首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The three dimensional model of cold-adapted Alaskan psychrotroph Pseudomonas species (Strain B11-1) lipase has been constructed by homology modeling based on the crystal structure of acetyl esterase from Rhodococcus species and refined by molecular dynamics methods. Our model locates the substrate-binding cavity and further suggests that Ser-155, Asp-250, and His-280 are the members of the catalytic triad. Substrate specificity of the modeled lipase has been examined by docking experiments, which indicates that the ester of C6 fatty acid has the highest affinity for the enzyme. Our model also identifies the oxyanion hole that plays an important role in the stabilization of the tetrahedral intermediate during catalysis. Comparison of this cold-adapted lipase with the crystal structure of a thermophilic Bacillus stearothermophilus P1 lipase supported the assumption that cold-adapted enzymes have a more flexible three-dimensional structure than their thermophilic counterparts. The conformational flexibility of this modeled cold-adapted lipase at low temperature probably originates from a combination of factors compared to its thermophilic counterpart, i.e., lower number of salt bridges and cation-π interactions, increase in the non-polar surface area exposed to solvent. Our study may help in understanding the structural features of a cold- adapted lipase and can further be used in engineering lipase that can function at or near extreme temperatures with considerable biotechnological potential.  相似文献   

2.
Yang X  Lin X  Fan T  Bian J  Huang X 《Current microbiology》2008,56(2):194-198
A gene (lipP, 837 bp in length) coding for a cold-adapted lipase of psychrophilic bacterium Moritella sp. 2-5-10-1 isolated from Antarctic region was cloned and sequenced in this study. The deduced amino acid sequence revealed a protein of 278 amino acid residues with a molecular mass of 30,521. The primary structure of the lipase deduced from the nucleotide sequence showed consensus pentapeptide containing the active serine [Gly-Trp-Ser-Leu-Gly] and a conserved His-Gly dipeptide in the N-terminal part of the enzyme. These sequences were involved in the lipase active site conformation. Structure factors that would allow proper enzyme flexibility at low temperatures were discussed. It was suggested that the changes in the primary structure of the psychrophilic lipases compared to the thermophilic ones could account for their ability to catalyze lipolysis at temperatures close to 0°C. For expression, the sequence corresponding to the cold-adapted lipase of strain 2-5-10-1 was subcloned into the pET-28a expression vector to construct a recombinant lipase protein. Expression of the lipase by Escherichia coli BL21 (DE3) cells was observed as clear halos on 1% (vol/vol) tributyrin upon induction with IPTG at 25°C.  相似文献   

3.
低温脂肪酶的研究现状与应用前景   总被引:6,自引:0,他引:6  
低温脂肪酶在低温下仍保持高酶活,因此在应用中有着中温脂肪酶无法取代的优越性,而具有高活性的低温脂肪酶因其具有理论和应用上的双重意义成为了近年来的研究热点。本文从描述产低温脂肪酶的低温微生物特征入手,系统阐述了低温脂肪酶的来源、分类、特征、研究方法及最新进展,并简述了低温脂肪酶在食品、洗涤、制药以及低温环境修复等工业上的应用前景。  相似文献   

4.
We describe the first lipase structure from a thermophilic organism. It shares less than 20% amino acid sequence identity with other lipases for which there are crystal structures, and shows significant insertions compared with the typical alpha/beta hydrolase canonical fold. The structure contains a zinc-binding site which is unique among all lipases with known structures, and which may play a role in enhancing thermal stability. Zinc binding is mediated by two histidine and two aspartic acid residues. These residues are present in comparable positions in the sequences of certain lipases for which there is as yet no crystal structural information, such as those from Staphylococcal species and Arabidopsis thaliana. The structure of Bacillus stearothermophilus P1 lipase provides a template for other thermostable lipases, and offers insight into mechanisms used to enhance thermal stability which may be of commercial value in engineering lipases for industrial uses.  相似文献   

