首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Proteolytic activity was detected in the culture supernatant of a newly isolated, extremely thermophilic bacterium belonging to the genus Thermus, and tentatively named T. caldophilus sp. n. strain GK24. The enzyme activity continued to increase for at least three days after cells reached the stationary phase of growth. Purification of the proteolytic enzyme was tried with ammonium sulfate fractionation, gel filtration, and ion exchange chromatography. The most purified enzyme fraction thus obtained appeared to be homogeneous in a chromatographic analysis, but still had seven bands of proteins on sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Treatment of the protease with denaturing reagents or organic solvents did not alter the chromatographic profile and the purified enzyme sample showed a large sedimentation coefficient of about 11S. The optimal pH of the hydrolytic activity of the enzyme was observed at around 7.8 for casein and 7.2 for N-carbobenzoxy-L-leucyl-L-tyrosinamide (Z-Leu-Tyr-NH2). The enzyme was stable in the pH range of 5 to 11 for 1 day at 4 degrees C or for 1 h at 70 degrees C. The enzyme sample showed a maximal activity at 90 degrees C and had an extreme stability toward treatment by heat and denaturing reagents. The enzyme sample was inactivated almost completely by diisopropyl fluorophosphate (DFP), but not by ethylenediaminetetraacetic acid (EDTA) or ethylene glycol-bis(beta-aminoethyl ether)N,N'-tetraacetic acid (EGTA). From these results, the enzyme seems to be a serine protease, and not to be a metallo-enzyme such as thermolysin. The enzyme also was hydrolytic active toward an ester compound, N-benzoyl-L-tyrosine ethyl ester (BTEE), but not toward N-benzoyl-L-arginine ethyl ester (BAEE).  相似文献   

3.
The gene encoding Thermus caldophilus GK24 (Tca) alkaline phosphatase was cloned into Escherichia coli. The primary structure of Tca alkaline phosphatase was deduced from its nucleotide sequence. The Tca alkaline phosphatase precursor, including the signal peptide sequence, was comprised of 501 amino acid residues. Its molecular mass was determined to be 54? omitted?760 Da. On the alignment of the amino acid sequence, Tca alkaline phosphatase showed sequence homology with the microbial alkaline phosphatases, 20% identity with E. coli alkaline phosphatase and 22% Bacillus subtilis (Bsu) alkaline phosphatases. High sequence identity was observed in the regions containing the Ser-102 residue of the active site, the zinc and magnesium binding sites of E. coli alkaline phosphatase. Comparison of Tca alkaline phosphatase and E. coli alkaline phosphatase structures suggests that the reduced activity of the Tca alkaline phosphatase, in the presence of zinc, is directly involved in some of the different metal binding sites. Heat-stable Tca alkaline phosphatase activity was detected in E. coli YK537, harboring pJRAP.  相似文献   

4.
The gene for L-lactate dehydrogenase (LDH) (EC 1.1.1.27) of Thermus caldophilus GK24 was cloned in Escherichia coli using synthetic oligonucleotides as hybridization probes. The nucleotide sequence of the cloned DNA was determined. The primary structure of the LDH was deduced from the nucleotide sequence. The deduced amino acid sequence agreed with the NH2-terminal and COOH-terminal sequences previously reported and the determined amino acid sequences of the peptides obtained from trypsin-digested T. caldophilus LDH. The LDH comprised 310 amino acid residues and its molecular mass was determined to be 32,808. On alignment of the whole amino acid sequences, the T. caldophilus LDH showed about 40% identity with the Bacillus stearothermophilus, Lactobacillus casei and dogfish muscle LDHs. The T. caldophilus LDH gene was expressed with the E. coli lac promoter in E. coli, which resulted in the production of the thermophilic LDH. The gene for the T. caldophilus LDH showed more than 40% identity with those for the human and mouse muscle LDHs on alignment of the whole nucleotide sequences. The G + C content of the coding region for the T. caldophilus LDH was 74.1%, which was higher than that of the chromosomal DNA (67.2%). The G + C contents in the first, second and third positions of the codons used were 77.7%, 48.1% and 95.5% respectively. The high G + C content in the third base caused extremely non-random codon usage in the LDH gene. About half (48.7%) the codons in the LDH gene started with G, and hence there were relatively high contents of Val, Ala, Glu and Gly in the LDH. The contents of Pro, Arg, Ala and Gly, which have high G + C contents in their codons, were also high. Rare codons with U or A as the third base were sometimes used to avoid the TCGA sequence, the recognition site for the restriction endonuclease, TaqI. Two TCGA sequences were found only in the sequence of CTCGAG (XhoI site) in the sequenced region of the T. caldophilus DNA. There were three segments with similar sequences in the two 5' non-coding regions, probably the promoter and ribosome-binding regions, of the genes for the T. caldophilus LDH and the Thermus thermophilus 3-isopropylmalate dehydrogenase.  相似文献   

