首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Devices called functional appliances are commonly used in orthodontics for treating maxillary protrusion. These devices mechanically force the mandible forward to apply traction force to the mandibular condyle. This promotes cartilaginous growth in the small mandible. However, no studies have clarified how much traction force is applied to the mandibular condyle. Moreover, it remains unknown as to how anatomical characteristics affect this traction force. Therefore, in this study, we developed a device for measuring the amount of force generated while individual patients wore functional appliances, and we investigated the relationship between forces with structures surrounding the mandibular condyle. We compared traction force values with cone-beam computed tomography image data in eight subjects. The functional appliance resulted in a traction force of 339–1477 gf/mm, with a mean value of 196.5 gf/mm for the elastic modulus of the mandible. A comparison with cone-beam computed tomography image data suggested that the mandibular traction force was affected by the mandibular condyle and shape of the articular eminence. This method can contribute to discovering efficient treatment techniques more suited to individual patients.  相似文献   

2.
This paper presents a new in vitro wear simulator based on spatial parallel kinematics and a biologically inspired implicit force/position hybrid controller to replicate chewing movements and dental wear formations on dental components, such as crowns, bridges or a full set of teeth. The human mandible, guided by passive structures such as posterior teeth and the two temporomandibular joints, moves with up to 6 degrees of freedom (DOF) in Cartesian space. The currently available wear simulators lack the ability to perform these chewing movements. In many cases, their lack of sufficient DOF enables them only to replicate the sliding motion of a single occlusal contact point by neglecting rotational movements and the motion along one Cartesian axis. The motion and forces of more than one occlusal contact points cannot accurately be replicated by these instruments. Furthermore, the majority of wear simulators are unable to control simultaneously the main wear-affecting parameters, considering abrasive mechanical wear, which are the occlusal sliding motion and bite forces in the constraint contact phase of the human chewing cycle. It has been shown that such discrepancies between the true in vivo and the simulated in vitro condition influence the outcome and the quality of wear studies. This can be improved by implementing biological features of the human masticatory system such as tooth compliance realized through the passive action of the periodontal ligament and active bite force control realized though the central nervous system using feedback from periodontal preceptors. The simulator described in this paper can be used for single- and multi-occlusal contact testing due to its kinematics and ability to exactly replicate human translational and rotational mandibular movements with up to 6 DOF without neglecting movements along or around the three Cartesian axes. Recorded human mandibular motion and occlusal force data are the reference inputs of the simulator. Experimental studies of wear using this simulator demonstrate that integrating the biological feature of combined force/position hybrid control in dental material testing improves the linearity and reduces the variability of results. In addition, it has been shown that present biaxially operated dental wear simulators are likely to provide misleading results in comparative in vitro/in vivo one-contact studies due to neglecting the occlusal sliding motion in one plane which could introduce an error of up to 49% since occlusal sliding motion D and volumetric wear loss V(loss) are proportional.  相似文献   

3.
程曼曼  汪永跃 《生物磁学》2013,(36):7197-7200
口腔生物力学是用生物力学的概念和方法,研究口腔医学中的有关基础性科学问题、解决口腔医学中的临床实际问题、发展口腔临床技术的一门学科。在口腔正畸学、修复学、种植学及口腔颌面外科学等领域存在着大量的生物力学问题,生物力学已成为口腔医学的基础科学之一。传统全口义齿修复常常会出现固位稳定差、咀嚼效率低、患者有疼痛感、适应时间长等情况,很大程度上不能满足患者的修复要求。种植覆盖义齿对于下颌牙槽嵴严重吸收的患者,效果尤为明显。种植覆盖义齿是义齿与种植体之间以不同的附着体作为连接,形成患者可以自行摘戴的种植体支持的覆盖义齿修复。下颌种植覆盖义齿因其能有效地提高下半口义齿的固位性和稳定性、显著提高了患者的咀嚼效率,目前已成为修复下颌牙槽骨严重吸收的无牙颌患者的有效修复方法。本文针对下颌种植覆盖义齿的生物力学研究进展作一综述。  相似文献   

