (NMR) spectroscopy.  相似文献   

9.
10.
11.
12.
13.
SLC26A7 (human)/Slc26a7 (mouse) is a recently identified chloride-base exchanger and/or chloride transporter that is expressed on the basolateral membrane of acid-secreting cells in the renal outer medullary collecting duct (OMCD) and in gastric parietal cells. Here, we show that mice with genetic deletion of Slc26a7 expression develop distal renal tubular acidosis, as manifested by metabolic acidosis and alkaline urine pH. In the kidney, basolateral Cl/HCO3 exchange activity in acid-secreting intercalated cells in the OMCD was significantly decreased in hypertonic medium (a normal milieu for the medulla) but was reduced only mildly in isotonic medium. Changing from a hypertonic to isotonic medium (relative hypotonicity) decreased the membrane abundance of Slc26a7 in kidney cells in vivo and in vitro. In the stomach, stimulated acid secretion was significantly impaired in isolated gastric mucosa and in the intact organ. We propose that SLC26A7 dysfunction should be investigated as a potential cause of unexplained distal renal tubular acidosis or decreased gastric acid secretion in humans.The collecting duct segment of the distal kidney nephron plays a major role in systemic acid base homeostasis by acid secretion and bicarbonate absorption. The acid secretion occurs via H+-ATPase and H-K-ATPase into the lumen and bicarbonate is absorbed via basolateral Cl/HCO3 exchangers (14). The tubules, which are located within the outer medullary region of the kidney collecting duct (OMCD),2 have the highest rate of acid secretion among the distal tubule segments and are therefore essential to the maintenance of acid base balance (2).The gastric parietal cell is the site of generation of acid and bicarbonate through the action of cytosolic carbonic anhydrase II (5, 6). The intracellular acid is secreted into the lumen via gastric H-K-ATPase, which works in conjunction with a chloride channel and a K+ recycling pathway (710). The intracellular bicarbonate is transported to the blood via basolateral Cl/HCO3 exchangers (1114).SLC26 (human)/Slc26 (mouse) isoforms are members of a conserved family of anion transporters that display tissue-specific patterns of expression in epithelial cells (1524). Several SLC26 members can function as chloride/bicarbonate exchangers. These include SLC26A3 (DRA), SLC26A4 (pendrin), SLC26A6 (PAT1 or CFEX), SLC26A7, and SLC26A9 (2531). SLC26A7 and SLC26A9 can also function as chloride channels (3234).SLC26A7/Slc26a7 is predominantly expressed in the kidney and stomach (28, 29). In the kidney, Slc26a7 co-localizes with AE1, a well-known Cl/HCO3 exchanger, on the basolateral membrane of (acid-secreting) A-intercalated cells in OMCD cells (29, 35, 36) (supplemental Fig. 1). In the stomach, Slc26a7 co-localizes with AE2, a major Cl/HCO3 exchanger, on the basolateral membrane of acid secreting parietal cells (28). To address the physiological function of Slc26a7 in the intact mouse, we have generated Slc26a7 ko mice. We report here that Slc26a7 ko mice exhibit distal renal tubular acidosis and impaired gastric acidification in the absence of morphological abnormalities in kidney or stomach.  相似文献   

14.