5.
Koh S  Kim J  Shin HJ  Lee D  Bae J  Kim D  Lee DS 《Carbohydrate research》2003,338(12):1339-1343
This paper questions what types of molecular transformation are involved in the conversion of maltose to trehalose by trehalose synthase from Thermus caldophilus GK24. The reverse reaction pathway has been examined with the aid of alpha,alpha-(2,4,6,6',2',4',6",6"'-(2)H(8))trehalose (1). The mass data of the isolated reaction products clearly indicate that deuterated glucose is confined only to substrate molecules, and thus the reversible enzymatic conversion of trehalose into maltose proceeds through an intramolecular pathway.  相似文献   

6.
Histone deactylases (HDACs) are members of an ancient enzyme family found in eukaryotes as well as in prokaryotes such as archaebacteria and eubacteria. We here report a new histone deacetylase (Tca HDAC) that was cloned from the genomic library of Thermus caldophilus GK24 based on homology analysis with human histone deacetylase1 (HDAC1). The gene contains an open reading frame encoding 375 amino acids with a calculated molecular mass of 42,188 Da and the deduced amino acid sequence of Tca HDAC showed a 31% homology to human HDAC1. The Tca HDAC gene was over-expressed in Escherichia coli using a Glutathione-S transferase (GST) fusion vector (pGEX-4T-1) and the purified protein showed a deacetylase activity toward the fluorogenic substrate for HDAC. Moreover, the enzyme activity was inhibited by trichostatin A, a specific HDAC inhibitor, in a dose-dependent manner. Optimum temperature and pH of the enzyme was found to be approximately 70 degrees C and 7.0, respectively. In addition, zinc ion is required for catalytic activity of the enzyme. Together, these data demonstrate that Tca HDAC is a new histone deacetylase-like enzyme from T. caldophilus GK24 and will be a useful tool for deciphering the role of HDAC in the prokaryote and development of new biochemical reactions.  相似文献   

7.
The conserved histidine-188 residue of the L-lactate dehydrogenase of Thermus caldophilus GK 24, which is allosterically activated by fructose 1,6-bisphosphate, has been exchanged to phenylalanine by site-specific mutagenesis. In the mutant enzyme the strong stimulatory effect of fructose 1,6-bisphosphate is abolished. The analysis of the pH dependence of the activity indicates that the positive charge of the conserved His-188 residue is important for the interaction of the enzyme with the allosteric effector.  相似文献   

8.
Heat-stable fructose 1,6-bisphosphate-dependent L-lactate dehydrogenase [EC 1.1.1.27] was purified from an extremely thermophilic bacterium, Thermus aquaticus YT-1. The amino acid composition and NH2-terminal 34 amino acid sequence of the enzyme were determined. Its NH2-terminal sequence shows high homology with those of Thermus caldophilus GK24 (82% identity) and some other bacterial L-lactate dehydrogenases (44-53% identity), indicating the close phylogenic relationship of the two Thermus species. At the same time, the two Thermus L-lactate dehydrogenases were found not to be identical not only chemically but also kinetically and immunologically. Citrate activated the T. aquaticus enzyme in the weak acidic pH region, while fructose 1,6-bisphosphate did in both acidic and neutral pH regions. The maximum activity obtained with citrate at pH 5.0 was about 2.5 times higher than that in the presence of fructose 1,6-bisphosphate at pH 6.7. The enzymes modified with 2,3-butanedione, acetic anhydride and diethyl pyrocarbonate in the presence of both NADH and oxamate were desensitized to fructose 1,6-bisphosphate, and the modified enzymes were active even in the absence of fructose 1,6-bisphosphate. All of the modified enzymes examined were still activated by citrate similarly to the native enzyme. These results suggest that the mechanism of activation by citrate is different from that by fructose 1,6-bisphosphate, and that the citrate-binding site is different from the fructose 1,6-bisphosphate-binding site.  相似文献   