5.
EST2 is a novel thermophilic carboxylesterase, isolated and cloned from Alicyclobacillus (formerly Bacillus) acidocaldarius, which optimally hydrolyses esters with acyl chain lengths of six to eight carbon atoms at 70 degrees C. On the basis of the amino acid sequence homology, it has been classified as a member of the mammalian hormone-sensitive lipase (HSL) subfamily.The crystal structure of EST2, complexed with a sulphonyl derivative, has been determined at 2.6 A resolution by a multiple wavelength anomalous diffraction experiment on a seleno-methionine derivative. EST2 presents a canonical alpha/beta hydrolase core, shielded at the C-terminal side by a cap region built up of five helices. It contains the lipase-like catalytic triad, Ser155, His282 and Asp252, whereby the nucleophile is covalently modified. This allows an unambiguous view of the putative active site of EST2, detecting the oxyanion hole, in whose formation the amino acid sequence motif His81-Gly82-Gly83-Gly84 is involved, and the hydrophobic binding pocket for the acyl chain. The structural model here reported provides the first example of a transition state analogue of an esterase/lipase belonging to the HSL group, thus affording useful information for the design of medical inhibitors. Moreover, as the first X-ray structure of a thermophilic carboxylesterase, the comparison with its mesophilic homologue, the Brefeldin A esterase (BFAE) from Bacillus subtilis, allows the identification of putative determinants of thermal stability.  相似文献   

6.
In this paper we report the first comparative study of cold-adapted imidase (EC 3.5.2.2) from the fish (Oreochromis niloticus) liver and its thermophilic counterparts taken from pig liver and Escherichia coli (overexpressed recombinant hydantoinase from Agrobacterium radiobacter NRRL B1). Approximately 6000-fold purification and a 40% yield of fish imidase activity were obtained through ammonium sulfate precipitation, octyl, chelating, DEAE, and hydroxyapatite chromatography. This cold-adapted imidase was characterized by a specific activity 10- to a 100-fold higher than those of its thermophilic counterparts below room temperature (25 degrees C or lower) conditions but less stable at elevated temperatures (40 degrees C or higher). A less organized helical structure (compared to those of pig liver and bacterial imidases) was observed by circular dichroism. Furthermore, maleimide was first identified as a novel substrate of all imidases examined, and confirmed by HPLC and NMR analysis. These results constituted a first study to discover a novel cold-adapted imidase with surprising high activity. These findings might be also helpful for industrial application of imidase.  相似文献   

7.
Protein thermostability is an inherent characteristic of proteins from thermophilic microorganisms, and therefore enables these organisms to survive at extreme temperatures. Although it is well-known that thermostable proteins are critical for the growth of thermophilic organisms, the structural basis of protein thermostability is not yet fully understood. The histidine-containing phosphocarrier (HPr) protein, a phosphate shuttle protein in the phosphoenolpyruvate-dependent sugar transport system (PTS) of bacterial species, is an ideal model for investigating protein thermostability with respect to its small size and deficiency in disulphide bonds or cofactors. In this study, the HPr protein from Thermoanaerobacter tengcongensis (TtHPr) is cloned and purified. Crystal structure with good quality has been determined at 2.3 Å resolution, which provides a firm foundation for exploring the thermostable mechanism. However, it shows that the crystal structure is conserved and no clue can be obtained from this single structure. Furthermore, detailed comparison of sequence and structure with the homologs from meso- or thermophilic bacteria shows no obvious rule for thermostability, but the extra salt-bridge existing only in thermophilic bacteria might be a better explanation for thermostability of HPr. Thus, mutations are performed to interrupt the salt-bridge in HPrs in thermophilic bacteria. Using site-directed mutations and the circular dichroism method, thermostability is evaluated, and the mutational variations are shown to have a faster denaturing rate than for wild-type viruses, indicating that mutations cause instability in the HPrs. Understanding the higher-temperature resistance of thermophilic and hyperthermophilic proteins is essential to studies on protein folding and stability, and is critical in engineering efficient enzymes that can work at a high temperature.  相似文献   

