共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The molecular defences against reactive oxygen species in yeast 总被引:13,自引:2,他引:13
3.
Cells are exposed to both endogenous and exogenous sources of reactive oxygen species (ROS). At high levels, ROS can lead to impaired physiological function through cellular damage of DNA, proteins, lipids, and other macromolecules, which can lead to certain human pathologies including cancers, neurodegenerative disorders, and cardiovascular disease, as well as aging. We have employed Saccharomyces cerevisiae as a model system to examine the levels and types of ROS that are produced in response to DNA damage in isogenic strains with different DNA repair capacities. We find that when DNA damage is introduced into cells from exogenous or endogenous sources there is an increase in the amount of intracellular ROS which is not directly related to cell death. We have examined the spectrum of ROS in order to elucidate its role in the cellular response to DNA damage. As an independent verification of the DNA damage-induced ROS response, we show that a major activator of the oxidative stress response, Yap1, relocalizes to the nucleus following exposure to the DNA-alkylating agent methyl methanesulfonate. Our results indicate that the DNA damage-induced increase in intracellular ROS levels is a generalized stress response that is likely to function in various signaling pathways. 相似文献
4.
The Saccharomyces cerevisiae HSP31 (YDR533c) gene encodes a protein that belongs to the DJ-1/PfpI family and its function is unknown. Homologs to Hsp31p polypeptide can be found in organisms from all systematic groups of eukaryotes and prokaryotes, and the functions of the vast majority of them are also hypothetical. One of the homologs is human protein DJ-1. Various amino acid substitutions within this protein correlate with early onset hereditary Parkinson's disease. The deletion of the HSP31 gene displays no apparent phenotype under standard growth conditions, but a thorough functional analysis of S. cerevisiae revealed that its absence makes the cells sensitive to a subset of reactive oxygen species (ROS) generators. HSP31 is induced under conditions of oxidative stress in a YAP1-dependent manner. Similar to other stress response genes, it is also induced in the postdiauxic phase of growth and this induction is YAP1-independent. The patterns of sensitivities to various ROS generators of the hsp31Delta strain and the strain with the deletion of SOD1, another gene defending the cell against ROS, are different. We postulate that Hsp31p protects the cell against oxidative stress and complements other stress protection systems within the cell. 相似文献
5.
6.
M Ogrunc R Di Micco M Liontos L Bombardelli M Mione M Fumagalli V G Gorgoulis F d'Adda di Fagagna 《Cell death and differentiation》2014,21(6):998-1012
Oncogene-induced reactive oxygen species (ROS) have been proposed to be signaling molecules that mediate proliferative cues. However, ROS may also cause DNA damage and proliferative arrest. How these apparently opposite roles can be reconciled, especially in the context of oncogene-induced cellular senescence, which is associated both with aberrant mitogenic signaling and DNA damage response (DDR)-mediated arrest, is unclear. Here, we show that ROS are indeed mitogenic signaling molecules that fuel oncogene-driven aberrant cell proliferation. However, by their very same ability to mediate cell hyperproliferation, ROS eventually cause DDR activation. We also show that oncogenic Ras-induced ROS are produced in a Rac1 and NADPH oxidase (Nox4)-dependent manner. In addition, we show that Ras-induced ROS can be detected and modulated in a living transparent animal: the zebrafish. Finally, in cancer we show that Nox4 is increased in both human tumors and a mouse model of pancreatic cancer and specific Nox4 small-molecule inhibitors act synergistically with existing chemotherapic agents. 相似文献
7.
You HJ Oh DH Choi CY Lee DG Hahm KS Moon AR Jeong HG 《Biochimica et biophysica acta》2002,1573(1):33-38
Metallothionein (MT)-III is a member of a brain-specific MT family, in contrast to MT-I and MT-II that are found in most tissues and are implicated in metal ion homeostasis and as an antioxidant. To investigate the defensive role of MT-III in terms of hydroxyl radical-induced DNA damage, we used purified human MT-III. DNA damage was detected by single-strand breaks of plasmid DNA and deoxyribose degradation. In this study, we show that MT-III is able to protect against the DNA damage induced by ferric ion-nitrilotriacetic acid and H(2)O(2), and that this protective effect is inhibited by the alkylation of the sulfhydryl groups of MT-III by treatment with EDTA and N-ethylmaleimide. MT-III was also able to efficiently remove the superoxide anion, which was generated from the xanthine/xanthine oxidase system. These results strongly suggest that MT-III is involved in the protection of reactive oxygen species-induced DNA damage, probably via direct interaction with reactive oxygen species, and that MT-III acts as a neuroprotective agent. 相似文献
8.
