首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mercury removal-recovery system was developed for collection of elemental mercury volatilized by biological mercuric ion reduction. Using the mercury removal-recovery system, removal of mercuric chloride from mercury-containing buffer without nutrients by resting cells of mercury-resistant bacterium, Pseudomonas putida PpY101/pSR134 was tested. Optimum temperature, pH, thiol compounds and cell concentration on removal of mercuric chloride were determined, and 92 to 98% of 40 mg Hg l–1 was recovered in 24 h. The efficiency of mercuric chloride removal from river water and seawater was as high as that observed when using a buffered solution.  相似文献   

2.
Histidin has been shown to effectively inhibit coagulation of horse oxyhemoglobin (HbO(2)) modified by mercury(II) ion bound to reactive thiol groups of protein. Kinetic parameters were measured and the histidin-to-mercury binding constant was kinetically estimated. Histidin, as other pharmaceutically acceptable compounds with some mercury-binding capacity, has been suggested to alleviate mercury intoxication conditions.  相似文献   

3.
Uptake of metallic mercury (Hg degrees) and mercuric ion (Hg2+) by erythrocytes was studied by incubating erythrocytes with various concentrations of radioactive metallic mercury and mercuric ion in phosphate-buffered saline (pH 6.8) or plasma at 25 degrees C for 30 min. Radioactivity taken up in the cytosol (endsome) and stroma were determined with a gamma scintillation counter. The radioactivity ratio of the mercury recovered in the cytosol fraction to metallic mercury incubated in the saline was significantly higher than the ratio of that to mercuric ion. Similar findings were observed in erythrocytes incubated with metallic mercury and mercuric ion in plasma, although the recovered radioactivity of mercury in the cytosol of erythrocytes incubated with metallic mercury or mercuric ion in plasma was less than that incubated in phosphate-buffered saline. Thus, erythrocytes incubated with metallic mercury took up a larger amount of mercury than those incubated with mercuric ion. Discussion is made on these findings.  相似文献   

4.
Bacterial removal of mercury from sewage   总被引:2,自引:0,他引:2  
Mercury-resistant bacteria, which are able to reduce mercuric ion (Hg(2+)) to metallic mercury (Hg(0)), were examined for their ability to remove mercury from waste-water aerobically. Growth studies in artificial medium indicated that mercury increases the lag phase, but does not effect the growth rate of these bacteria. Further studies demonstrated that growth was minimal during a phase of rapid mercury removal, after which growth resumed. Small but significant amounts of carbohydrates are required for the mercuric ion reduction. Prolonged periods of bacterial growth under nonsterile conditions was accomplished without the loss of the mercuric reducing ability of the culture. A continuous culture of the resistant organism was maintained on raw sewage for two weeks, during which time relatively high concentrations of mercury (70 mg/L) were removed from the sewage at a rate of 2.5 mg/L h and at efficiencies exceeding 98%.  相似文献   

5.
Cell-free mercury volatilization activity (mercuric reductase) was obtained from a mercury-volatilizing Thiobacillus ferrooxidans strain, and the properties of intact-cell and cell-free activities were compared with those determined by plasmid R100 in Escherichia coli. Intact cells of T. ferrooxidans volatilized mercury at pH 2.5, whereas cells of E. coli did not. Cell-free enzyme preparations from both bacteria functioned best at or above neutral pH and not at all at pH 2.5. The T. ferrooxidans mercuric reductase was a soluble enzyme that was dependent upon added NAD(P)H. The enzyme activity was stable at 80 degrees C, required an added thiol compound, and was stimulated by EDTA. Antisera against purified mercuric reductases from transposon Tn501 and plasmid R831 (which inactivated mercuric reductases from a wide range of enteric and pseudomonad strains) did not inactivate the enzyme from T. ferrooxidans.  相似文献   