8.
Evaluation of homology modeling of HIV protease   总被引:3,自引:0,他引:3  
I T Weber 《Proteins》1990,7(2):172-184
The model of human immunodeficiency virus (HIV-1) protease which was based on the crystal structure of Rous sarcoma virus (RSV) protease has been compared to the recently determined crystal structure of chemically synthesized HIV-1 protease. The overall difference between the model and crystal structure was 1.4 A root mean square (rms) deviation for 86 superimposed C alpha atoms. The position of the flexible flap differs in the model and six residues at the amino terminus were incorrectly placed. With these exceptions, all atoms of the model and crystal structure agree to 2.1 A rms deviation. The conformation of some surface bends in the model agrees less well with the crystal structure. Identical amino acids in RSV and HIV proteases were modeled more reliably than different types of amino acids. The amino acids which form the substrate binding site were modeled most accurately to 1.2 A rms deviation for all atoms compared to the crystal structure. This suggests that functionally significant regions of related proteins can be modeled with high accuracy. The model gave correct predictions for residues making interactions with the substrate, and therefore could be used to design inhibitors. The model based on the RSV protease structure is more similar to the experimental structure than are previous models based on the structures of non-viral aspartic proteases.  相似文献   

9.
Crystal structures of cold-adapted β-d-galactosidase (EC 3.2.1.23) from the Antarctic bacterium Arthrobacter sp. 32cB (ArthβDG) have been determined in an unliganded form resulting from diffraction experiments conducted at 100 K (at resolution 1.8 Å) and at room temperature (at resolution 3.0 Å). A detailed comparison of those two structures of the same enzyme was performed in order to estimate differences in their molecular flexibility and rigidity and to study structural rationalization for the cold-adaptation of the investigated enzyme. Furthermore, a comparative analysis with structures of homologous enzymes from psychrophilic, mesophilic, and thermophilic sources has been discussed to elucidate the relationship between structure and cold-adaptation in a wider context. The performed studies confirm that the structure of cold-adapted ArthβDG maintains balance between molecular stability and structural flexibility, which can be observed independently on the temperature of conducted X-ray diffraction experiments. Obtained information about proper protein function under given conditions provide a guideline for rational engineering of proteins in terms of their temperature optimum and thermal stability.  相似文献   

10.
Olive oil degradation by the thermophilic lipolytic strain Bacillus thermoleovorans IHI-91 in chemostat and batch culture was modeled to obtain a general understanding of the underlying principles and limitations of the process and to quantify its stoichiometry. Chemostat experiments with olive oil as the sole carbon source were successfully described using the Monod chemostat model extended by terms for maintenance requirements and wall growth. Maintenance requirements and biomass yield coefficients were in the range reported for mesophiles. For a chemostat experiment at D = 0.3 h(-1) the model was validated up to an olive oil feed concentration of about 3.0 g L(-1) above which an inhibitory effect occurred. Further analysis showed that the liberated oleic acid is the main cause for this inhibition. Using steady-state oleic acid concentrations measured in chemostat experiments with olive oil as substrate it was possible to derive a kinetic expression for oleic acid utilization, showing that a concentration of 430 mg L(-1) leads to a complete growth inhibition. Oleic acid accumulation observed during batch fermentations can be predicted using a model involving growth-associated lipase production and olive oil hydrolysis. Simulations confirmed that this accumulation is the cause for the sudden growth cessation occurring in batch fermentations with higher olive oil start concentrations. Further, an oscillatory behavior, as observed in some chemostat experiments, can also be predicted using the latter model. This work clearly demonstrates that thermophilic lipid degradation by Bacillus thermoleovorans IHI-91 is limited by long-chain fatty acid beta-oxidation rather than oil hydrolysis.  相似文献   