Gastric cardia cancer (GCC), which occurs at the gastric-esophageal boundary, is one of the most malignant tumors. Despite its high mortality and morbidity, the molecular mechanism of initiation and progression of this disease is largely unknown. In this study, using proteomics and metabolomics approaches, we found that the level of several enzymes and their related metabolic intermediates involved in glucose metabolism were deregulated in GCC. Among these enzymes, two subunits controlling pyruvic acid efflux, lactate dehydrogenase A (LDHA) and pyruvate dehydrogenase B (PDHB), were further analyzed in vitro. Either down-regulation of LDH subunit LDHA or overexpression of PDH subunit PDHB could force pyruvic acid into the Krebs cycle rather than the glycolysis process in AGS gastric cancer cells, which inhibited cell growth and cell migration. Our results reflect an important glucose metabolic signature, especially the dysregulation of pyruvic acid efflux in the development of GCC. Forced transition from glycolysis to the Krebs cycle had an inhibitory effect on GCC progression, providing potential therapeutic targets for this disease.Gastric cardia cancer (GCC),1 which occurs at the gastric-esophageal boundary, is one of the most malignant tumors. Despite the steadily falling incidence of gastric non-cardia cancer in the past two decades (1), the rate of GCC has risen rapidly, establishing gastric cancer as the second major cause of cancer-related deaths throughout the world (2). GCC has become a significant cause of mortality and morbidity both in the west (35) and in Asia (6, 7), especially in China (8). Although this cancer has become an important health problem worldwide, the its pathogenesis has not been well characterized (1). Most patients are diagnosed at an advanced stage, contributing to the high mortality rate of the disease.Systematic proteomics analysis has proved to be a powerful approach in a variety of human cancer research, including lung (9), esophagus (10), gastric (11), liver (12), breast (13), and brain cancer (14). Metabolomics, another new bio-omics technology recently introduced into cancer research (15), is the global analysis of the small metabolites produced by normal or pathologic cellular processes. Some metabolic intermediates have been identified as new cancer biomarkers (16).Using proteomics and metabolomics methods in this study, we found that a series of proteins and metabolic intermediates, mainly involved in glucose metabolism, were altered during the development of GCC. The high activity of anaerobic glycolysis and the impairment of aerobic respiration occurring in these cells recapitulated the Warburg effect (17). Further studies using a gastric cancer cell line demonstrated that the predominant anaerobic glycolysis was essential for tumor cells to sustain rapid proliferation, whereas forced transition from anaerobic glycolysis to aerobic respiration inhibited the growth of tumor cells. In conclusion, our study revealed the major metabolic alterations essential for the development of GCC and discovered a biomarker signature of GCC. Such a finding has the potential to improve early diagnosis and prognosis and helps to identify new therapeutic targets.  相似文献   

15.
16.
Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, remains one of the most prevalent human pathogens and a major cause of mortality worldwide. Metabolic network is a central mediator and defining feature of the pathogenicity of Mtb. Increasing evidence suggests that lysine succinylation dynamically regulates enzymes in carbon metabolism in both bacteria and human cells; however, its extent and function in Mtb remain unexplored. Here, we performed a global succinylome analysis of the virulent Mtb strain H37Rv by using high accuracy nano-LC-MS/MS in combination with the enrichment of succinylated peptides from digested cell lysates and subsequent peptide identification. In total, 1545 lysine succinylation sites on 626 proteins were identified in this pathogen. The identified succinylated proteins are involved in various biological processes and a large proportion of the succinylation sites are present on proteins in the central metabolism pathway. Site-specific mutations showed that succinylation is a negative regulatory modification on the enzymatic activity of acetyl-CoA synthetase. Molecular dynamics simulations demonstrated that succinylation affects the conformational stability of acetyl-CoA synthetase, which is critical for its enzymatic activity. Further functional studies showed that CobB, a sirtuin-like deacetylase in Mtb, functions as a desuccinylase of acetyl-CoA synthetase in in vitro assays. Together, our findings reveal widespread roles for lysine succinylation in regulating metabolism and diverse processes in Mtb. Our data provide a rich resource for functional analyses of lysine succinylation and facilitate the dissection of metabolic networks in this life-threatening pathogen.Post-translational modifications (PTMs)1 are complex and fundamental mechanisms modulating diverse protein properties and functions, and have been associated with almost all known cellular pathways and disease processes (1, 2). Among the hundreds of different PTMs, acylations at lysine residues, such as acetylation (36), malonylation (7, 8), crotonylation (9, 10), propionylation (1113), butyrylation (11, 13), and