首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Two structurally related subtypes of oestrogen receptor (ER), known as alpha (ER alpha, NR3A1) and beta (ER beta, NR3A2) have been identified. ER beta mRNA and protein have been detected in a wide range of tissues including the vasculature, bone, and gonads in both males and females, as well as in cancers of the breast and prostate. In many tissues the pattern of expression of ER beta is distinct from that of ER alpha. A number of variant isoforms of the wild type beta receptor (ER beta 1), have been identified. In the human these include: (1). use of alternative start sites within the mRNA leading to translation of either a long (530 amino acids, hER beta 1L) or a truncated form (487aa hER beta 1s); (2). deletion of exons by alternative splicing; (3). formation of several isoforms (ER beta 2-beta 5) due to alternative splicing of exons encoding the carboxy terminus (F domain). We have raised monoclonal antibodies specific for hER beta1 as well as to three of the C terminal isoforms (beta2, beta 4 and beta 5). Using these antibodies we have found that ER beta 2, beta 4 and beta 5 proteins are expressed in nuclei of human tissues including the ovary, placenta, testis and vas deferens.In conclusion, in addition to the differential expression of full length ER alpha and ER beta a number of ER variant isoforms have been identified. The impact of the expression of these isoforms on cell responsiveness to oestrogens may add additional complexity to the ways in which oestrogenic ligands influence cell function.  相似文献   

4.
5.
6.
In adult mammals, estrogen regulates ovarian function, and estrogen receptor (ER) is expressed in granulosa cells of antral follicles of the adult baboon ovary. Because the foundation of adult ovarian function is established in utero, the present study determined whether ERalpha and/or ERbeta were expressed in fetal ovaries obtained on Days 100 (n = 3) and 165-181 (n = 5) of baboon gestation (term = Day 184). On Day 100, ERalpha protein was detected by immunocytochemistry in surface epithelium and mesenchymal-epithelial cells but not oocytes in germ cell cords. ERbeta protein was also detected by immunocytochemistry on Day 100 of gestation and was abundantly expressed in mesenchymal-epithelial cells in germ cell cords, lightly expressed in the germ cells, but was not detected in the surface epithelium. On Days 165-180 of gestation, ERalpha expression was still intense in the surface epithelium, in mesenchymal-epithelial cells throughout the cortex, and in nests of cells between follicles. ERalpha expression was lighter in granulosa cells and was not observed in all granulosa cells, particularly in follicles close to the cortex. In contrast, ERbeta expression was most intense in granulosa cells, especially in flattened granulosa cells, was weaker in mesenchymal-epithelial cells and nests of cells between follicles, and was absent in the surface epithelium. Using an antibody to the carboxy terminal of human ERbeta, ERbeta protein was also detected by Western immunoblot with molecular sizes of 55 and 63 kDa on Day 100 and primarily 55 kDa on Day 180. The mRNAs for ERalpha and ERbeta were also detected by Northern blot analysis in the baboon fetal ovary. These results are the first to establish that the ERalpha and ERbeta mRNAs and proteins are expressed and exhibit changes in localization in the primate fetal ovary between mid and late gestation. Because placental estrogen production and secretion into the baboon fetus increases markedly during advancing pregnancy, we propose that estrogen plays an integral role in programming fetal ovarian development in the primate.  相似文献   

7.
We used immunohistochemistry to compare the expression of estrogen receptors (ERalpha and ERbeta) in term myometria of 32 pregnant women divided in two groups. Group I comprised of 16 women in labour and group II included 16 non-laboring gravidas. We observed cytoplasmatic localization of both ER isoforms and no differences in the ER expression between the two groups of patients. The abundance and specific localization of ERs in human term myometrium seems to be independent of its contractile activity which may point to the specific role of those receptors in late pregnancy myometrium.  相似文献   