6.
Plasmid-encoded mercuric reductase in Mycobacterium scrofulaceum.   总被引:12,自引:1,他引:11       下载免费PDF全文
A Chesapeake Bay water isolate of Mycobacterium scrofulaceum containing a 115-megadalton plasmid (pVT1) grew in the presence of 100 microM HgCl2 and converted soluble 203Hg2+ to volatile mercury at a rate of 50 pmol/10(8) cells per min. Cell extracts contained a soluble mercuric reductase whose activity was not dependent on exogenously supplied thiol compounds. The enzyme displayed nearly identical activity when either NADH or NADPH served as the electron donor. A spontaneously cured derivative lacking pVT1 failed to grow in the presence of 100 microM HgCl2 and possessed no detectable mercuric reductase activity.  相似文献   

7.
1. A method is described for the estimation of thiol ester groups. The thiol ester is converted into the corresponding thiol by reaction with ammonia; the thiol is then titrated amperometrically with mercuric chloride. 2. The method may be used in the presence of SH and S.S groups. The SH groups are titrated at pH3 in the presence of excess of chloride; under these conditions thiol esters do not react with mercuric chloride. Thiol ester plus thiol is then estimated by titration after reaction with ammonia. Finally, titration after reaction with ammonia and sulphite gives the thiol ester plus thiol plus disulphide. 3. The procedure has been applied to glyceraldehyde phosphate dehydrogenase. The enzyme was found to contain 15-16 SH groups/mol. and no S.S groups. After reaction with acetyl phosphate 1.8-3.5 thiol ester groups were detected, the number depending on the conditions of acetylation. In the absence of bound NAD, the number of thiol ester groups formed was 1.8/mol., although a value of 2.9 labile acetyl groups/mol. was given by the method of Lipmann & Tuttle (1945). The presence of thiol ester groups in the S-(d-3-phosphoglyceryl)-enzyme was also demonstrated.  相似文献   

8.
1. Addition of 2 moles of mersalyl, mercuric chloride, p-chloromercuribenzoate (PCMB), or methyl mercury hydroxide per mole of hemoglobin greatly reduces heme-heme interactions (n), yet these substances have quite different effects on the oxygen affinity (-log p50). Mersalyl and mercuric chloride at this concentration each increase the oxygen affinity, while PCMB and methyl mercury have little or no effect on the oxygen affinity. These effects are primarily associated with the binding of —SH groups, and are largely reversed on the addition of glutathione. —SH groups do not appear to be responsible for the Bohr effect. 2. Evidence is presented for the belief that the two hemes of each half-molecule of horse hemoglobin are situated on either side of a cluster of—SH groups. 3. The mechanism of interaction between the hemes is discussed. It is concluded that the reorganization of the protein architecture which accompanies oxygenation plays a central role in this interaction, in agreement with the views of Pauling and Wyman.  相似文献   

9.
The present study was focused on the influence of mercury on the rat liver and kidney glucocorticoid receptor (GR) binding properties. The time-course and dose-dependence of mercury effects, as well as possible involvement of thiol groups were examined after in vivo and in vitro administration of the metal in the form of HgCl2. Mercury led to reduction of the liver and kidney GR hormone binding capacity. In both examined tissues maximal reduction was noticed 4 h after administration of the metal at 2 and 3 mg Hg/kg bw, but the effect was more prominent in kidney as compared to liver. On the other hand, binding affinity in the two tissues was similar. The complete reversal of mercury effects on GR binding capacity by 10 mmol/L DTT was achieved in liver and partially in kidney. The reversal by DTT suggested that mercury caused the decrease of GR binding activity by interacting with thiol groups. The difference in the response of the two tissues reflected the fact that kidney contained a higher mercury concentration and a lower thiol content in comparison to liver. The implicated thiols probably belong to GR, since when applied in vitro at 0 degrees C, mercury produced reduction of the receptor binding activity similar to that observed in vivo. GR protein level examined by quantitative Western blot was either unchanged, when determined by polyclonal antibody, or reduced, when determined by BuGR2 antibody, suggesting that Hg might affect BuGR epitope availability.  相似文献   