succinylation (7, 1416) are crucial for functional regulations of many prokaryotic and eukaryotic proteins. Because these lysine PTMs depend on the acyl-CoA metabolic intermediates, such as acetyl-CoA (Ac-CoA), succinyl-CoA, and malonyl-CoA, lysine acylation could provide a mechanism to respond to changes in the energy status of the cell and regulate energy metabolism and the key metabolic pathways in diverse organisms (17, 18).Among these lysine PTMs, lysine succinylation is a highly dynamic and regulated PTM defined as transfer of a succinyl group (-CO-CH2-CH2-CO-) to a lysine residue of a protein molecule (8). It was recently identified and comprehensively validated in both bacterial and mammalian cells (8, 14, 16). It was also identified in core histones, suggesting that lysine succinylation may regulate the functions of histones and affect chromatin structure and gene expression (7). Accumulating evidence suggests that lysine succinylation is a widespread and important PTM in both eukaryotes and prokaryotes and regulates diverse cellular processes (16). The system-wide studies involving lysine-succinylated peptide immunoprecipitation and liquid chromatography-mass spectrometry (LC-MS/MS) have been employed to analyze the bacteria (E. coli) (14, 16), yeast (S. cerevisiae), human (HeLa) cells, and mouse embryonic fibroblasts and liver cells (16, 19). These succinylome studies have generated large data sets of lysine-succinylated proteins in both eukaryotes and prokaryotes and demonstrated the diverse cellular functions of this PTM. Notably, lysine succinylation is widespread among diverse mitochondrial metabolic enzymes that are involved in fatty acid metabolism, amino acid degradation, and the tricarboxylic acid cycle (19, 20). Thus, lysine succinylation is reported as a functional PTM with the potential to impact mitochondrial metabolism and coordinate different metabolic pathways in human cells and bacteria (14, 1922).Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a major cause of mortality worldwide and claims more human lives annually than any other bacterial pathogen (23). About one third of the world''s population is infected with Mtb, which leads to nearly 1.3 million deaths and 8.6 million new cases of TB in 2012 worldwide (24). Mtb remains a major threat to global health, especially in the developing countries. Emergence of multidrug resistant (MDR) and extensively drug-resistant (XDR) Mtb, and also the emergence of co-infection between TB and HIV have further worsened the situation (2527). Among bacterial pathogens, Mtb has a distinctive life cycle spanning different environments and developmental stages (28). Especially, Mtb can exist in dormant or active states in the host, leading to asymptomatic latent TB infection or active TB disease (29). To achieve these different physiologic states, Mtb developed a mechanism to sense diverse signals from the host and to coordinately regulate multiple cellular processes and pathways (30, 31). Mtb has evolved its metabolic network to both maintain and propagate its survival as a species within humans (3235). It is well accepted that metabolic network is a central mediator and defining feature of the pathogenicity of Mtb (23, 3638). Knowledge of the regulation of metabolic pathways used by Mtb during infection is therefore important for understanding its pathogenicity, and can also guide the development of novel drug therapies (39). On the other hand, increasing evidence suggests that lysine succinylation dynamically regulates enzymes in carbon metabolism in both bacteria and human cells (14, 1922). It is tempting to speculate that lysine succinylation may play an important regulatory role in metabolic processes in Mtb. However, to the best of our knowledge, no succinylated protein in Mtb has been identified, presenting a major obstacle to understand the regulatory roles of lysine succinylation in this life-threatening pathogen.In order to fill this gap in our knowledge, we have initiated a systematic study of the identities and functional roles of the succinylated protein in Mtb. Because Mtb H37Rv is the first sequenced Mtb strain (40) and has been extensively used for studies in dissecting the roles of individual genes in pathogenesis (41), it was selected as a test case. We analyzed the succinylome of Mtb H37Rv by using high accuracy nano-LC-MS/MS in combination with the enrichment of succinylated peptides from digested cell lysates and subsequent peptide identification. In total, 1545 lysine succinylation sites on 626 proteins were identified in this pathogen. The identified succinylated proteins are involved in various biological processes and render particular enrichment to metabolic process. A large proportion of the succinylation sites are present on proteins in the central metabolism pathway. We further dissected the regulatory role of succinylation on acetyl-CoA synthetase (Acs) via site-specific mutagenesis analysis and molecular dynamics (MD) simulations showed that reversible lysine succinylation could inhibit the activity of Acs. Further functional studies showed that CobB, a sirtuin-like deacetylase in Mtb, functions as a deacetylase and as a desuccinylase of Acs in in vitro assays. Together, our findings provide significant insights into the range of functions regulated by lysine succinylation in Mtb.  相似文献   

17.
18.
19.