4.
Description and error evaluation of an in vitro knee joint testing system   总被引:2,自引:0,他引:2  
An experimental system for the analysis of knee joint biomechanics is presented. The system provides for the simultaneous recording of ligament forces using buckle transducers and three-dimensional joint motion using an instrumented spatial linkage, as in vitro specimens are subjected to a variety of external loads by a pneumatic loading apparatus with associated force transducers. The system components are described, and results of an evaluation of system errors and accuracy are presented. The experimental setup has been successfully used in the analysis of normal knee ligament mechanics, as well as surgical reconstructions of the anterior cruciate ligament. The system can also be adapted to test other human or animal in vitro joints.  相似文献   

5.
A conductive polymer sensor for measuring external finger forces.   总被引:1,自引:1,他引:0  
This paper describes the construction and use of a durable and thin force sensor that can be attached to the palmar surface of the fingers and hands for studying the biomechanics of grasp and for use in hand injury rehabilitation. These force sensors were constructed using a modified commercially available conductive polymer pressure sensing element and installing an epoxy dome for directing applied forces through a 12 mm diameter active sensing area. The installation of an epoxy dome was effective for making the sensors insensitive to contact surfaces varying from 25 to 1100 mm2 and a 16 mm radius surface curved convex towards the finger. The completed sensors were only 1.8 mm thick and capable of being taped to the distal phalangeal finger pads. They were calibrated on the hand by pinching a strain gage dynamometer. The useful range was between 0 and 30 N with an accuracy of 1 N for both static loading and normal dynamic grasp activities. The sensor time constant was 0.54 ms for a step force input. Because of varying offset voltages every time the sensors were attached, these sensors should be calibrated on the hand before each use. The sensors were used for measuring finger forces during controlled pinching and lifting tasks, and during ordinary grasping activities, such as picking up a book or a box, where the useful force range and response for these sensors were adequate.  相似文献   

6.
The dental casts made from Aboriginal children during the course of a longitudinal growth study in Central Australia provided material for analyzing tooth wear under known environmental conditions. The wear facets produced on the occlusal surfaces were clearly preserved on the dental stone casts and recorded the progress of enamel attrition from ages 6 to 18. These casts were photographed and traced by electronic planimetric methods that automatically recorded the location and size of wear facets on the first and second permanent molars. These areas of worn tooth surface were compared to the total tooth surface. The worn surface was regressed on age to calculate wear rates of each tooth. Discriminant analyses were also performed to determine the significance of dental attrition differences between the sexes at each age group. The total wear on each tooth was highly correlated with age as expected but females wore their teeth at a significantly higher rate than males. The mandibular molars wore more rapidly than maxillary teeth in both sexes. The discriminant analysis successfully grouped 91% of the cases according to age and sex. Pattern of wear, the location, and size of wear facets also differed between age groups and sex. The questions of why there is a difference between male and female wear or why there is greater wear on one arch or arch region have no ready answers. The differing rates and pattern of dental wear do suggest that arch shape and growth rates may be the answer though it has yet to be tested. However, the occlusal surface wear is useful for age estimation in a population and provides a record of shifting masticatory forces during growth.  相似文献   

7.
The effects of changes in cruciate ligament material and prestrain on knee joint biomechanics following ligament reconstruction surgery by a tendon are not adequately known. A 3D nonlinear finite element model of the entire knee joint was used to investigate the joint response at different flexion angles under a quadriceps force while varying ACL and PCL initial strains or material properties. The ACL and PCL forces as well as tibiofemoral contact forces/areas substantially increased with greater ACL or PCL initial strains or stiffness. The patellofemoral contact force slightly increased whereas the tibial extensor moment slightly decreased with tenser or stiffer ACL. Reverse trends were predicted with slacker ACL. Results confirm the hypotheses that changes in the prestrain of one cruciate ligament substantially influence the force in the other cruciate ligament and the entire joint and that the use of the patellar tendon (PT) as a replacement for cruciate ligaments markedly alters the joint biomechanics with trends similar to those predicted when increasing prestrains. Forces in both ACL and PCL ligaments increased as one of them became tenser or stiffer and diminished as it became slacker. These results have important consequences in joint biomechanics following ligament injuries or replacement and tend to recommend the use of grafts with smaller prestrains (i.e. slacker than intact) when using the PT as the replacement material with stiffness greater than that of replaced ligament itself.  相似文献   

