首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indenestrol A (IA), an oxidative metabolite of the synthetic estrogen diethylstilbestrol (DES), has high binding affinity for estrogen receptor in mouse uterine cytosol but possesses weak biological activity. Racemic mixture of optically active [3H]indenestrol A (IA-Rac) was separated and purified into individual enantiomers on a semi-preparative scale by HPLC with a Chiralpak OP(+) column. The structure-activity relationship was investigated among the [3H]IA enantiomers (IA-R and IA-S) and [3H]DES through direct saturation binding assays using mouse uterine cytosol. Specific binding curves and Scatchard plots were obtained for each [3H]ligand; DES, IA-Rac, IA-R and IA-S. IA-S enantiomer (Kd = 0.67) binds to the estrogen receptor with the same affinity as DES (Kd = 0.71) and four times higher affinity than IA-R (Kd = 2.56). The number of binding sites for IA-S is approximately the same as estradiol, DES and IA-Rac while IA-R binds far fewer sites than the other ligands. Saturation binding assays indicated that [3H]DES and [3H]IA enantiomers exhibited a higher level of non-specific binding to the cytosol receptor compared to estradiol which has a low level of non-specific binding. These binding studies led to the detection of an additional binding component for the stilbestrol compounds in estrogen target tissue cytosol preparations. Sucrose density gradient separation assays under low salt conditions showed that both [3H]DES and [3H]IA compounds bound to the 8S form of the receptor, the same as E2. But, in addition both DES and IA bound to another binding component in 4S region. The binding to the 4S component were partially displaced by the addition of excess unlabeled E2 and DES. Further characterization of the 4S component is described.  相似文献   

2.
Indenestrol A (IA) and indenestrol B (IB) are analogs and metabolites of diethylstilbestrol (DES). These compounds have high binding affinity with the estrogen receptor (ER) but possess weak uterotropic activity. Due to their chemical structures, IA and IB exist as mixtures of enantiomers. We investigated whether the poor biological activity of these compounds was due to differential activity of the enantiomers. We also utilized these compounds as probes to determine the extent of stereochemical sensitivity in the ER ligand binding site. The IA and IB enantiomers were separated to greater than 98% purity using a chiral high pressure liquid chromatography column. Their enantiomeric nature was confirmed by mass spectrometry and NMR. The purified IA enantiomer peak 1 was derivatized with 4-bromobenzoyl chloride. The resulting di(4-bronobenzoate) IA was analyzed by x-ray crystallography and the absolute enantiomeric conformation assigned is C(3)-R. The IA enantiomers designated IA-R and A-S were assayed by competitive binding to cytosolic ER. The competitive binding index was estradiol, 100; DES, 286; IA-Rac (racemic mixture of IA), 143; IA-R, 3; and IA-S, 285; the index showed that ER demonstrates a stereochemical chiral preference. The IB enantiomers did not show a binding preference: IB, 145; IB-1, 100; and IB-2, 143. The differences in the IA enantiomer binding were shown to be due to competitive interactions by Lineweaver-Burk analysis of saturation binding of estradiol to ER in the presence of 1-, 5-, and 10-fold molar excess of competitor. Differences in binding affinity of the enantiomers could be partially explained by differences in the association rate constant (k+1) determined by association rate inhibition studies in which IA-S was 15 times more active than IA-R. Nuclear estrogen receptor levels were measured 1 h after in vivo treatment with doses of 5-20 micrograms/kg. The IA-Rac produced only 60% of the levels is compared with DES. Nuclear ER levels were checked every 30 min up to 2 h with no apparent difference, indicating that the low early levels were not due to a delayed estrogen receptor retention. When the enantiomers were tested individually only a dose of 10 micrograms/kg IA-S translocated ER to a level comparable to DES, while IA-R showed low levels at several doses. These results suggest that the poor biological activity of IA may be related to the differential ER interaction of its enantiomers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
4.
5.
A methanol extract of chaste-tree berry (Vitex agnus-castus L.) was tested for its ability to displace radiolabeled estradiol from the binding site of estrogen receptors alpha (ERalpha) and beta (ERbeta). The extract at 46 +/- 3 microg/ml displaced 50% of estradiol from ERalpha and 64 +/- 4 microg/ml from ERbeta. Treatment of the ER+ hormone-dependent T47D:A18 breast cancer cell line with the extract induced up-regulation of ERbeta mRNA. Progesterone receptor (PR) mRNA was upregulated in the Ishikawa endometrial cancer cell line. However, chaste-tree berry extract did not induce estrogen-dependent alkaline phosphatase (AP) activity in Ishikawa cells. Bioassay-guided isolation, utilizing ER binding as a monitor, resulted in the isolation of linoleic acid as one possible estrogenic component of the extract. The use of pulsed ultrafiltration liquid chromatography-mass spectrometry, which is an affinity-based screening technique, also identified linoleic acid as an ER ligand based on its selective affinity, molecular weight, and retention time. Linoleic acid also stimulated mRNA ERbeta expression in T47D:A18 cells, PR expression in Ishikawa cells, but not AP activity in Ishikawa cells. These data suggest that linoleic acid from the fruits of Vitex agnus-castus can bind to estrogen receptors and induce certain estrogen inducible genes.  相似文献   