10.
An immunoassay that detects mercuric ions in water at concentrations of 0.5 ppb and above is described. The assay utilizes a monoclonal antibody that binds specifically to mercuric ions immobilized in wells of microtiter plates. Within the range of 0.5-10 ppb mercury, the absorbance in the enzyme-linked immunosorbent assay (ELISA) is linear to the log of the mercuric ion concentration. The quantitation of mercury by ELISA correlates closely with results from cold-vapor atomic absorption. Other divalent metal cations do not interfere with the assay, although there is interference in the presence of 1 mM chloride ions. The optimum pH for mercury detection is 7.0, although 2 ppb mercury can be detected over a wide pH range. The assay is as sensitive as cold-vapor atomic absorption for mercury detection and can be performed with only 100 microliters of sample.  相似文献   

11.
The present study was designed to investigate the effect of mercuric chloride administration on copper, zinc, and iron concentrations in the liver, kidney, lung, heart, spleen, and muscle of rats. The results showed that after dose and time exposure to mercuric chloride, the concentration of mercury in the six tissues was significantly elevated. Data showed that there were no interaction between mercury and tissue iron. There was a considerable elevation of the content of copper in the kidney and liver. The most significant changes in the copper concentration took place in the kidneys. About a twofold increase in the copper content of the kidney was noted after exposure to mercuric chloride (3 mg and 5 mg/kg). Only slight elevations in the copper content occurred in the liver, especially in high dose and longer exposure time. In the remaining organs, the copper content was not changed significantly (p>0.05). The most significant changes in the zinc concentration took place in liver, kidney, lung, and heart (5 mg/kg). Marked changes in kidney zinc concentrations were observed at any of the specified doses. Zinc concentrations were significantly increased in kidney of rats sacrificed 9–48 h after sc injection of HgCl2 (5 mg/kg); in liver obtained from rats at 18, 24, or 48 h after injection; and in lung after 24 or 48 h of treatment. The heart and spleen zinc concentrations were elevated at 24 and 48 h after injection of HgCl2 (5 mg/kg), respectively. The results of this study implicate that effects on copper and zinc concentrations of the target tissues of mercury may play an important role in the pathogenesis of acute mercuric chloride intoxication.  相似文献   

12.
Influences of biliary ligation and systemic depletion of glutathione (GSH) or modulation of GSH status on the disposition of a low, non-nephrotoxic i.v. dose of inorganic mercury were evaluated in rats in the present study. Renal and hepatic disposition, and the urinary and fecal excretion, of inorganic mercury were assessed 24 h after the injection of a 0.5-micromol/kg dose of mercuric chloride in control rats and rats pretreated with acivicin (two 10-mg/kg i.p. doses in 2 ml/kg normal saline, 90 min apart, 60 min before mercuric chloride), buthionine sulfoximine (BSO; 2 mmol/kg i.v. in 4 ml/kg normal saline, 2 h before mercuric chloride) or diethylmaleate (DEM; 3.37 mmol/kg i.p. in 2 ml/kg corn oil, 2 h before mercuric chloride) that either underwent or did not undergo acute biliary ligation prior to the injection of mercury. Among the groups that did not undergo biliary ligation, the pretreatments used to alter GSH status systemically had varying effects on the disposition of inorganic mercury in the kidneys, liver, and blood. Biliary ligation caused the net renal accumulation of mercury to decrease under all pretreatment conditions. By contrast, biliary ligation caused significant increases in the hepatic burden of mercury in all pretreatment groups except in theacivicin-pretreated group. Blood levels of mercury also increased as a result of biliary ligation, regardless of the type of pretreatment used. The present findings indicate that biliary ligation combined with methods used to modulate GSH status systemically have additive effects with respect to causing reductions in the net renal accumulation of mercury. Additionally, the findings indicate that at least some fraction of the renal accumulation of inorganic mercury is linked mechanistically to the hepato-biliary system.  相似文献   