Mendes-Ferreira A Sampaio-Marques B Barbosa C Rodrigues F Costa V Mendes-Faia A Ludovico P Leão C 《Applied and environmental microbiology》2010,76(24):7918-7924
Throughout alcoholic fermentation, nitrogen depletion is one of the most important environmental stresses that can negatively affect the yeast metabolic activity and ultimately leads to fermentation arrest. Thus, the identification of the underlying effects and biomarkers of nitrogen limitation is valuable for controlling, and therefore optimizing, alcoholic fermentation. In this study, reactive oxygen species (ROS), plasma membrane integrity, and cell cycle were evaluated in a wine strain of Saccharomyces cerevisiae during alcoholic fermentation in nitrogen-limiting medium under anaerobic conditions. The results indicated that nitrogen limitation leads to an increase in ROS and that the superoxide anion is a minor component of the ROS, but there is increased activity of both Sod2p and Cta1p. Associated with these effects was a decrease in plasma membrane integrity and a persistent cell cycle arrest at G(0)/G(1) phases. Moreover, under these conditions it appears that autophagy, evaluated by ATG8 expression, is induced, suggesting that this mechanism is essential for cell survival but does not prevent the cell cycle arrest observed in slow fermentation. Conversely, nitrogen refeeding allowed cells to reenter cell cycle by decreasing ROS generation and autophagy. Altogether, the results provide new insights on the understanding of wine fermentations under nitrogen-limiting conditions and further indicate that ROS accumulation, evaluated by the MitoTracker Red dye CM-H(2)XRos, and plasma membrane integrity could be useful as predictive markers of fermentation problems. 相似文献
9.
Increased reactive oxygen species (ROS) are a feature of aging cells, but little is known about when ROS generation begins as cells age. Here we show how ROS change in Saccharomyces cerevisiae cells throughout their early replicative life span using the fluorescent ROS indicator dihydroethidium (DHE), which has some specificity for the superoxide anion. Cells in a particular age range were heterogeneous with respect to their ROS burden. Surprisingly, some cells as young as 5-7 generations acquired a greatly increased level of ROS detected by DHE relative to virgin cells. By 12 generations 50% of cells had a substantial ROS burden despite being only halfway through their life span. In contrast to the wild type, cells of a sir2 mutant had lower levels of ROS reacting with DHE. Daughters from older mothers had low ROS levels, and this asymmetric distribution of ROS was SIR2-independent. Mitochondrial fragmentation also began to occur in cells after 4 generations and increased markedly as cells aged. Daughter cells regenerated normal tubular mitochondria despite the fragmentation of mitochondria in the mother cells, whereas daughters of the sir2 mutant had fragmented mitochondria at all ages. 相似文献
10.
N-Acetyltransferase Mpr1 of Saccharomyces cerevisiae can reduce intracellular oxidation levels and protect yeast cells under oxidative stress. We found that yeast cells exhibited increased levels of reactive oxygen species during freezing and thawing. Gene disruption and expression experiments indicated that Mpr1 protects yeast cells from freezing stress by reducing the intracellular levels of reactive oxygen species. The combination of Mpr1 and l-proline could further enhance the resistance to freezing stress. Hence, Mpr1 as well as l-proline has promising potential for the breeding of novel freeze-tolerant yeast strains. 相似文献
11.
Severin FF Meer MV Smirnova EA Knorre DA Skulachev VP 《Biochimica et biophysica acta》2008,1783(7):1350-1353
The existence of cell death program in unicellular organisms has been reported for a number of species. Nevertheless, the question why the ability to commit suicide has been maintained throughout evolution is far from being solved. While it is believed that altruistic death of individual yeast cells could be beneficial for the population, it is generally not known (i) what is wrong with the individuals destined for elimination, (ii) what is the critical value of the parameter that makes a cell unfit and (iii) how the cell monitors this parameter. Studies performed on yeast Saccharomyces cerevisiae allow us to hypothesize on ways of possible solutions of these problems. Here we argue that (a) the main parameter for life-or-death decision measured by the cell is the degree of damage to the genetic material, (b) its critical value is dictated by quorum sensing machinery, and (c) it is measured by monitoring delays in cell division. 相似文献
12.
Phosphoinositide 3-OH kinase/protein kinase B inhibits apoptotic cell death induced by reactive oxygen species in Saccharomyces cerevisiae 总被引:1,自引:0,他引:1
Apoptosis is a common mode of programmed cell death in multicellular organisms. However, the recent observation of yeast cell death displaying the morphology of apoptosis has suggested the presence of an ancestral cell death machinery. Here we examined apoptotic features induced by reactive oxygen species (ROS) in yeast. Saccharomyces cerevisiae show typical apoptotic features upon exposure to ROS: membrane staining with annexin V and DNA fragmentation by the TUNEL assay. The detection of apoptotic features in yeast strongly support the existence of molecular machinery performing the basic pathways of apoptosis. The phosphoinositide 3-OH kinase (PI3K)/protein kinase B (PKB) signaling pathway has been shown to prevent apoptosis in a variety of cells. It is therefore of interest to determine whether the PI3K/PKB signaling pathway is capable of protecting yeast from apoptosis induced by ROS. We determined that PI3K/PKB is capable of significantly inhibiting ROS-evoked apoptosis in yeast. These results suggest that yeast may provide a suitable model system in which to study the apoptotic signaling pathway elicited by a variety of stimuli. 相似文献
13.