8.
9.
10.
To investigate the relationships between the loci expressing functions of estrogen receptor (ER)alpha and that of ERbeta, we analyzed the subnuclear distribution of ERalpha and ERbeta in response to ligand in single living cells using fusion proteins labeled with different spectral variants of green fluorescent protein. Upon activation with ligand treatment, fluorescent protein-tagged (FP)-ERbeta redistributed from a diffuse to discrete pattern within the nucleus, showing a similar time course as FP-ERalpha, and colocalized with FP-ERalpha in the same discrete cluster. Analysis using deletion mutants of ERalpha suggested that the ligand-dependent redistribution of ERalpha might occur through a large part of the receptor including at least the latter part of activation function (AF)-1, the DNA binding domain, nuclear matrix binding domain, and AF-2/ligand binding domain. In addition, a single AF-1 region within ERalpha homodimer, or a single DNA binding domain as well as AF-1 region within the ERalpha/ERbeta heterodimer, could be sufficient for the cluster formation. More than half of the discrete clusters of FP-ERalpha and FP-ERbeta were colocalized with hyperacetylated histone H4 and a component of the chromatin remodeling complex, Brg-1, indicating that ERs clusters might be involved in structural changes of chromatin.  相似文献   

11.
12.
13.
14.
The functions of estrogen receptors (ERs) in mouse ovary and genital tracts were investigated by generating null mutants for ERalpha (ERalphaKO), ERbeta (ERbetaKO) and both ERs (ERalphabetaKO). All ERalphaKO females are sterile, whereas ERbetaKO females are either infertile or exhibit variable degrees of subfertility. Mast cells present in adult ERalphaKO and ERalphabetaKO ovaries could participate in the generation of hemorrhagic cysts. Folliculogenesis proceeds normally up to the large antral stage in both ERalphaKO and ERbetaKO adults, whereas large antral follicles of ERalpha+/-ERbetaKO and ERalphabetaKO adults are markedly deficient in granulosa cells. Similarly, prematurely developed follicles found in prepubertal ERalphaKO ovaries appear normal, but their ERalphabetaKO counterparts display only few granulosa cell layers. Upon superovulation treatment, all prepubertal ERalphaKO females form numerous preovulatory follicles of which the vast majority do not ovulate. The same treatment fails to elicit the formation of preovulatory follicles in half of the ERbetaKO mice and in all ERalpha+/-/ERbetaKO mice. These and other results reveal a functional redundancy between ERalpha and ERbeta for ovarian folliculogenesis, and strongly suggest that (1) ERbeta plays an important role in mediating the stimulatory effects of estrogens on granulosa cell proliferation, (2) ERalpha is not required for follicle growth under wild type conditions, while it is indispensable for ovulation, and (3) ERalpha is also necessary for interstitial glandular cell development. Our data also indicate that ERbeta exerts some function in ERalphaKO uterus and vagina. ERalphabetaKO granulosa cells localized within degenerating follicles transform into cells displaying junctions that are unique to testicular Sertoli cells. From the distribution pattern of anti-Müllerian hormone (AMH) in ERalphabetaKO ovaries, it is unlikely that an elevated AMH level is the cause of Sertoli cell differentiation. Our results also show that cell proliferation in the prostate and urinary bladder of old ERbetaKO and ERalphabetaKO males is apparently normal.  相似文献   

15.
The interactions of human estrogen receptor subtypes ERalpha and ERbeta with DNA and a 210 amino acid residue fragment of the coactivator protein SRC-1 bearing three nuclear receptor interaction motifs were investigated quantitatively using fluorescence anisotropy in the presence of agonist and antagonist ligands. ERalpha and ERbeta were found to bind in a similar manner to DNA, and both salt and temperature affected the affinity and/or stoichiometry of these interactions. The agonist ligands estradiol, estrone and estriol did not modify the binding of ERalpha to the fluorescein-labeled target estrogen response element. However, in the case of ERbeta, these ligands led to the formation of some higher-order protein-DNA complexes and a small decrease in affinity. The partial agonist 4-hydroxytamoxifen had little effect on either ER subtype, whereas the pure antagonist ICI 182,780 led to the cooperative formation of protein-DNA complexes of higher order than dimer, as further demonstrated by competition experiments and gel mobility-shift assays. In addition to DNA binding, the interaction of both ER subtypes with the Alexa488-labeled SRC-1 coactivator fragment was investigated by fluorescence anisotropy. The agonist ligands estrone, estradiol, estriol, genistein and ethynyl estradiol exhibited distinct capacities for inducing the recruitment of SRC-1 that were not correlated with their affinity for the receptor. Moreover, estrone and genistein exhibited subtype specificity in that they induced SRC-1 recruitment to ERbeta with much higher efficiency than in the case of ERalpha. The differential coactivator recruitment capacities of the ER agonists and their receptor subtype coactivator recruitment specificity may be linked to the molecular structure of the agonists with respect to their interactions with a specific histidine residue located at the back of the ligand-binding pocket. Altogether, these quantitative in vitro studies of ER interactions reveal the complex energetic and stoichiometric consequences of changes in the chemical structures of these proteins and their ligands.  相似文献   