9.
The allosteric effect of fructose 1,6-bisphosphate (Fru-1,6-P2) on L-lactate dehydrogenase (L-lactate:NAD+ oxidoreductase, EC 1.1.1.27) from Thermus caldophilus GK24 was studied by means of 1H NMR analyses. The conformation of NAD+ as bound to the T. caldophilus enzyme was elucidated by analyses of the transferred nuclear Overhauser effects (TRNOE), in the presence and the absence of the allosteric effector, Fru-1,6-P2. Upon binding of Fru-1,6-P2 to the enzyme, the ribose ring of the adenosine moiety of NAD+ is converted from the C2'-endo form to the C3'-endo form. This C3'-endo form of the adenosine moiety is similar to that of NAD+ as bound to nonallosteric vertebrate enzymes. However, the anti conformation of the adenine-ribose bond of NAD+ as bound to the T. caldophilus enzyme is not affected by the binding of Fru-1,6-P2. In contrast, the syn conformation of the nicotinamide-ribose bond is converted to the anti form on the binding of Fru-1,6-P2, while the ribose ring remains in the C3'-endo form as found in the case of a nonallosteric enzyme. Such a conformational change of enzyme-bound NAD+ as found on TRNOE analysis is essentially involved in the allosteric regulation of the T. caldophilus enzyme by Fru-1,6-P2.  相似文献   

10.
Abstract We determined the relative binding affinity of the MetR protein for wild-type and mutant MetR binding sites 1 and 2 in the Escherichia coli glyA control region. The results show that MetR binding site 1 has a higher affinity for the MetR protein than binding site 2. In addition, the results suggest that binding of MetR to the glyA promoter is cooperative. Mutations that decrease the ability of MetR to bind to either site 1 or site 2 have no significant effect on MetR's ability to bend DNA.  相似文献   

11.
Mammalian amylases harbor a flexible, glycine-rich loop 304GHGAGGA(310), which becomes ordered upon oligosaccharide binding and moves in toward the substrate. In order to probe the role of this loop in catalysis, a deletion mutant lacking residues 306-310 (Delta306) was generated. Kinetic studies showed that Delta306 exhibited: (1) a reduction (>200-fold) in the specific activity using starch as a substrate; (2) a reduction in k(cat) for maltopentaose and maltoheptaose as substrates; and (3) a twofold increase in K(m) (maltopentaose as substrate) compared to the wild-type (rHSAmy). More cleavage sites were observed for the mutant than for rHSAmy, suggesting that the mutant exhibits additional productive binding modes. Further insight into its role is obtained from the crystal structures of the two enzymes soaked with acarbose, a transition-state analog. Both enzymes modify acarbose upon binding through hydrolysis, condensation or transglycosylation reactions. Electron density corresponding to six and seven fully occupied subsites in the active site of rHSAmy and Delta306, respectively, were observed. Comparison of the crystal structures showed that: (1) the hydrophobic cover provided by the mobile loop for the subsites at the reducing end of the rHSAmy complex is notably absent in the mutant; (2) minimal changes in the protein-ligand interactions around subsites S1 and S1', where the cleavage would occur; (3) a well-positioned water molecule in the mutant provides a hydrogen bond interaction similar to that provided by the His305 in rHSAmy complex; (4) the active site-bound oligosaccharides exhibit minimal conformational differences between the two enzymes. Collectively, while the kinetic data suggest that the mobile loop may be involved in assisting the catalysis during the transition state, crystallographic data suggest that the loop may play a role in the release of the product(s) from the active site.  相似文献   

