首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In resting cells, eIF4E-binding protein 1 (4E-BP1) binds to the eukaryotic initiation factor-4E (eIF-4E), preventing formation of a functional eIF-4F complex essential for cap-dependent initiation of translation. Phosphorylation of 4E-BP1 dissociates it from eIF-4E, relieving the translation block. Studies suggested that insulin- or growth factor-induced 4E-BP1 phosphorylation is mediated by phosphatidylinositol 3-kinase (PI3-kinase) and its downstream protein kinase, Akt. In the present study we demonstrated that UVB induced 4E-BP1 phosphorylation at multiple sites, Thr-36, Thr-45, Ser-64, and Thr-69, leading to dissociation of 4E-BP1 from eIF-4E. UVB-induced phosphorylation of 4E-BP1 was blocked by p38 kinase inhibitors, PD169316 and SB202190, and MSK1 inhibitor, H89, but not by mitogen-activated protein kinase kinase inhibitors, PD98059 or U0126. The PI3-kinase inhibitor, wortmannin, did not block UVB-induced 4E-BP1 phosphorylation, but blocked both UVB- and insulin-induced activation of PI3-kinase and phosphorylation of Akt. 4E-BP1 phosphorylation was blocked in JB6 Cl 41 cells expressing a dominant negative p38 kinase or dominant negative MSK1, but not in cells expressing dominant negative ERK2, JNK1, or PI3-kinase p85 subunit. Our results suggest that UVB induces phosphorylation of 4E-BP1, leading to the functional dissociation of 4E-BP1 from eIF-4E. The p38/MSK1 pathway, but not PI3-kinase or Akt, is required for mediating the UVB-induced 4E-BP1 phosphorylation.  相似文献   

2.
A Haghighat  S Mader  A Pause    N Sonenberg 《The EMBO journal》1995,14(22):5701-5709
An important aspect of the regulation of gene expression is the modulation of translation rates in response to growth factors, hormones and mitogens. Most of this control is at the level of translation initiation. Recent studies have implicated the MAP kinase pathway in the regulation of translation by insulin and growth factors. MAP kinase phosphorylates a repressor of translation initiation [4E-binding protein (BP) 1] that binds to the mRNA 5' cap binding protein eukaryotic initiation factor (eIF)-4E and inhibits cap-dependent translation. Phosphorylation of the repressor decreases its affinity for eIF-4E, and thus relieves translational inhibition. eIF-4E forms a complex with two other polypeptides, eIF-4A and p220, that promote 40S ribosome binding to mRNA. Here, we have studied the mechanism by which 4E-BP1 inhibits translation. We show that 4E-BP1 inhibits 48S pre-initiation complex formation. Furthermore, we demonstrate that 4E-BP1 competes with p220 for binding to eIF-4E. Mutants of 4E-BP1 that are deficient in their binding to eIF-4E do not inhibit the interaction between p220 and eIF-4E, and do not repress translation. Thus, translational control by growth factors, insulin and mitogens is affected by changes in the relative affinities of 4E-BP1 and p220 for eIF-4E.  相似文献   

3.
A fundamental control point in the regulation of the initiation of protein synthesis is the formation of the eukaryotic initiation factor 4F (eIF-4F) complex. The formation of this complex depends upon the availability of the mRNA cap binding protein, eIF-4E, which is sequestered away from the translational machinery by the tight association of eIF-4E binding proteins (4E-BPs). Phosphorylation of 4E-BP1 is critical in causing its dissociation from eIF-4E, leaving 4E available to form translationally active eIF-4F complexes, switching on mRNA translation. In this report, we provide the first evidence that the phosphorylation of 4E-BP1 increases during mitosis and identify Ser-65 and Thr-70 as phosphorylated sites. Phosphorylation of Thr-70 has been implicated in the regulation of 4E-BP1 function, but the kinase phosphorylating this site was unknown. We show that the cyclin-dependent kinase, cdc2, phosphorylates 4E-BP1 at Thr-70 and that phosphorylation of this site is permissive for Ser-65 phosphorylation. Crucially, the increased phosphorylation of 4E-BP1 during mitosis results in its complete dissociation from eIF-4E.  相似文献   