11.
低温脂肪酶在低温条件下仍具有较高活性,在食品添加剂、洗涤添加剂及有机合成等产业具有非常独特的应用前景。从低温菌株中分离低温脂肪酶基因是开发新的低温脂肪酶的有效手段。首先利用油脂同化平板与三丁酸甘油酯-维多利亚蓝平板从冰川土样中筛选分离获得一株具有较高脂肪酶活性的真菌,18S rDNA鉴定其属于青霉属,命名为Penicillium sp.XMZ-9。根据真菌脂肪酶多序列比对获得的保守区,设计简并引物,利用降落PCR与染色体步移的方法从Penicillium sp.XMZ-9中克隆到2个完整的脂肪酶基因,分别记为LipA与LipB。LipA全长1 014 bp,无内含子,编码337个氨基酸。而LipB全长1 232 bp,cDNA长1 122 bp,含有2个内含子,编码373个氨基酸。将两基因的cDNA序列克隆到pET30a(+)载体上,转化大肠杆菌Escherichiacoli BL21(DE3)。经低温诱导表达后,LipA大部分表达为包涵体,包涵体经复性后具有脂肪酶活性,并表现出低温适应性;LipB则大部分表达为可溶性蛋白,Ni-亲和层析柱纯化后,其亦具有低温脂肪酶活性。青霉菌株XMZ-9的获得与低温脂肪酶的克隆表达研究,为研究低温菌株与低温酶的适冷机制提供了宝贵的资源,也为进一步开发利用低温脂肪酶奠定了基础。  相似文献   

12.
The ability of photosynthetic organisms to use the sun's light as a sole source of energy sustains life on our planet. Photosystems I (PSI) and II (PSII) are large, multi-subunit, pigment–protein complexes that enable photosynthesis, but this intriguing process remains to be explained fully. Currently, crystal structures of these complexes are available for thermophilic prokaryotic cyanobacteria. The mega-Dalton trimeric PSI complex from thermophilic cyanobacterium, Thermosynechococcus elongatus, was solved at 2.5?Å resolution with X-ray crystallography. That structure revealed the positions of 12 protein subunits (PsaA-F, PsaI-M, and PsaX) and 127 cofactors.Although mesophilic organisms perform most of the world's photosynthesis, no well-resolved trimeric structure of a mesophilic organism exists. Our research model for a mesophilic cyanobacterium was Synechocystis sp. PCC6803. This study aimed to obtain well-resolved crystal structures of [1] a monomeric PSI with all subunits, [2] a trimeric PSI with a reduced number of subunits, and [3] the full, trimeric wild-type PSI complex. We only partially succeeded with the first two structures, but we successfully produced the trimeric PSI structure at 2.5?Å resolution. This structure was comparable to that of the thermophilic species, but we provided more detail. The PSI trimeric supercomplex consisted of 33 protein subunits, 72 carotenoids, 285 chlorophyll a molecules, 51 lipids, 9 iron-sulfur clusters, 6 plastoquinones, 6 putative calcium ions, and over 870 water molecules.This study showed that the structure of the PSI in Synechocystis sp. PCC6803 differed from previously described PSI structures. These findings have broadened our understanding of PSI structure.  相似文献   

13.
Cold-adapted Pseudomonas aeruginosa LipC is a secreted lipase showing differential properties compared to its well-known counterpart LipA. LipC is fundamentally a cold-acting lipase, capable of tolerating high concentrations of ions and heavy metals, and showing a shift in substrate specificity when incubated at higher temperatures. These properties make LipC an interesting enzyme, well suited for biotechnological or environmental applications, where activity at low temperatures would be required. However, a relatively low thermal resistance constitutes the main drawback for using this enzyme in long-term operational processes. To overcome the lability of LipC, we developed a rational design system to modify specific sites on the enzyme structure to obtain an improved variant of the lipase bearing higher thermal stability, but without loss of its cold-adapted properties. Eight mutant libraries plus two point mutations were constructed affecting those amino acids showing the highest flexibility on the 3D model structure. After screening more than 3000 mutant clones, a LipC variant bearing two amino acid changes and the required thermostability and cold-adapted properties was obtained. The new variant D2_H8, with a 7-fold increased thermal stability in comparison to wild type LipC, will guarantee the use and maintenance of such a lipase in a number of processes being performed at low (4–20 °C) temperatures.  相似文献   