12.
In this study, we have crystallized class II fructose-1,6-bisphosphate aldolase (FBA) from Thermus caldophilus (Tca). Purified Tca FBA is a tetrameric enzyme of 305 residues, which crystallizes in the space group P2(1)2(1)2(1) (cell dimensions a = 98.9, b = 113.1, c = 115.7 A), with four molecules in the asymmetric unit. A complete diffraction data set was obtained from orthorhombic crystals at resolution of 2.2 A.  相似文献   

13.
A beta-glycosidase (M(r) 50000) from Spodoptera frugiperda larval midgut was purified, cloned and sequenced. It is active on aryl and alkyl beta-glucosides and cellodextrins that are all hydrolyzed at the same active site, as inferred from experiments of competition between substrates. Enzyme activity is dependent on two ionizable groups (pK(a1)=4.9 and pK(a2)=7.5). Effect of pH on carbodiimide inactivation indicates that the pK(a) 7.5 group is a carboxyl. k(cat) and K(m) values were obtained for different p-nitrophenyl beta-glycosides and K(i) values were determined for a range of alkyl beta-glucosides and cellodextrins, revealing that the aglycone site has three subsites. Binding data, sequence alignments and literature beta-glycosidase 3D data supported the following conclusions: (1) the groups involved in catalysis were E(187) (proton donor) and E(399) (nucleophile); (2) the glycone moiety is stabilized in the transition state by a hydrophobic region around the C-6 hydroxyl and by hydrogen bonds with the other equatorial hydroxyls; (3) the aglycone site is a cleft made up of hydrophobic amino acids with a polar amino acid only at its first (+1) subsite.  相似文献   

14.
The crystal structures of highly thermostable xylose isomerases from Thermus thermophilus (TthXI) and Thermus caldophilus (TcaXI), both with the optimum reaction temperature of 90 degrees C, have been determined by X-ray crystallography. The model of TcaXI has been refined to an R-factor of 17.8 % for data extending to 2.3 A and that of TthXI to 17.1 % for data extending to 2.2 A. The tetrameric arrangement of subunits characterized by the 222-symmetry and the tertiary fold of each subunit in both TcaXI and TthXI are basically the same as in other xylose isomerases. Each monomer is composed of two domains. Domain I (residues 1 to 321) folds into the (beta/alpha)8-barrel. Domain II (residues 322 to 387), lacking beta-strands, makes extensive contacts with domain I of an adjacent subunit. Each monomer of TcaXI contains ten beta-strands, 15 alpha-helices, and six 310-helices, while that of TthXI contains ten beta-strands, 16 alpha-helices, and five 310-helices. Although the electron density does not indicate the presence of bound metal ions in the present models of both TcaXI and TthXI, the active site residues show the conserved structural features. In order to understand the structural basis for thermostability of these enzymes, their structures have been compared with less thermostable XIs from Arthrobacter B3728 and Actinoplanes missouriensis (AXI and AmiXI), with the optimum reaction temperatures of 80 degrees C and 75 degrees C, respectively. Analyses of various factors that may affect protein thermostability indicate that the possible structural determinants of the enhanced thermostability of TcaXI/TthXI over AXI/AmiXI are (i) an increase in ion pairs and ion-pair networks, (ii) a decrease in the large inter-subunit cavities, (iii) a removal of potential deamidation/isoaspartate formation sites, and (iv) a shortened loop.  相似文献   

15.
Mutants of a cobalt-containing nitrile hydratase (NHase, EC 4.2.1.84) from Pseudonocardia thermophila JCM 3095 involved in substrate binding, catalysis and formation of the active center were constructed, and their characteristics and crystal structures were investigated. As expected from the structure of the substrate binding pocket, the wild-type enzyme showed significantly lower K(m) and K(i) values for aromatic substrates and inhibitors, respectively, than aliphatic ones. In the crystal structure of a complex with an inhibitor (n-butyric acid) the hydroxyl group of betaTyr68 formed hydrogen bonds with both n-butyric acid and alphaSer112, which is located in the active center. The betaY68F mutant showed an elevated K(m) value and a significantly decreased k(cat) value. The apoenzyme, which contains no detectable cobalt atom, was prepared from Escherichia coli cells grown in medium without cobalt ions. It showed no detectable activity. A disulfide bond between alphaCys108 and alphaCys113 was formed in the apoenzyme structure. In the highly conserved sequence motif in the cysteine cluster region, two positions are exclusively conserved in cobalt-containing or iron-containing nitrile hydratases. Two mutants (alphaT109S and alphaY114T) were constructed, each residue being replaced with an iron-containing one. The alphaT109S mutant showed similar characteristics to the wild-type enzyme. However, the alphaY114T mutant showed a very low cobalt content and catalytic activity compared with the wild-type enzyme, and oxidative modifications of alphaCys111 and alphaCys113 residues were not observed. The alphaTyr114 residue may be involved in the interaction with the nitrile hydratase activator protein of P. thermophila.  相似文献   