13.
Y. J. Shieh  J. Barber 《Planta》1973,109(1):49-60
Summary Addition of mercuric chloride at concentrations which resulted in an overall binding level of about 8 mmoles Hg/l packed cells and above caused a breakdown in the permeability of the cell membrane as indicated by a net efflux of internal K+. Below this level in region of 2 mmoles Hg/l packed cells the rate of K+ transfer across the cell surface was stimulated without affecting the internal K+ level. Maintainence of the stimulation was dependent both on time and dose. Enhancement of the rate of K+ turnover was associated with a fast component of the inorganic mercury uptake which could be removed by washing with cysteine. The mercury stimulated K+/K+ exchange was inhibited by low temperature, by the uncoupler CCCP and the energy transfer inhibitor DCCD. Overall binding concentrations of inorganic mercury below 0.5 mmoles/l packed cells had no effect on the K+ transport system. In contrast to mercuric chloride, methyl mercuric chloride over similar concentration ranges did not seem to induce a breakdown in the permeability barrier or directly interact with the K+/K+ exchange but more likely influenced the latter by inhibiting intracellular processes.  相似文献   

14.
Efficacy of thiol chelators viz. N-acetyl cysteine and D-penicillamine (NAC and DPA) along with nutritional supplements viz. zinc acetate, sodium selenite and magnesium sulphate (Zn, Se and Mg) in the treatment of mercury intoxication was investigated in rats. This is of particular interest since high bonding affinity between mercuric ion and the thiol group exits. The mutual antagonism of mercury and selenium is one of the strongest examples of the interaction in the trace element field. Adult rats of Sprague-Dawley strain were administered a bolus dose of dimethyl mercury (10 mg/kg) orally. A significant rise in the aspartate aminotransferase, alanine aminotransferase, serum alkaline phosphatase, lactate dehydrogenase, gamma glutamyltranspeptidase, bilirubin and creatinine were observed. Single mercury exposure also resulted in a significant increase in lipid peroxides with a concomitant decrease in reduced glutathione level in liver, kidney and brain. A decrease in the enzymatic activities of acetyl cholinesterase in different regions of the brain was observed. These parameters were restored considerably with chelating agents along with nutritional supplementation, but NAC+Se and DPA+Mg offered significant protection in comparison with other combinations.  相似文献   

15.
Uptake and cellular distribution of mercury203 from dilute mercuric acetate or phenylmercuric acetate solutions by excised pea roots (Pisum sativum) have been investigated. The time course of uptake showed that the amount of mercury uptake was increased with the time of incubation, and was similar for inorganic mercury or phenylmercuric acetate. The trend of mercury203 incorporation into cellular components from mercuric acetate and phenylmercuric acetate differed greatly as the time of incubation increased. The concentrations of mercuric acetate and phenylmercuric acetate solutions or the temperature of incubation also affected the mercury203 uptake as well as its cellular distribution. Longer time of exposure or higher concentration resulted in a greater mercury incorporation into mitochondrial fraction from phenylmercuric acetate than from inorganic mercury. This difference in intracellular distribution may be responsible for the degree of toxicity between inorganic mercury and phenylmercuric acetate in biological systems.  相似文献   

16.
Levels of mercury distribution in placenta, amniotic sac and foetus and those in brain and liver of maternal acatasaemic mice were higher than those of normal, respectively. The levels of mercury distribution in the blood and lungs of maternal acatalasaemic mice exposed to metallic mercury vapor were also lower than those of normal. Mercury concentrations in placenta and foetus of acatalasaemic mice following exposure to metallic mercury vapor were higher than those of normal. Maternal acatalasaemic mice had decreased levels of mercury in the blood than those of normal mice. Thus, the placenta/blood or foetus/blood ratio of mercury concentration in acatalasaemic mice was significantly higher than that in normal mice. Similarly the brain/blood or liver/blood ratio of maternal acatalasaemic mice was higher than that of normal mice. These results suggest that metallic mercury in the blood readily passed through the blood-brain, blood-foetus barriers. In contrast to the results on exposures of mice to metallic mercury, the foetus/maternal blood ratio of mercuric concentration in the acatalasaemic mice following injection of mercuric chloride was similar to that in the normal mice. Moreover, the foetus/maternal blood ratio of mercury concentration in acatalasaemic or normal mice injected with mercuric chloride was lower than those in acatalasaemic or normal mice exposed to metallic mercury.  相似文献   