HOCl-mediated cell death and metabolic dysfunction in the yeast Saccharomyces cerevisiae 总被引:2,自引:0,他引:2
The nature of oxidative damage to Saccharomyces cerevisiae caused by levels of HOCl that inhibit cell replication was explored with the intent of identifying the loci of lethal lesions. Functions of cytosolic enzymes and organelles that are highly sensitive to inactivation by HOCl, including aldolase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and the mitochondrion, were only marginally affected by exposure of the yeast to levels of HOCl that completely inhibited colony formation. Loss of function in membrane-localized proteins, including the hexose transporters and PMA1 H(+)-ATPase, which is the primary proton pump located within the S. cerevisiae plasma membrane, was also marginal and K(+) leak rates to the extracellular medium increased only slowly with exposure to increasing amounts of HOCl, indicating that the plasma membrane retained its intrinsic impermeability to ions and metabolites. Adenylate phosphorylation levels in fermenting yeast declined in parallel with viability; however, yeast grown on respiratory substrates maintained near-normal phosphorylation levels at HOCl doses several-fold greater than that required for killing. This overall pattern of cellular response to HOCl differs markedly from that previously reported for bacteria, which appear to be killed by inhibition of plasma membrane proteins involved in energy transduction. The absence of significant loss of function in critical oxidant-sensitive cellular components and retention of ATP-synthesizing capabilities in respiring yeast cells exposed to lethal levels of HOCl suggests that toxicity in this case may arise by programmed cell death. 相似文献
14.
15.
Magnesium (Mg) deficiency and oxidative stress are independently implicated in the etiopathogenesis of various cardiovascular disorders. This study was undertaken to examine the hypothesis that Mg deficiency augments the myocardial response to oxidative stress. Electrically stimulated rat papillary muscle was used for recording the contractile variation. Biochemical variables of energy metabolism (adenosine triphosphate (ATP) and creatine phosphate) and markers of tissue injury (lactate dehydrogenase (LDH) release and lipidperoxidation), which can affect myocardial contractility, were assayed in Langendorff-perfused rat hearts. Hydrogen peroxide (100 micromol/L) was used as the source of reactive oxygen species. The negative inotropic response to H2O2 was significantly higher in Mg deficiency (0.48 mmol Mg/L) than in Mg sufficiency (1.2 mmol Mg/L). Low Mg levels did not affect ATP levels or tissue lipid peroxidation. However, H2O2 induced a decrease in ATP; enhanced lipid peroxidation and the release of LDH were augmented by Mg deficiency. Increased lipid peroxidation associated with a decrease in available energy might be responsible for the augmentation of the negative inotropic response to H2O2 in Mg deficiency. The observations from this study validate the hypothesis that myocardial response to oxidative stress is augmented by Mg deficiency. This observation has significance in ischemia-reperfusion injury, where Mg deficiency can have an additive effect on the debilitating consequences. 相似文献
16.
F L Palhano H L Gomes M T D Orlando E Kurtenbach P M B Fernandes 《Cellular and molecular biology, including cyto-enzymology》2004,50(4):447-457
Yeasts are unicellular organisms that are exposed to a highly variable environment, concerning the availability of nutrients, temperature, pH, radiation, access to oxygen and, specially, water activity. Evolution has selected yeasts to tolerate, to a certain extent, these environmental stresses. High hydrostatic pressure (HHP) exerts a broad effect upon yeast cells, interfering with the cell membranes, cellular architecture and in processes ofpolymerisation and denaturation of proteins. Gene expression patterns in response to HHP revealed a stress response profile. The majority of the upregulated genes were involved in stress defence and carbohydrate metabolism while most of the repressed ones were in cell cycle progression and protein synthesis categories. In addition, in the present work it was seen that mild pressure induced cell cycle arrest and protection against severe stresses, such as high temperature, high pressure and ultra cold shock. Nevertheless, this protection was only significant if the cells were incubated at atmospheric pressure after the HHP treatment. Expression of genes that were upregulated by HHP and are related to resistance to this stresses were also analyzed, and, for the majority of them, higher induction was attained after 15 min post-pressurization. Taken together, the results imply an interconnection among stresses. 相似文献
17.