16.
Heat-stable and fructose-1,6-bisphosphate-activated L-lactate dehydrogenase (EC 1.1.1.27) has been purified from an extremely thermophilic bacterium, Thermus caldophilus GK24 [Taguchi, H., Yamashita, M., Matsuzawa, H. and Ohta, T. (1982) J. Biochem. (Tokyo) 91, 1343-1348]. N-terminal sequence analysis of the first 34 amino acids of the enzyme indicates that the N-terminal arm region (first 1-20 residues) known for the vertebrate L-lactate dehydrogenases is completely missing in the T. caldophilus enzyme, while there is a high homology of sequence between the regions which are considered to be part of the NAD-binding domain. The C-terminal amino acid of the enzyme was phenylalanine. Analysis of the amino acid composition showed that T. caldophilus enzyme contained much more arginine and fewer lysine than other bacterial and vertebrate L-lactate dehydrogenases. On modification reaction with 2,3-butanedione in the presence of NADH and oxamate, an enhanced activity of the T. caldophilus L-lactate dehydrogenase was obtained independently of fructose 1,6-bisphosphate, and the modified enzyme was desensitized to fructose 1,6-bisphosphate. Amino acid analysis indicated that such a desensitization in the active state was caused by the modification of only one arginine residue per the enzyme subunit. Desensitization of the enzyme was inhibited in the presence of fructose 1,6-bisphosphate. A similar desensitization was observed using 1,2-cyclohexanedione instead of 2,3-butanedione. The enzyme was irreversibly modified with 2,3-butanedione and characterized. The irreversibly modified enzyme also showed an enhanced activity independently of fructose 1,6-bisphosphate, and its pyruvate saturation curve was similar to that of the native enzyme measured in the presence of fructose 1,6-bisphosphate. Fructose 1,6-bisphosphate, which increases the thermostability of the native enzyme, did not affect that of the modified enzyme, while thermostability of the modified enzyme slightly decreased. Amino acid analysis indicated that only the arginine content was decreased by the modification. These results show that arginine residue(s) exist in the binding site for fructose 1,6-bisphosphate on the enzyme, and that the arginine residue(s) play some important role in the allosteric regulation of the enzyme activity.  相似文献   

17.
A high level of functional recombinant rat cytochrome P450C24 enzyme (CYP24A1) was obtained (40-50mg/L) using an Escherichia coli expression system. Purified enzyme was stable with retention of spectral and catalytic activity. The rate of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] side-chain oxidation and cleavage to the end-product calcitroic acid was directly related to the rate of electron transfer from the ferredoxin redox partner. It was determined from substrate-induced spectral shifts that the 1 alpha- and 25-hydroxyl groups on vitamin D(3) metabolites and analogs were the major determinants for high-affinity binding to CYP24A1. Lowest K(d) values were obtained for 1 alpha-vitamin D(3) (0.06 microM) and 1,25-dihydroxyvitamin D(3) (0.05 microM) whereas unmodified parental vitamin D(3) and the non-secosteroid 25-hydroxycholesterol had lower affinities with K(d) values of 1.3 and 1.9 microM, respectively. The lowest binding affinity for natural vitamin D metabolites was observed for 24,25-dihydroxyvitamin D(3) [24,25(OH)(2)D(3)] (0.43 microM). Kinetic analyses of the two natural substrates 25-hydroxyvitamin D(3) [25(OH)D(3)] and 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] revealed similar K(m) values (0.35 and 0.38 microM, respectively), however, the turnover number was higher for 25(OH)D(3) compared to 1,25(OH)(2)D(3) (4.2 and 1 min(-1), respectively). Mutagenesis of F249 within the F-helix of CYP24A1 altered substrate binding and metabolism. Most notable, the hydrophobic to polar mutant F249T had a strong impact on lowering substrate-binding affinity and catalysis of the final C(23) oxidation sequence from 24,25,26,27-tetranor-1,23-dihydroxyvitamin D(3) to calcitroic acid. Two other hydrophobic 249 mutants (F249A and F249Y) also lowered substrate binding and expressed metabolic abnormalities that included the C(23)-oxidation defect observed with mutant F249T plus a similar defect involving an earlier pathway action for the C(24) oxidation of 1,24,25-trihydroxyvitamin D(3). Therefore, Phe-249 within the F-helix was demonstrated to have an important role in properly binding and aligning substrate in the CYP24A1 active site for C(23) and C(24) oxidation reactions.  相似文献   