14.
Psychrophiles are organisms that thrive in cold environments. One of the strategies for their cold adaptation is the ability to synthesize cold-adapted enzymes. These enzymes usually display higher catalytic efficiency and thermolability at lower temperatures compared to their mesophilic and thermophilic counterparts. In this work, a psychrophilic bacterial isolate codenamed π9 was selected for the cloning of the gene encoding triose phosphate isomerase (TIM), an enzyme in the glycolytic pathway. Based on 16S rRNA gene sequence analysis, this isolate was identified as a species of the genus Pseudomonas under the P. fluorescens group. The cloning of a 816 bp fragment of TIM gene which covers the 756 bp open reading frame was achieved by a combination of degenerate and splinkerette PCRs. The partial sequence of this gene was first PCR amplified by using degenerate primers and the flanking sequences were subsequently amplified by splinkerette PCR technique. Amino acid sequence of the cloned TIM was 97% identical to TIM from Pseudomonas fluorescens and shared 51% identity with the TIM from psychrophilic Vibrio sp. This work demonstrated the use of multiple PCR techniques to clone a gene without prior knowledge of its sequence. The cloning of the TIM gene by PCR was more rapid and cost effective compared to the traditional genomic library construction and screening method. Homology model of the TIM protein in this study was generated based on Escherichia coli TIM crystal structure. The model could serve as a hypothetical TIM structure from a psychrophilic microorganism for further investigation into areas that showed deviations from the known mesophilic TIM structures.  相似文献   

15.
Diverse biochemical and physiological adaptations enable different species of ectotherms to survive and reproduce in very different temperature regimes, but whether these adaptations fully compensate for the thermodynamically depressing effects of low temperature on rates of biological processes is debated. If such adaptations are fully compensatory, then temperature-dependent processes (e.g., digestion rate, population growth rate) of cold-adapted species will match those of warm-adapted species when each is measured at its own optimal temperature. Here we show that cold-adapted insect species have much lower maximum rates of population growth than do warm-adapted species, even when we control for phylogenetic relatedness. This pattern also holds when we use a structural-equation model to analyze alternative hypotheses that might otherwise explain this correlation. Thus, although physiological adaptations enable some insects to survive and reproduce at low temperatures, these adaptations do not overcome the "tyranny" of thermodynamics, at least for rates of population increase. Indeed, the sensitivity of population growth rates of insects to temperature is even greater than predicted by a recent thermodynamic model. Our findings suggest that adaptation to temperature inevitably alters the population dynamics of insects. This result has broad evolutionary and ecological consequences.  相似文献   

16.
Many analyses published in the last decade suggest that enzymes isolated from cold-adapted organisms are characterized by a higher flexibility of their molecular structure. Recently, it has been argued that all cold-adapted enzymes with catalytic efficiency greater than that of their mesophilic counterparts display local flexibility or rigidity that are likely to cooperate, each acting on specific areas of the enzyme structure. Here we report an analysis of the normalized thermal B-factor distributions in psychrophilic proteins compared with those of their mesophilic and thermophilic counterparts with the aim to detect statistically significant local variations of relative backbone flexibility possibly linked to cold adaptation. We utilized a strategy based mainly on intra-family comparison of local distribution of normalized B-factors. After careful statistical treatment of data, the picture emerging from our results suggests that the distribution of the flexibility in psychrophilic enzymes is locally more heterogeneous than in their respective mesophilic homologues.  相似文献   

17.
The crystal structure of the light-harvesting phycobiliprotein, c-phycocyanin from the thermophilic cyanobacterium Synechochoccus vulcanus has been determined by molecular replacement to 2.5 A resolution. The crystal belongs to space group R32 with cell parameters a=b=188.43 A, c=61.28 A, alpha=beta=90 degrees, gamma=120 degrees, with one (alphabeta) monomer in the asymmetric unit. The structure has been refined to a crystallographic R factor of 20.2 % (R-free factor is 24.4 %), for all data to 2.5 A. The crystals were grown from phycocyanin (alphabeta)(3) trimers that form (alphabeta)(6) hexamers in the crystals, in a fashion similar to other phycocyanins. Comparison of the primary, tertiary and quaternary structures of the S. vulcanus phycocyanin structure with phycocyanins from both the mesophilic Fremyella diplsiphon and the thermophilic Mastigocladus laminosus were performed. We show that each level of assembly of oligomeric phycocyanin, which leads to the formation of the phycobilisome structure, can be stabilized in thermophilic organisms by amino acid residue substitutions. Each substitution can form additional ionic interactions at critical positions of each association interface. In addition, a significant shift in the position of ring D of the B155 phycocyanobilin cofactor in the S. vulcanus phycocyanin, enables the formation of important polar interactions at both the (alphabeta) monomer and (alphabeta)(6) hexamer association interfaces.  相似文献   