4.
Thephosphorylation states of three proteins implicated in the action ofinsulin on translation were investigated, i.e., 70-kDa ribosomalprotein S6 kinase (p70S6k),eukaryotic initiation factor (eIF) 4E, and the eIF-4E binding protein4E-BP1. Addition of insulin caused a stimulation of protein synthesisin L6 myoblasts in culture, an effect that was blocked by inhibitors ofphosphatidylinositide-3-OH kinase (wortmannin), p70S6k (rapamycin), andmitogen-activated protein kinase (MAP kinase) kinase (PD-98059). Thestimulation of protein synthesis was accompanied by increasedphosphorylation of p70S6k, aneffect that was blocked by rapamycin and wortmannin but not PD-98059.Insulin caused dephosphorylation of eIF-4E, an effect that appeared tobe mediated by the p70S6kpathway. Insulin also stimulated phosphorylation of 4E-BP1 as well asdissociation of the 4E-BP1 · eIF-4E complex. Bothrapamycin and wortmannin completely blocked the insulin-induced changes in 4E-BP1 phosphorylation and association of 4E-BP1 and eIF-4E; PD-98059 had no effect on either parameter. Finally, insulin stimulated formation of the active eIF-4G · eIF-4E complex, aneffect that was not prevented by any of the inhibitors. Overall, theresults suggest that insulin stimulates protein synthesis in L6myoblasts in part through utilization of both thep70S6k and MAP kinase signaltransduction pathways.

  相似文献   

5.
Insulin-like growth factor-1 (IGF-1) both promotes survival and activates protein synthesis in neurons. In the present paper, we investigate the effect of IGF-1 treatment on cap-dependent translation in primary cultured neuronal cells. IGF-1 treatment increased the phosphorylation of eukaryotic initiation factor (eIF)-4E-binding protein 1 (4E-BP1), exclusively at Thr-36 and Thr-45 residues, and eIF-4G phosphorylation at Ser-1108. In contrast, a significant eIF-4E dephosphorylation was found. In parallel, increased eIF-4E/4G assembly and protein synthesis activation in response to IGF-1 treatment were observed. The phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin and the mammalian target of rapamycin (mTOR) inhibitor rapamycin, but not the mitogen-activated protein kinase (MAPK)-activating kinase (MEK) inhibitor PD98059, reversed the IGF-1-induced effects observed on eIF-4E/4G assembly and phosphorylation status of 4E-BP1, eIF-4E, and eIF-4G. Therefore, our findings show that the IGF-1-induced regulation of cap-dependent translation is largely dependent on the PI-3K and mTOR pathway in neuronal cells.  相似文献   

6.
Pancreastatin (PST), a chromogranin A-derived peptide, has been found to modulate glucose, lipid, and protein metabolism in rat adipocytes. PST has an overall counterregulatory effect on insulin action by activating a specific receptor-effector system (Galpha(q/11) protein-PLC-beta-PKC(classical)). However, PST stimulates both basal and insulin-mediated protein synthesis in rat adipocytes. In order to further investigate the mechanisms underlying the effect of PST stimulating protein synthesis, we sought to study the regulation of different components of the core translational machinery by the signaling triggered by PST. Thus, we studied ribosomal p70 S6 kinase, phosphorylation of the cap-binding protein (initiation factor) eIF4E, and phosphorylation of the eIF4E-binding protein 4E-BP1 (PHAS-I). We have found that PST stimulates the S6 kinase activity, as assessed by kinase assay using specific immunoprecipitates and substrate. This effect was checked by Western blot with specific antibodies against the phosphorylated S6 kinase. Thus, PST dose-dependently stimulates Thr421/Ser424 phosphorylation of S6 kinase. Moreover, PST promotes phosphorylation of regulatory sites in 4E-BP1 (PHAS-I) (Thr37, Thr46). The initiation factor eIF4E itself, whose activity is also increased upon phosphorylation, is phosphorylated in Ser209 by PST stimulation. Finally, we have found that these effects of PST on S6 kinase and the translation machinery can be blocked by preventing the activation of PKC. These results indicate that PST stimulates protein synthesis machinery by activating PKC and provides some evidence of the molecular mechanisms involved, i.e., the activation of S6K and the phosphorylation of 4E-BP1 (PHAS-I) and the initiation factor eIF4E.  相似文献   