8.
A crutch is prescribed to permit the patient to walk safely and independently immediately after total hip replacement (THR) surgery. Purpose of this study is to evaluate the influence of the crutch setup on upper limbs biomechanics, including shoulder joint kinematics and kinetics parameters that will be evaluated to detect possible differences related to the crutch length.Thirty patients were randomly assigned to elbow flexed (EF) or elbow extended (EE) forearm crutch setup. Subjects were asked to walk on the laboratory path, instrumented with motion tracking system and force platforms. Spatiotemporal gait parameters, crutch ground reaction force (GRF) and crutch displacement (measured as the relative distance between the crutch position on the floor and the shoulder joint center), were evaluated. A three-dimensional (3D) biomechanical model was implemented to determine shoulder joint kinematics and kinetics during crutch walking.Results showed that the stride length significantly decreased, and base of support width increased for the EF group when compared to the EE group. Crutch forces and distance to the body significantly decreased in the EE group. Furthermore, shoulder joint moments in all planes of motion, vertical and lateral forces were significantly reduced in the EE group.The present study showed that crutch setup influenced performance and upper limb loading during walking, with EE setup allowing a more stable walking and reducing stress on the shoulder joint when compared to the EF setup. Results may help therapists in rationalizing crutch length adjustments for patients after THR surgery.  相似文献   

9.
The effects of changes in cruciate ligament material and prestrain on knee joint biomechanics following ligament reconstruction surgery by a tendon are not adequately known. A 3D nonlinear finite element model of the entire knee joint was used to investigate the joint response at different flexion angles under a quadriceps force while varying ACL and PCL initial strains or material properties. The ACL and PCL forces as well as tibiofemoral contact forces/areas substantially increased with greater ACL or PCL initial strains or stiffness. The patellofemoral contact force slightly increased whereas the tibial extensor moment slightly decreased with tenser or stiffer ACL. Reverse trends were predicted with slacker ACL. Results confirm the hypotheses that changes in the prestrain of one cruciate ligament substantially influence the force in the other cruciate ligament and the entire joint and that the use of the patellar tendon (PT) as a replacement for cruciate ligaments markedly alters the joint biomechanics with trends similar to those predicted when increasing prestrains. Forces in both ACL and PCL ligaments increased as one of them became tenser or stiffer and diminished as it became slacker. These results have important consequences in joint biomechanics following ligament injuries or replacement and tend to recommend the use of grafts with smaller prestrains (i.e. slacker than intact) when using the PT as the replacement material with stiffness greater than that of replaced ligament itself.  相似文献   

10.
The basis for stable versus unstable kinetochore orientation was investigated by a correlated living-cell/ultrastructural study of grasshopper spermatocytes. Mal-oriented bivalents having both kinetochores oriented to one spindle pole were induced by micromanipulation. Such malorientations are stable while the bivalent is subject to tension applied by micromanipulation but unstable after tension is released. Unstable bivalents always reorient with movement of one kinetochore toward the opposite pole. Microtubules associated with stably oriented bivalents, whether they are mal-oriented or in normal bipolar orientation, are arranged in orderly parallel bundles running from each kinetochore toward the pole. Similar orderly kinetochore microtubule arrangements characterize mal-oriented bivalents fixed just after release of tension. A significantly different microtubule arrangement is found only some time after tension release, when kinetochore movement is evident. The microtubules of a reorienting kinetochore always include a small number of microtubules running toward the pole toward which the kinetochore was moving at the time of fixation. All other microtubules associated with such a moving kinetochore appear to have lost their anchorage to the original pole and to be dragged passively as the kinetochore proceeds to the other pole. Thus, the stable anchorage of kinetochore microtubules to the spindle is associated with tension force and unstable anchorage with the absence of tension. The effect of tension is readily explained if force production and anchorage are both produced by mitotic motors, which link microtubules to the spindle as they generate tension forces.  相似文献   

11.
Mice from the Orkney archipelago exhibit an important diversity regarding molar shape. While on some islands mice display a usual dental pattern, teeth from other islands display additional cusplets and unusual phenotypes that may constitute case studies for evaluating the potential functional relevance of dental changes. We developed a multifaceted approach combining 2D and 3D geometric morphometrics, dental topography, dental wear, biomechanics, estimations of masticatory muscles force, and in vivo bite force on wild-derived lab descendants exemplifying the two extreme dental morphologies. The two strains differed in the geometry of the upper and lower tooth rows, and in the topography of the upper row only. Surprisingly, the most unusual tooth morphology appeared as the least complex because tooth simplification overwhelmed the signal provided by the occurrence of additional cusplets. No difference in bite force nor muscle force was evidenced, showing that the important change in dental morphology was accommodated without major changes in the rest of the masticatory apparatus. The evolution of unusual dental phenotypes was possibly fueled by drift and inbreeding in small and isolated populations on remote islands of the archipelago. No functional counter-selection impeded this diversification, since the unusual dental phenotypes did not disrupt occlusion and mastication.  相似文献   