16.
17.
18.
Earlier studies have shown that the efferent ductules (ED) of the male mouse are a target for estrogen. The loss of estrogen receptor (ER) function through either knockout technology (alpha ERKO mouse) or chemical interference (pure antagonist, ICI 182 780) results in a failure of a major function of the ED, the reabsorption of testicular fluids. The purpose of this study was to test the hypothesis that estrogen controls fluid (water) reabsorption in the ED by modulating ion transporters important for passive water movement through a leaky epithelium such as the ED. Northern blot analysis was used to detect the mRNA levels for key ion transporters in the following experimental groups: 1) wild-type (WT) control for the 14-day experiment, 2) ER alpha knockout (alpha ERKO) control for the 14-day experiment, 3) WT treated with ICI 182 780 (ICI) for 14 days, 4) alpha ERKO treated with ICI for 14 days, 5) WT control for the 35-day experiment, and 6) WT treated with ICI for 35 days. Estrogen differentially modulated the mRNA levels of key ion transporters. ER alpha mediated carbonic anhydrase II mRNA abundance, and there was a decrease in Na(+)/H(+) exchanger 3 mRNA levels in the alpha ERKO that appeared to be a cellular effect and not a direct estrogen effect. The loss of ER alpha control resulted in an increase in mRNA abundance for the catalytic subunit of Na(+)-K(+) ATPase alpha 1, whereas an increase in the mRNA abundance of the Cl(-)/HCO(3)(-) exchanger and the chloride channel cystic fibrosis transmembrane regulator was significantly ER beta mediated. Our results indicate for the first time that estrogen acting directly and indirectly through both ER alpha and ER beta probably modulates fluid reabsorption in the adult mouse ED by regulating the expression of ion transporters involved in the movement of Na(+) and Cl(-).  相似文献   

19.
The uterus is an important target organ for steroid hormones. The effects of these hormones are mediated via specific receptors. The aim of this study was to compare the expression, distribution, and regulation of estrogen receptor (ER) alpha and beta in the rat uterus in order to establish possible different biological roles for the two receptor forms. Ovariectomized rats were treated with either estradiol (E(2)), progesterone (P(4)), or combinations of these for 24 or 48 h. The mRNA levels were measured by solution hybridization. Distribution of the mRNAs and receptor proteins was detected by in situ hybridization and immunohistochemistry. The results showed that ERalpha is the dominating subtype in the rat uterus. E(2) seemed to increase the ERalpha mRNA level in the glandular and luminal epithelium, but it caused a decrease of the immunostaining intensity in the glandular epithelium. P(4) reduced ERalpha expression in luminal epithelium whereas no effect was seen in the glandular epithelium. E(2) or P(4) did not alter the expression of ERbeta, on either the mRNA or protein level. In conclusion, the distribution and regulation of ERalpha and ERbeta differ in the different compartments of the rat uterus. The complex uterine responses to E(2) and P(4) are directly or indirectly mediated by differential cell-specific expression of their receptors. The low expression in the uterus and the limited regulation by gonadal steroids in this study suggest that ERbeta probably plays a minor role in the regulation of uterine physiology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号