7.
Feeding promotes protein accretion in skeletal muscle through a stimulation of the mRNA translation initiation phase of protein synthesis either secondarily to nutrient-induced rises in insulin or owing to direct effects of nutrients themselves. The present set of experiments establishes the effects of meal feeding on potential signal transduction pathways that may be important in accelerating mRNA translation initiation. Gastrocnemius muscle from male Sprague-Dawley rats trained to consume a meal consisting of rat chow was sampled before, during, and after the meal. Meal feeding enhanced the assembly of the active eIF4G.eIF4E complex, which returned to basal levels within 3 h of removal of food. The increased assembly of the active eIF4G.eIF4E complex was associated with a marked 10-fold rise in phosphorylation of eIF4G(Ser(1108)) and a decreased assembly of inactive 4E-BP1.eIF4E complex. The reduced assembly of 4E-BP1.eIF4E complex was associated with a 75-fold increase in phosphorylation of 4E-BP1 in the gamma-form during feeding. Phosphorylation of S6K1 on Ser(789) was increased by meal feeding, although the extent of phosphorylation was greater at 0.5 h after feeding than after 1 h. Phosphorylation of mammalian target of rapamycin (mTOR) on Ser(2448) or Ser(2481), an upstream kinase responsible for phosphorylating both S6K1 and 4E-BP1, was increased at all times during meal feeding, although the extent of phosphorylation was greater at 0.5 h after feeding than after 1 h. Phosphorylation of PKB, an upstream kinase responsible for phosphorylating mTOR, was elevated only after 0.5 h of meal feeding for Thr(308), whereas phosphorylation Ser(473) was significantly elevated at only 0.5 and 1 h after initiation of feeding. We conclude from these studies that meal feeding stimulates two signal pathways in skeletal muscle that lead to elevated eIF4G.eIF4E complex assembly through increased phosphorylation of eIF4G and decreased association of 4E-BP1 with eIF4E.  相似文献   

8.
The eIF4E-binding proteins (4E-BPs) interact with translation initiation factor 4E to inhibit translation. Their binding to eIF4E is reversed by phosphorylation of several key Ser/Thr residues. In Drosophila, S6 kinase (dS6K) and a single 4E-BP (d4E-BP) are phosphorylated via the insulin and target of rapamycin (TOR) signaling pathways. Although S6K phosphorylation is independent of phosphoinositide 3-OH kinase (PI3K) and serine/threonine protein kinase Akt, that of 4E-BP is dependent on PI3K and Akt. This difference prompted us to examine the regulation of d4E-BP in greater detail. Analysis of d4E-BP phosphorylation using site-directed mutagenesis and isoelectric focusing-sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the regulatory interplay between Thr37 and Thr46 of d4E-BP is conserved in flies and that phosphorylation of Thr46 is the major phosphorylation event that regulates d4E-BP activity. We used RNA interference (RNAi) to target components of the PI3K, Akt, and TOR pathways. RNAi experiments directed at components of the insulin and TOR signaling cascades show that d4E-BP is phosphorylated in a PI3K- and Akt-dependent manner. Surprisingly, RNAi of dAkt also affected insulin-stimulated phosphorylation of dS6K, indicating that dAkt may also play a role in dS6K phosphorylation.  相似文献   