Bacillus anthracis elaborates a poly-γ-d-glutamic acid capsule that protects bacilli from phagocytic killing during infection. The enzyme CapD generates amide bonds with peptidoglycan cross-bridges to anchor capsular material within the cell wall envelope of B. anthracis. The capsular biosynthetic pathway is essential for virulence during anthrax infections and can be targeted for anti-infective inhibition with small molecules. Here, we present the crystal structures of the γ-glutamyltranspeptidase CapD with and without α-l-Glu-l-Glu dipeptide, a non-hydrolyzable analog of poly-γ-d-glutamic acid, in the active site. Purified CapD displays transpeptidation activity in vitro, and its structure reveals an active site broadly accessible for poly-γ-glutamate binding and processing. Using structural and biochemical information, we derive a mechanistic model for CapD catalysis whereby Pro427, Gly428, and Gly429 activate the catalytic residue of the enzyme, Thr352, and stabilize an oxyanion hole via main chain amide hydrogen bonds.Spores of Bacillus anthracis are the causative agents of anthrax disease (1). Upon entry into their hosts, spores germinate and replicate as vegetative bacilli (1). The formation of a thick capsule encasing vegetative forms enables bacilli to escape granulocyte0 and macrophage-mediated phagocytosis, and the pathogen eventually disseminates throughout all tissues of an infected host (2, 3). Bacilli secrete lethal and edema toxins, which cause macrophage necrosis and precipitate anthrax death (47). The genes providing for toxin and capsule formation are carried on two large virulence plasmids, pXO1 and pXO2, respectively (8, 9). Loss of any one plasmid leads to virulence attenuation, a feature that has been exploited for the generation of vaccine-type strains (1014).Unlike polysaccharide-based capsules that are commonly found in bacterial pathogens, the capsular material of B. anthracis is composed of poly-γ-d-glutamic acid (PDGA)3 (3). All the genes necessary for capsule biogenesis are located in the capBCADE gene cluster on plasmid pXO2 (1519). CapD is the only protein of this cluster that is located on the bacterial surface (16). CapD shares sequence similarity with bacterial and mammalian γ-glutamyl transpeptidases (GGTs; EC 2.3.2.2) (17). GGTs belong to the N-terminal nucleophile hydrolases (Ntn) family (Protein Structure Classification (Class (C), Architecture (A), Topology (T) and Homologous superfamily (H)) (CATH) id 3.60.60.10) (20). These enzymes assemble as a single polypeptide chain and acquire activity by undergoing autocatalytic processing to heterodimer.Bacterial GGTs catalyze the first step in glutathione degradation. For example, Helicobacter pylori GGT removes glutamate from glutathione tripeptide via the formation of a γ-glutamyl acyl enzyme. This intermediate is resolved by the nucleophilic attack of a water molecule, causing the release of γ-glutamate (21, 22). Mammalian enzymes transfer the γ-glutamyl intermediate to the amino group of a peptide, thereby completing a transpeptidation reaction (23). The B. anthracis CapD precursor is also programmed for autocatalytic cleavage (17). Similar to mammalian GGTs, CapD also catalyzes a transpeptidation reaction; however, this reaction promotes the covalent linkage of PDGA to the bacterial envelope (16, 24). We have recently demonstrated the cell wall anchor structure of capsule filaments in the envelope of B. anthracis, identifying an amide bond between the terminal carboxyl group of PDGA and the side amino group of m-diaminopimelic acid cross-bridges within muropeptides (24). The CapD-catalyzed transpeptidation reaction could be recapitulated in vitro using purified recombinant CapD, γ-d-Glun peptide, and muropeptide substrates (24). In the absence of the physiological nucleophile (muropeptides), CapD acyl intermediates can be resolved by the nucleophilic attack of water to generate hydrolysis products.Here, we report the high resolution crystal structure of CapD in the absence and presence of a glutamate dipeptide and compare it with the known structures of H. pylori and Escherichia coli GGTs. By combining structural, genetic, and biochemical approaches, we identify the unique features of CapD that distinguish the protein from GGTs and detect several residues that are important for CapD autocatalytic cleavage and PDGA processing. This structural information will further the development of small molecule inhibitors that disrupt CapD activity and that may be useful as anti-infective therapies for anthrax.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号