6.
7.
8.
Although the two subtypes of the human estrogen receptor (ER), ERalpha and ERbeta, share only 56% amino acid sequence identity in their ligand binding domain (LBD), the residues that surround the ligand are nearly identical; nevertheless, subtype-selective ligands are known. To understand the molecular basis by which diarylpropionitrile (DPN), an ERbeta-selective ligand, is able to discriminate between the two ERs, we examined its activity on ER mutants and chimeric constructs generated by DNA shuffling. The N-terminal region of the ERbeta LBD (through helix 6) appears to be fully responsible for the ERbeta selectivity of DPN. In fact, a single ERalpha point mutation (L384M) was largely sufficient to switch the DPN response of this ER to that of the ERbeta type, but residues in helix 3 are also important in achieving the full ERbeta selectivity of DPN. Using molecular modeling, we found an energetically favorable fit for the S-DPN enantiomer in ERbeta, in which the proximal phenol mimics the A ring of estradiol, and the nitrile engages in stabilizing interactions with residues in the ligand-binding pocket of ERbeta. Our findings highlight that a limited number of critical interactions of DPN with the ERbeta ligand-binding pocket underlie its ER subtype-selective character.  相似文献   

9.
Chlamydial attachment and infectivity in vitro and ascending disease and sequelae in vivo have been reported to be enhanced/modulated by estrogen. Endometrial carcinoma cell lines Ishikawa and HEC-1B and the breast cancer lines MCF-7 and HCC-1806 were examined for Chlamydia trachomatis E infectivity. Estrogen receptor (ER) presence was confirmed by Western blot and qRT-PCR analyses. FACS analysis was used to determine the percent of plasma membrane-localized ERs (mERs), and their activity was tested by estrogen binding and competitive estrogen antagonists assays. Chlamydiae grew in all cell lines with HEC (90%) > MCF-7 (57%)>Ishikawa (51%) > HCC-1806 (20%). The cell line ER isoform composition was re-defined as: ERalpha + ERbeta + for MCF-7, HCC-1806 and Ishikawa; and ERbeta only for HEC-1B. HeLa cells were also tested and found to express ERbeta, but not ERalpha. A small percentage of both ERs were surface-exposed and functionally active. The endometrium-predominant ERbeta isoform was found in all cell lines, including those most representative of the common sites of C. trachomatis infection. Thus, the role of chlamydial attachment/infectivity will now be analyzed in ERbeta+and-isogenic HEC-1B cells.  相似文献   

10.
11.
Calmodulin is a selective modulator of estrogen receptors   总被引:5,自引:0,他引:5  
In the search for differences between ERalpha and ERbeta, we analyzed the interaction of both receptors with calmodulin (CaM) and demonstrated that ERalpha but not ERbeta directly interacts with CaM. Using transiently transfected HeLa cells, we examined the effect of the CaM antagonist N-(6-aminohexyl)-5-chloro-naphthalene sulfonilamide hydrochloride (W7) on the transactivation properties of ERalpha and ERbeta in promoters containing either estrogen response elements or activator protein 1 elements. Transactivation by ERalpha was dose-dependently inhibited by W7, whereas that of ERbeta was not inhibited or even activated at low W7 concentrations. In agreement with these results, transactivation of an estrogen response element containing promoter in MCF-7 cells (which express a high ERalpha/ERbeta ratio) was also inhibited by W7. In contrast, transactivation in T47D cells (which express a low ERalpha/ERbeta ratio) was not affected by this CaM antagonist. The sensitivity of MCF-7 cells to W7 was abolished when cells were transfected with increasing amounts of ERbeta, indicating that the sensitivity to CaM antagonists of estrogen-responsive tissues correlates with a high ERalpha/ERbeta ratio. Finally, substitution of lysine residues 302 and 303 of ERalpha for glycine rendered a mutant ERalpha unable to interact with CaM whose transactivation activity became insensitive to W7. Our results indicate that CaM antagonists are selective modulators of ER able to inhibit ERalpha-mediated activity, whereas ERbeta actions were not affected or even potentiated by W7.  相似文献   