9.
The stimulation of translation in starfish oocytes by the maturation hormone, 1-methyladenine (1-MA), requires the activation or mobilization of both initiation factors and mRNAs [Xu and Hille, Cell Regul. 1:1057, 1990]. We identify here the translational initiation complex, eIF-4F, and the guanine nucleotide exchange factor for eIF-2, eIF-2B, as the rate controlling components of protein synthesis in immature oocytes of the starfish, Pisaster orchraceus. Increased phosphorylation of eIF-4E, the cap binding subunit of the eIF-4F complex, is coincident with the initial increase in translational activity during maturation of these oocytes. Significantly, protein kinase C activity increased during oocyte maturation in parallel with the increase in eIF-4E phosphorylation and protein synthesis. An increase in the activities of cdc2 kinase and mitogen-activated myelin basic protein kinase (MBP kinase) similarly coincide with the increase in eIF-4E phosphorylation. However, neither cdc2 kinase nor MBP kinase phosphorylates eIF-4E in vitro. Casein kinase II activity does not change during oocyte maturation, and therefore, cannot be responsible for the activation of translation. Treatment of oocytes with phorbol 12-myristate 13-acetate, an activator of protein kinase C, for 30 min prior to the addition of 1-MA resulted in the inhibition of 1-MA-induced phosphorylation of eIF-4E, translational activation, and germinal vesicle breakdown. Therefore, protein kinase C may phosphorylate eIF-4E, after very early events of maturation. Another possibility is that eIF-4E is phosphorylated by an unknown kinase that is activated by the cascade of reactions stimulated by 1-MA. In conclusion, our results suggest a role for the phosphorylation of eIF-4E in the activation of translation during maturation, similar to translational regulation during the stimulation of growth in mammalian cells. © 1993 Wiley-Liss, Inc.  相似文献   

10.
Chronic treatment of growing pigs with porcine somatotropin (pST) promotes protein synthesis and doubles postprandial levels of insulin, a hormone that stimulates translation initiation. This study aimed to determine whether the pST-induced increase in skeletal muscle protein synthesis was mediated through an insulin-induced stimulation of translation initiation. After 7-10 days of pST (150 microg x kg(-1) x day(-1)) or control saline treatment, pancreatic glucose-amino acid clamps were performed in overnight-fasted pigs to reproduce 1) fasted (5 microU/ml), 2) fed control (25 microU/ml), and 3) fed pST-treated (50 microU/ml) insulin levels while glucose and amino acids were maintained at baseline fasting levels. Fractional protein synthesis rates and indexes of translation initiation were examined in skeletal muscle. Effectiveness of pST treatment was confirmed by reduced urea nitrogen and elevated insulin-like growth factor I levels in plasma. Skeletal muscle protein synthesis was independently increased by both insulin and pST. Insulin increased the phosphorylation of protein kinase B and the downstream effectors of the mammalian target of rapamycin, ribosomal protein S6 kinase, and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1). Furthermore, insulin reduced inactive 4E-BP1.eIF4E complex association and increased active eIF4E.eIF4G complex formation, indicating enhanced eIF4F complex assembly. However, pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of skeletal muscle protein synthesis in growing pigs is independent of the insulin-associated activation of translation initiation.  相似文献   

11.
Previous studies have shown that intravenous infusion of insulin and/or amino acids reproduces the feeding-induced stimulation of muscle protein synthesis in neonates and that insulin and amino acids act independently to produce this effect. The goal of the present study was to delineate the regulatory roles of insulin and amino acids on muscle protein synthesis in neonates by examining translational control mechanisms, specifically the eukaryotic translation initiation factors (eIFs), which enable coupling of initiator methionyl-tRNAi and mRNA to the 40S ribosomal subunit. Insulin secretion was blocked by somatostatin in fasted 7-day-old pigs (n = 8-12/group), insulin was infused to achieve plasma levels of approximately 0, 2, 6, and 30 microU/ml, and amino acids were clamped at fasting or fed levels or, at the high insulin dose, below fasting. Both insulin and amino acids increased the phosphorylation of ribosomal protein S6 kinase (S6K1) and the eIF4E-binding protein (4E-BP1), decreased the binding of 4E-BP1 to eIF4E, increased eIF4E binding to eIF4G, and increased fractional protein synthesis rates but did not affect eIF2B activity. In the absence of insulin, amino acids had no effect on these translation initiation factors but increased the protein synthesis rates. Raising insulin from below fasting to fasting levels generally did not alter translation initiation factor activity but raised protein synthesis rates. The phosphorylation of S6K1 and 4E-BP1 and the amount of 4E-BP1 bound to eIF4E and eIF4E bound to eIF4G were correlated with insulin level, amino acid level, and protein synthesis rate. Thus insulin and amino acids regulate muscle protein synthesis in skeletal muscle of neonates by modulating the availability of eIF4E for 48S ribosomal complex assembly, although other processes also must be involved.  相似文献   