Death receptors, including the TNF receptor-1 (TNF-RI), have been shown to be able to initiate caspase-independent cell death. This form of "necrotic cell death" appears to be dependent on the generation of reactive oxygen species. Recent data have indicated that superoxide generation is dependent on the activation of NADPH oxidases, which form a complex with the adaptor molecules RIP1 and TRADD. The mechanism of superoxide generation further establishes RIP1 as the central molecule in ROS production and cell death initiated by TNFa and other death receptors. A role for the sustained JNK activation in necrotic cell death is also suggested. The sensitization of virus-infected cells to TNFα indicates that necrotic cell death may represent an alternative cell death pathway for clearance of infected cells. 相似文献
18.
TCDD was assessed as a biological response modifier for increasing MMC cytotoxicity through aryl hydrocarbon receptor (AhR) activation and increasing levels of bioreductive enzymes. Human MCF-7 cells were exposed to TCDD, MMC and combinations thereof under aerobic or hypoxic conditions. Cytotoxicity, enzyme activities (NQO1, XO, XDH, CYPR, CYP1A, GST and UGT) and intracellular reactive oxygen species (ROS) were subsequently measured. Under aerobic conditions, TCDD alone had no significant toxicity but combinations of TCDD and MMC significantly increased cell death. LD50 values were: MMC alone, 0.89 +/- 0.04 microM; TCDD co-treatment, 0.26 +/- 0.007 microM (P = 0.008 vs. MMC alone) and TCDD pre-treatment, 0.04 +/- 0.01 microM (P = 0.003 vs. MMC alone). Under hypoxia, TCDD itself caused significant cell death, likely due to increased ROS, but no combinations of MMC/TCDD altered the LD50 of MMC. Significant changes in enzyme activities were caused by TCDD under aerobic but not hypoxic conditions while MMC decreased the activity of its activating enzymes regardless of oxygen tension. Greater toxicity of MMC/TCDD combinations in aerobic culture, were most likely mediated by increased levels of bioreductive enzymes caused through AhR activation. Data presented herein also demonstrate that low oxygen tension decreases AhR activation and signaling and increases the inherent toxicity of TCDD. 相似文献
19.
CDC13 encodes a telomere-binding protein that prevents degradation of telomeres. cdc13-1 yeast grown at the nonpermissive temperature undergo G2/M arrest, progressive chromosome instability, and subsequent cell death. Recently, it has been suggested that cell death in the cdc13-1 mutant is an active process characterized by phenotypic hallmarks of apoptosis and caspase activation. In this work, we show that cell death triggered by cdc13-1 is independent of the yeast metacaspase Yca1p and reactive oxygen species but related to cell cycle arrest per se. Inactivating YCA1 or depleting reactive oxygen species does not increase viability of cdc13-1 cells. In turn, caspase activation does not precede cell death in the cdc13-1 mutant. Yca1p activity assayed by cell binding of mammalian caspase inhibitors is confounded by artifactual labeling of dead yeast cells, which nonspecifically bind fluorochromes. We speculate that during a prolonged cell cycle arrest, cdc13-1 cells reach a critical size and die by cell lysis. 相似文献
20.
Cervantes-Cervantes MP Calderón-Salinas JV Albores A Muñoz-Sánchez JL 《Biological trace element research》2005,103(3):229-248
Copper [Cu(II)] is an ubiquitous transition and trace element in living organisms. It increases reactive oxygen species (ROS)
and free-radical generation that might damage biomolecules like DNA, proteins, and lipids. Furthermore, ability of Cu(II)
greatly increases in the presence of oxidants. ROS, like hydroxyl (·OH) and superoxide (·O2) radicals, alter both the structure of the DNA double helix and the nitrogen bases, resulting in mutations like the AT→GC
and GC→AT transitions. Proteins, on the other hand, suffer irreversible oxidations and loss in their biological role. Thus,
the aim of this investigation is to characterize, in vitro, the structural effects caused by ROS and Cu(II) on bacteriophage
λ DNA or proteins using either hydrogen peroxide (H2O2) or ascorbic acid with or without Cu(II). Exposure of DNA to ROS-generating mixtures results in electrophoretic (DNA breaks),
spectrophotometric (band broadening, hypochromic, hyperchromic, and bathochromic effects), and calorimetric (denaturation
temperature [T
d], denaturation enthalpy [ΔH], and heat capacity [C
p] values) changes. As for proteins, ROS increased their thermal stability. However, the extent of the observed changes in
DNA and proteins were distinct, depending on the efficiency of the systems assayed to generate ROS. The resulting effects
were most evident when Cu(II) was present. In summary, these results show that the ROS, ·O2 and ·OH radicals, generated by the Cu(II) systems assayed deeply altered the chemical structure of both DNA and proteins.
The physiological relevance of these structural effects should be further investigated. 相似文献