12.
The distinct roles of the two estrogen receptor (ER) isotypes, ERalpha and ERbeta, in mediating the physiological responses to estrogens are not completely understood. Although knockout animal experiments have been aiding to gain insight into estrogen signaling, additional information on the function of ERalpha and ERbeta will be provided by the application of isotype-selective ER agonists. Based on the crystal structure of the ERalpha ligand binding domain and a homology model of the ERbeta-ligand binding domain, we have designed steroidal ligands that exploit the differences in size and flexibility of the two ligand binding cavities. Compounds predicted to bind preferentially to either ERalpha or ERbeta were synthesized and tested in vitro using radio-ligand competition and transactivation assays. This approach directly led to highly ER isotype-selective (approximately 200-fold) and potent ligands. To unravel physiological roles of the two receptors, in vivo experiments with rats were conducted using the ERalpha- and ERbeta-selective agonists in comparison to 17beta-estradiol. The ERalpha agonist induced uterine growth, caused bone-protective effects, reduced LH and FSH plasma levels, and increased angiotensin I, whereas the ERbeta agonist did not at all or only at high doses lead to such effects, despite high plasma levels. It can thus be concluded that estrogen effects on the uterus, pituitary, bone, and liver are primarily mediated via ERalpha. Simultaneous administration of the ERalpha and ERbeta ligand did not lead to an attenuation of ERalpha-mediated effects on the uterus, pituitary, and liver parameters.  相似文献   

13.
The interactions of human estrogen receptor subtypes ERalpha and ERbeta with DNA and a 210 amino acid residue fragment of the coactivator protein SRC-1 bearing three nuclear receptor interaction motifs were investigated quantitatively using fluorescence anisotropy in the presence of agonist and antagonist ligands. ERalpha and ERbeta were found to bind in a similar manner to DNA, and both salt and temperature affected the affinity and/or stoichiometry of these interactions. The agonist ligands estradiol, estrone and estriol did not modify the binding of ERalpha to the fluorescein-labeled target estrogen response element. However, in the case of ERbeta, these ligands led to the formation of some higher-order protein-DNA complexes and a small decrease in affinity. The partial agonist 4-hydroxytamoxifen had little effect on either ER subtype, whereas the pure antagonist ICI 182,780 led to the cooperative formation of protein-DNA complexes of higher order than dimer, as further demonstrated by competition experiments and gel mobility-shift assays. In addition to DNA binding, the interaction of both ER subtypes with the Alexa488-labeled SRC-1 coactivator fragment was investigated by fluorescence anisotropy. The agonist ligands estrone, estradiol, estriol, genistein and ethynyl estradiol exhibited distinct capacities for inducing the recruitment of SRC-1 that were not correlated with their affinity for the receptor. Moreover, estrone and genistein exhibited subtype specificity in that they induced SRC-1 recruitment to ERbeta with much higher efficiency than in the case of ERalpha. The differential coactivator recruitment capacities of the ER agonists and their receptor subtype coactivator recruitment specificity may be linked to the molecular structure of the agonists with respect to their interactions with a specific histidine residue located at the back of the ligand-binding pocket. Altogether, these quantitative in vitro studies of ER interactions reveal the complex energetic and stoichiometric consequences of changes in the chemical structures of these proteins and their ligands.  相似文献   