12.
Dbf4/Cdc7 (Dbf4-dependent kinase (DDK)) is activated at the onset of S-phase, and its kinase activity is required for DNA replication initiation from each origin. We showed that DDK is an important target for the S-phase checkpoint in mammalian cells to suppress replication initiation and to protect replication forks. We demonstrated that ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) proteins directly phosphorylate Dbf4 in response to ionizing radiation and replication stress. We identified novel ATM/ATR phosphorylation sites on Dbf4 and showed that ATM/ATR-mediated phosphorylation of Dbf4 is critical for the intra-S-phase checkpoint to inhibit DNA replication. The kinase activity of DDK, which is not suppressed upon DNA damage, is required for fork protection under replication stress. We further demonstrated that ATM/ATR-mediated phosphorylation of Dbf4 is important for preventing DNA rereplication upon loss of replication licensing through the activation of the S-phase checkpoint. These studies indicate that DDK is a direct substrate of ATM and ATR to mediate the intra-S-phase checkpoint in mammalian cells.  相似文献   

13.
Signaling mediated by the cellular kinase mammalian target of rapamycin (mTOR) activates cap-dependent translation under normal (nonstressed) conditions. However, translation is inhibited by cellular stress responses or rapamycin treatment, which inhibit mTOR kinase activity. We show that during human cytomegalovirus (HCMV) infection, viral protein synthesis and virus production proceed relatively normally when mTOR kinase activity is inhibited due to hypoxic stress or rapamycin treatment. Using rapamycin inhibition of mTOR, we show that HCMV infection induces phosphorylation of two mTOR effectors, eucaryotic initiation factor 4E (eIF4E) binding protein (4E-BP) and eIF4G. The virally induced phosphorylation of eIF4G is both mTOR and phosphatidylinositol 3-kinase (PI3K) independent, whereas the phosphorylation of 4E-BP is mTOR independent, but PI3K dependent. HCMV infection does not induce mTOR-independent phosphorylation of a third mTOR effector, p70S6 kinase (p70S6K). We show that the HCMV-induced phosphorylation of eIF4G and 4E-BP correlates with the association of eIF4E, the cap binding protein, with eIF4G in the eIF4F translation initiation complex. Thus, HCMV induces mechanisms to maintain the integrity of the eIF4F complex even when mTOR signaling is inhibited.  相似文献   

14.
Glucocorticoids are diabetogenic factors that not only antagonize the action of insulin in target tissues but also render these tissues catabolic. Therefore, in rats, we endeavored to characterize the effects in skeletal muscle of glucocorticoids on translation initiation, a regulated process that, in part, governs overall protein synthesis through the modulated activities of eukaryotic initiation factors (eIFs). Four hours after intraperitoneal administration of dexamethasone (100 microg/100 g body wt), protein synthesis in skeletal muscle was reduced to 59% of the value recorded in untreated control animals. Furthermore, translation initiation factor eIF4E preferred association with its endogenous inhibitor 4E-BP1 rather than eIF4G. Dexamethasone treatment resulted in dephosphorylation of both 4E-BP1 and the 40S ribosomal protein S6 kinase concomitant with enhanced phosphorylation of eIF4E. Moreover, the guanine nucleotide exchange activity of eIF2B was unaffected as was phosphorylation of the alpha-subunit of eIF2. Hence glucocorticoids negatively modulate the activation of a subset of the protein synthetic machinery, thereby contributing to the catabolic properties of this class of hormones in vivo.  相似文献   