18.
Antarctica is the coldest, windiest, and driest continent on Earth. In this sense, microorganisms that inhabit Antarctica environments have to be adapted to harsh conditions. Fungal strains affiliated with Ascomycota and Basidiomycota phyla have been recovered from terrestrial and marine Antarctic samples. They have been used for the bioprospecting of molecules, such as enzymes. Many reports have shown that these microorganisms produce cold-adapted enzymes at low or mild temperatures, including hydrolases (e.g. α-amylase, cellulase, chitinase, glucosidase, invertase, lipase, pectinase, phytase, protease, subtilase, tannase, and xylanase) and oxidoreductases (laccase and superoxide dismutase). Most of these enzymes are extracellular and their production in the laboratory has been carried out mainly under submerged culture conditions. Several studies showed that the cold-adapted enzymes exhibit a wide range in optimal pH (1.0–9.0) and temperature (10.0–70.0?°C). A myriad of methods have been applied for cold-adapted enzyme purification, resulting in purification factors and yields ranging from 1.70 to 1568.00-fold and 0.60 to 86.20%, respectively. Additionally, some fungal cold-adapted enzymes have been cloned and expressed in host organisms. Considering the enzyme-producing ability of microorganisms and the properties of cold-adapted enzymes, fungi recovered from Antarctic environments could be a prolific genetic resource for biotechnological processes (industrial and environmental) carried out at low or mild temperatures.  相似文献   

19.
Aspergillus niger lipase (ANL) is an important biocatalyst in the food processing industry. However, there is no report of its detailed three‐dimensional structure because of difficulties in crystallization. In this article, based on experimental data and bioinformational analysis results, the structural features of ANL were simulated. Firstly, two recombinant ANLs expressed in Pichia pastoris were purified to homogeneity and their corresponding secondary structure compositions were determined by circular dichroism spectra. Secondly, the primary structure, the secondary structure and the three‐dimensional structure of ANL were modeled by comparison with homologous lipases with known three‐dimensional structures using the BioEdit software, lipase engineering database ( http://www.led.uni‐stuttgart.de/ ), PSIPRED server and SwissModel server. The predicted molecular structure of ANL presented typical features of the α/β hydrolase fold including positioning of the putative catalytic triad residues and the GXSXG signature motif. Comparison of the predicted three‐dimensional structure of ANL with the X‐ray three‐dimensional structure of A. niger feruloyl esterase showed that the functional difference of interfacial activation between lipase and esterase was concerned with the difference in position of the lid. Our three‐dimensional model of ANL helps to modify lipase structure by protein engineering, which will further expand the scope of application of ANL. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

20.
The lipase from Malassezia globosa (SMG1) was identified to be strictly specific for mono- and diacylglycerol but not triacylglycerol. The crystal structures of SMG1 were solved in the closed conformation, but they failed to provide direct evidence of factors responsible for this unique selectivity. To address this problem, we constructed a structure in the open, active conformation and modeled a diacylglycerol analogue into the active site. Molecular dynamics simulations were performed on this enzyme-analogue complex to relax steric clashes. This bound diacylglycerol analogue unambiguously identified the position of two pockets which accommodated two alkyl chains of substrate. The structure of SMG1-analogue complex revealed that Leu103 and Phe278 divided the catalytic pocket into two separated moieties, an exposed groove and a narrow tunnel. Analysis of the binding model suggested that the unique selectivity of this lipase mainly resulted from the shape and size of this narrow tunnel, in which there was no space for the settlement of the third chain of triacylglycerol. These results expand our understanding on the mechanism underlying substrate selectivity of enzyme, and could pave the way for site-directed mutagenesis experiments to improve the enzyme for application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号