18.
Mendonça LM  Marana SR 《The FEBS journal》2008,275(10):2536-2547
The relative contributions to the specificity and catalysis of aglycone, of residues E190, E194, K201 and M453 that form the aglycone-binding site of a beta-glycosidase from Spodoptera frugiperda (EC 3.2.1.21), were investigated through site-directed mutagenesis and enzyme kinetic experiments. The results showed that E190 favors the binding of the initial portion of alkyl-type aglycones (up to the sixth methylene group) and also the first glucose unit of oligosaccharidic aglycones, whereas a balance between interactions with E194 and K201 determines the preference for glucose units versus alkyl moieties. E194 favors the binding of alkyl moieties, whereas K201 is more relevant for the binding of glucose units, in spite of its favorable interaction with alkyl moieties. The three residues E190, E194 and K201 reduce the affinity for phenyl moieties. In addition, M453 favors the binding of the second glucose unit of oligosaccharidic aglycones and also of the initial portion of alkyl-type aglycones. None of the residues investigated interacted with the terminal portion of alkyl-type aglycones. It was also demonstrated that E190, E194, K201 and M453 similarly contribute to stabilize ES(double dagger). Their interactions with aglycone are individually weaker than those formed by residues interacting with glycone, but their joint catalytic effects are similar. Finally, these interactions with aglycone do not influence glycone binding.  相似文献   

19.
At present the three-dimensional structure of the tobacco lectin, further referred to as Nictaba, and its carbohydrate-binding site are unresolved. In this paper, we propose a three-dimensional model for the Nictaba domain based on the homology between Nictaba and the carbohydrate-binding module 22 of Clostridium thermocellum Xyn10B. The suggested model nicely fits with results from circular dichroism experiments, indicating that Nictaba consists mainly of β-sheet. In addition, the previously identified nuclear localization signal is located at the top of the protein as a part of a protruding loop. Judging from this model and sequence alignments with closely related proteins, conserved glutamic acid and tryptophan residues in the Nictaba sequence were selected for mutational analysis. The mutant DNA sequences as well as the original Nictaba sequence have been expressed in Pichia pastoris and the recombinant proteins were purified from the culture medium. Subsequently, the recombinant proteins were characterized and their carbohydrate binding properties analyzed with glycan array technology. It was shown that mutation of glutamic acid residues in the C-terminal half of the protein did not alter the carbohydrate-binding activity of the lectin. In contrast, mutation of tryptophan residues in the N-terminal half of the Nictaba domain resulted in a complete loss of carbohydrate binding activity. These results suggest that tryptophan residues play an important role in the carbohydrate binding site of Nictaba.  相似文献   

20.
Previous experiments have shown that the top of helix 90 of 23S rRNA is highly important for the ribosomal peptidyltransferase activity and might be part of the donor (P) site. Developing on these studies, mutations in the 23S rRNA at the highly conserved positions G2505, G2582, and G2583 were investigated. None of the mutations affected assembly, subunit association, or the capacity of tRNA binding to A and P sites. A "selective transpeptidation assay" revealed that the mutations specifically impaired peptide bond formation. Results with a modified "fragment" assay using the minimal donor substrate pA-fMet are consistent with a model where the nucleotides psiGG2582 form a binding pocket for C75 of the tRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号