15.
We define a novel mechanism by which integrins regulate growth factor expression and the survival of carcinoma cells. Specifically, we demonstrate that the alpha 6 beta 4 integrin enhances vascular endothelial growth factor (VEGF) translation in breast carcinoma cells. The mechanism involves the ability of this integrin to stimulate the phosphorylation and inactivation of 4E-binding protein (4E-BP1), a translational repressor that inhibits the function of eukaryotic translation initiation factor 4E (eIF-4E). The regulation of 4E-BP1 phosphorylation by alpha 6 beta 4 derives from the ability of this integrin to activate the PI-3K-Akt pathway and, consequently, the rapamycin-sensitive kinase mTOR that can phosphorylate 4E-BP1. Importantly, we show that this alpha 6 beta 4-dependent regulation of VEGF translation plays an important role in the survival of metastatic breast carcinoma cells by sustaining a VEGF autocrine signaling pathway that involves activation of PI-3K and Akt. These findings reveal that integrin-mediated activation of PI-3K-Akt is amplified by integrin-stimulated VEGF expression and they provide a mechanism that substantiates the reported role of alpha 6 beta 4 in carcinoma progression.  相似文献   

16.
Chronic septic abscess formation causes an inhibition of protein synthesis in gastrocnemius not observed in rats with a sterile abscess. Inhibition is associated with an impaired mRNA translation initiation that can be ameliorated by elevating IGF-I but not insulin. The present study investigated the ability of IGF-I signaling to stimulate protein synthesis in gastrocnemius by accelerating mRNA translation initiation. Experiments were performed in perfused hindlimb preparations from rats 5 days after induction of a septic abscess. Protein synthesis in gastrocnemius from septic rats was accelerated twofold by the addition of IGF-I (10 nM) to perfusate. IGF-I increased the phosphorylation of translation repressor 4E-binding protein-1 (4E-BP1). Hyperphosphorylation of 4E-BP1 in response to IGF-I resulted in its dissociation from the inactive eukaryotic initiation factor (eIF) 4E.4E-BP1 complex. Assembly of the active eIF4F complex (as assessed by the association eIF4G with eIF4E) was increased twofold by IGF-I in the perfusate. In addition, phosphorylation of eIF4G and ribosomal protein S6 kinase-1 (S6K1) was also enhanced by IGF-I. Activation of mammalian target of rapamycin, an upstream kinase implicated in phosphorylating both 4E-BP1 and S6K1, was also observed. Thus the ability of IGF-I to accelerate protein synthesis during sepsis may be related to a stimulation of signaling to multiple steps in translation initiation with an ensuing increased phosphorylation of eIF4G, eIF4E availability, and S6K1 phosphorylation.  相似文献   

17.
Phosphorylation of Ser 209 is thought to modulate the activity of the cap-binding factor eIF-4E which is a crucial component in the initiation complex for cap-dependent translation of mRNA. We report here the full reconstitution of the p38 Map kinase cascade leading to phosphorylation of eIF-4E in vitro and the generation of antibodies specific for phospho-serine 209 in eIF-4E. These antibodies were used to probe the phosphorylation of eIF-4E in mammalian cells stimulated with mitogens and pro-inflammatory cytokines. Treatment of human dermal fibroblasts with FCS led to a transient hyperphosphorylation, followed by hypophosphorylation and return to normal state phosphorylation at 16 h after the initial stimulation. By using a potent small molecular weight inhibitor of Mnk1, the upstream kinase for eIF-4E, we observed a rapid dephosphorylation of eIF-4E within 45 min after addition of the inhibitor, suggesting a high turnover of phosphate on eIF-4E mediated by Mnk1 and a yet unidentified phosphatase.  相似文献   