14.
Deoxybenzoins are plant compounds with similar structure to isoflavones. In this study, we evaluated the ability of two synthesized deoxybenzoins (compound 1 and compound 2) (a) to influence the activity of the estrogen receptor subtypes ERalpha and ERbeta in HeLa cells co-transfected with an estrogen response element-driven luciferase reporter gene and ERalpha- or ERbeta-expression vectors, (b) to modulate the IGFBP-3 and pS2 protein in MCF-7 breast cancer cells, (c) to induce mineralization of KS483 osteoblasts and (d) to affect the cell viability of endometrial (Ishikawa) and breast (MCF-7, MDA-MB-231) cancer cells. Docking and binding energy calculations were performed using the mixed Monte Carlo/Low Mode search method (Macromodel 6.5). Compound 1 displayed significant estrogenic activity via ERbeta but no activity via ERalpha. Compound 2 was an estrogen-agonist via ERalpha and antagonist via ERbeta. Both compounds increased, like the pure antiestrogen ICI182780, the IGFBP-3 levels. Compound 2 induced, like 17beta-estradiol, significant mineralization in osteoblasts. The cell viability of Ishikawa cells was unchanged in the presence of either compound. Compound 1 increased MCF-7 cell viability consistently with an increase in pS2 levels, whereas compound 2 inhibited the cell viability. Molecular modeling confirmed the agonistic or antagonistic behaviour of compound 2 via ER subtypes. Compound 2, being an agonist in osteoblasts, an antagonist in breast cancer cells, with no estrogenic effects in endometrial cancer cells, makes it a potential selective estrogen receptor modulator and a choice for hormone replacement therapy.  相似文献   

15.
16.
A small pool of estrogen receptors (ERalpha and -beta) localize at the plasma membrane and rapidly signal to affect cellular physiology. Although nuclear ERs function mainly as homodimers, it is unknown whether membrane-localized ER exists or functions with similar requirements. We report that the endogenous ER isoforms at the plasma membrane of breast cancer or endothelial cells exist predominantly as homodimers in the presence of 17beta-estradiol (E2). Interestingly, in endothelial cells made from ERalpha /ERbeta homozygous double-knockout mice, membrane ERalpha or ERbeta are absent, indicating that the endogenous membrane receptors derive from the same gene(s) as the nuclear receptors. In ER-negative breast cancer cells or Chinese hamster ovary cells, we expressed and compared wild-type and dimer mutant mouse ERalpha. Only wild-type ERalpha supported the ability of E2 to rapidly activate ERK, cAMP, and phosphatidylinositol 3-kinase signaling. This resulted from E2 activating Gsalpha and Gqalpha at the membrane in cells expressing the wild-type, but not the dimer mutant, ERalpha. Intact, but not dimer mutant, ERalpha also supported E2-induced epidermal growth factor receptor transactivation and cell survival. We also confirmed the requirement of dimerization for membrane ER function using a second, less extensively mutated, human ERalpha. In summary, endogenous membrane ERs exist as dimers, a structural requirement that supports rapid signal transduction and affects cell physiology.  相似文献   

17.
Equol is a metabolite produced in vivo from the soy phytoestrogen daidzein by the action of gut microflora. It is known to be estrogenic, so human exposure to equol could have significant biological effects. Equol is a chiral molecule that can exist as the enantiomers R-equol and S-equol. To study the biological activity of racemic (+/-)-equol, as well as that of its pure enantiomers, we developed an efficient and convenient method to prepare (+/-)-equol from available isoflavanoid precursors. Furthermore, we optimized a method to separate the enantiomers of equol by chiral HPLC, and we studied for the first time, the activities of the enantiomers on the two estrogen receptors, ERalpha and ERbeta. In binding assays, S-equol has a high binding affinity, preferential for ERbeta (K(i)[ERbeta]=16 nM; beta/alpha=13 fold), that is comparable to that of genistein (K(i)[ERbeta]=6.7 nM; beta/alpha=16), whereas R-equol binds more weakly and with a preference for ERalpha (K(i)[ERalpha]=50 nM; beta/alpha=0.29). All equol isomers have higher affinity for both ERs than does the biosynthetic precursor daidzein. The availability and the in vitro characterization of the equol enantiomers should enable their biological effects to be studied in detail.  相似文献   

18.
19.
Natural killer (NK) cells play a crucial role in host defense against pathogens and immune surveillance against cancer. Given that estrogens have been reported to suppress NK cell activity, we sought to elucidate the mechanisms by which estrogen mediates this effect. We demonstrate by immunocytochemical staining with estrogen receptor-alpha (ERalpha)- and estrogen receptor-beta (ERbeta)-specific antibodies that both ERalpha and ERbeta are expressed in murine NK cells. We also compared the ability of high doses of 17beta-estradiol ( approximately 800 pg/ml) to regulate NK cell activity in wild-type and estrogen receptor-alpha-deficient (ERalphaKO) mice. 17beta-estradiol elicited a significant decrease in NK cell activity in both wild-type and ERalphaKO mice (P < 0.001). These data suggest that ERbeta or possibly a novel receptor is involved in mediating estrogen action on NK cell activity and raise the potential for therapeutic modulation of NK cell activity with selective estrogen receptor modulators (SERMS).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号