17.
Three mercury-resistant marine Caulobacter strains showed an inducible mercury volatilization activity. Cell-free mercury volatilization (mercuric reductase) from these three marine Caulobacter strains was characterized and compared with enzyme activities determined by plasmids of Escherichia coli and Staphylococcus aureus. The temperature sensitivity of the Caulobacter mercuric reductase was greater than that of mercuric reductase from other gram-negative sources. Cell-free enzyme activity required NADH or NADPH, with NADPH functioning much better at lower concentrations than NADH. The Km for the Caulobacter enzyme was 4 microM Hg2+. Ag+ was a competitive inhibitor of Caulobacter mercuric reductase (Ki = 0.2 microM Ag+), as with previously studied enzymes. Arsenite was a noncompetitive inhibitor of the Caulobacter enzyme with a Ki of 75 microM AsO2-.  相似文献   

18.
Three mercury-resistant marine Caulobacter strains showed an inducible mercury volatilization activity. Cell-free mercury volatilization (mercuric reductase) from these three marine Caulobacter strains was characterized and compared with enzyme activities determined by plasmids of Escherichia coli and Staphylococcus aureus. The temperature sensitivity of the Caulobacter mercuric reductase was greater than that of mercuric reductase from other gram-negative sources. Cell-free enzyme activity required NADH or NADPH, with NADPH functioning much better at lower concentrations than NADH. The Km for the Caulobacter enzyme was 4 microM Hg2+. Ag+ was a competitive inhibitor of Caulobacter mercuric reductase (Ki = 0.2 microM Ag+), as with previously studied enzymes. Arsenite was a noncompetitive inhibitor of the Caulobacter enzyme with a Ki of 75 microM AsO2-.  相似文献   

19.
Overexpression of a mercuric ion binding protein, MerP, from the mercury resistance operon genes of Gram-positive bacterial strain Bacillus megaterium MB1 and from Gram-negative bacterial strain Pseudomonas aeruginosa K-62 was found to enhance the mercury resistance level of Escherichia coli host cells, even though they share only 27.3% identity. Immunoblot analysis showed that MerP (BMerP) from Bacillus could be expressed on the membrane fraction of E. coli cells. Treated with 10 microM Hg2+, a recombinant strain harboring the BMerP gene significantly improved, showing a 27% increase in mercuric ion adsorption capacity, 16% better than that of a Pseudomonas merP gene (PMerP)-harboring strain. While multiple heavy metals co-existed, the mercuric ion adsorption capacity of the BMerP-harboring E. coli was not affected while that of the PMerP-harboring strain decreased. These results suggest that BMerP can act as a bio-adsorbent compartmentalizing the toxic mercuric ion on the cell membrane and enhancing resistance.  相似文献   

20.
Characteristics of a somatostatin-binding protein   总被引:1,自引:0,他引:1  
The concentrations of a somatostatin-binding protein, found in the cytosol of a number of rat tissues, are similar in both sexes, and hypophysectomy has little or no effect on the level of binding protein in tissue extracts. On the other hand, streptozotocin-induced diabetes mellitus causes a modest decrease. The somatostatin-binding proteins obtained from extracts of several rat tissues are not only similar in molecular weight but also exhibit a similar isoelectric point and electrophoretic mobility. Agents that block thiol groups or prevent the formation of disulfide bridges markedly decrease the binding of somatostatin to the cytoplasmic protein. Studies using thiol reagents and gel filtration suggest that free thiol groups in somatostatin-binding protein are important for the binding of somatostatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号