18.
The mechanisms by which insulin-like growth factor I (IGF-I) and insulin regulate eukaryotic initiation factor (eIF)4F formation were examined in the ovine fetus. Insulin infusion increased phosphorylation of eIF4E-binding protein (4E-BP1) in muscle and liver. IGF-I infusion did not alter 4E-BP1 phosphorylation in liver. In muscle, IGF-I increased 4E-BP1 phosphorylation by 27%; the percentage in the gamma-form in the IGF-I group was significantly lower than that in the insulin group. In liver, only IGF-I increased eIF4G. Both IGF-I and insulin increased eIF4E. eIF4G binding in muscle, but only insulin decreased the amount of 4E-BP1 associated with eIF4E. In liver, only IGF-I increased eIF4E. eIF4G binding. Insulin increased the phosphorylation of p70 S6 kinase (p70(S6k)) in both muscle and liver and protein kinase B (PKB/Akt) in muscle, two indicative signal proteins in the phosphatidylinositol (PI) 3-kinase pathway. IGF-I increased PKB/Akt phosphorylation in muscle but had no effect on p70(S6k) phosphorylation in muscle or liver. We conclude that insulin and IGF-I modulate eIF4F formation; however, the two hormones have different regulatory mechanisms. Insulin increases phosphorylation of 4E-BP1 and eIF4E. eIF4G binding in muscle, whereas IGF-I regulates eIF4F formation by increasing total eIF4G. Insulin, but not IGF-I, decreased 4E-BP1 content associated with eIF4E. Insulin regulates translation initiation via the PI 3-kinase-p70(S6k) pathway, whereas IGF-I does so mainly via mechanisms independent of the PI 3-kinase-p70(S6k) pathway.  相似文献   

19.
Induction of sepsis in rats causes an inhibition of protein synthesis in skeletal muscle that is resistant to the stimulatory actions of insulin. To gain a better understanding of the underlying reason for this lack of response, the present study was undertaken to investigate sepsis-induced alterations in insulin signaling to regulatory components of mRNA translation. Experiments were performed in perfused hindlimb preparations from rats 5 days after induction of a septic abscess. Sepsis resulted in a 50% reduction in protein synthesis in the gastrocnemius. Protein synthesis in muscles from septic rats, but not controls, was unresponsive to stimulation by insulin. The insulin-induced hyperphosphorylation response of the translation repressor protein 4E-binding protein 1 (4E-BP1) and of the 70-kDa S6 kinase (S6K1) (1), two targets of insulin action on mRNA translation, was unimpaired in gastrocnemius of septic rats. Hyperphosphorylation of 4E-BP1 in response to insulin resulted in its dissociation from the inactive eukaryotic initiation factor (eIF)4E. 4E-BP1 complex in both control and septic rats. However, assembly of the active eIF4F complex as assessed by the association of eIF4E with eIF4G did not follow the pattern predicted by the increased availability of eIF4E resulting from changes in the phosphorylation of 4E-BP1. Indeed, sepsis caused a dramatic reduction in the amount of eIF4G associated with eIF4E in the presence or absence of insulin. Thus the inability of insulin to stimulate protein synthesis during sepsis may be related to a defect in signaling to a step in translation initiation involved in assembly of an active eIF4F complex.  相似文献   

20.
The immunosuppressant drug rapamycin blocks progression of the cell cycle at the G1 phase in mammalian cells and yeast. Here we show that rapamycin inhibits cap-dependent, but not cap-independent, translation in NIH 3T3 cells. Cap-dependent translation is also specifically reduced in extracts from rapamycin-treated cells, as determined by in vitro translation experiments. This inhibition is causally related to the dephosphorylation and consequent activation of 4E-BP1, a protein recently identified as a repressor of the cap-binding protein, eIF-4E, function. These effects of rapamycin are specific as FK506, a structural analogue of rapamycin, had no effect on either cap-dependent translation or 4E-BP1 phosphorylation. The rapamycin-FK506 binding protein complex is the effector of the inhibition of 4E-BP1 phosphorylation as excess of FK506 over rapamycin reversed the rapamycin-mediated inhibition of 4E-BP1 phosphorylation. Thus, inactivation of eIF-4E is, at least in part, responsible for inhibition of cap-dependent translation in rapamycin-treated cells. Furthermore, these results suggest that 4E-BP1 phosphorylation is mediated by the FRAP/TOR signalling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号