12.
Dental trauma is one of the most common events in dental practice. However, few studies have investigated the biomechanical characteristics of these injuries. The objective of this study was to analyse the stress distribution in the dentoalveolar structures of a maxillary central incisor subjected to two situations of impact loading. The following loading forces were applied using a 3D finite element model: a force of 2000 N acting at an angle of 90°on the buccal surface of the crown and a vertical 2000 N force acting in the cleidocranial direction on the incisal surface of the tooth. Harmful stresses were observed in both situations, causing damage to both the tooth and adjacent tissue. However, the damage found in soft tissues such as periodontal ligament and dental pulp was negligible. In conclusion, injuries resulting from the traumatic situations were more damaging to the integrity of the tooth and its associated hard-tissue structures.  相似文献   

13.
The importance of dental wear patterns in understanding masticatory functions in primates has long been appreciated. However, studies of wear patterns among populations of nonhuman primates are few. The purpose of this investigation is to establish the developmental aspects of dental wear in the Cercopithecinae and to describe certain relevant morphological traits. Studies were made of dental casts from 200 primate specimens of Macaca nemestrina, Macaca mulatta, and Papio cynocephalus. These casts were taken at four-month intervals, beginning at two years of age and continuing over a period of six to seven years. The wear pattern starts with the rounding and eventual flattening of the protoconid and protocone of the erupted first molars. Once this stage is reached, the hypoconid and metaconid of the mandibular, and the hypocone and paracone of the maxillary molars are rounded and eventually flattened. This pattern is maintained until the cusp tips are removed and the dentin exposed, however, the entoconid and metacone are not subjected to significant wear at this stage. Analysis of these dental casts and museum specimens has provided data on the development of dental wear during the maturation of these primates. The distribution of forces acting upon the teeth produce diagnostic patterns of wear, which provide evidence of the force location and magnitude. In examining the data, the hypothesis of canine guidance and its limitation of mandibular motion was evaluated. Specimens whose canines were removed demonstrate that the canines play no significant role in the development or maintenance of dental wear planes.  相似文献   

14.
Studies of human tooth wear have been carried on for the past two years using a machine designed to approximate human chewing motions. During this time wear patterns that resemble those frequently found on the teeth of various American Indian skulls have been produced on casts of the definition. Noticeably among these patterns produced are examples of wear on the front end of the dental arches that result in an edge to edge bite. This type of wear was produced by wearing down casts of a modern dentition with a “normal” overbite. The forces applied to the casts mounted on the machine are variable over a wide range and numerous force combinations are possible. By noting these forces and the resulting vectors, the motions necessary to produce different wear patterns can be determined. This has especially aided in understanding the ways in which the oblique molar wear is produced.  相似文献   

15.
Open kinetic chain (OKC) extension exercises are commonly performed to strengthen quadriceps muscles and restore joint function in performance enhancement programs, in exercise therapies and following joint reconstruction. Using a validated 3D nonlinear finite element model, the detailed biomechanics of the entire joint in OKC extension exercises are investigated at 0, 30, 60 and 90 degrees joint angles. Two loading cases are simulated; one with only the weight of the leg and the foot while the second considers also a moderate resistant force of 30 N acting at the ankle perpendicular to the tibia. The presence of the 30 N markedly influences the results both in terms of the magnitude and the trend. The resistant load substantially increases the required quadriceps, patellar tendon, cruciate ligaments and joint contact forces, especially at near 90 degrees angles with the exception of ACL force that is increased at 0 degrees angle. At post-ACL reconstruction period or in the joint with ACL injury, the exercise should preferably be avoided at near full extension positions under large resistant forces.  相似文献   

16.
Biomechanical data provide fundamental information about changes in musculoskeletal function during development, adaptation, and disease. To facilitate the study of mouse locomotor biomechanics, we modified a standard mouse running wheel to include a force-sensitive rung capable of measuring the normal and tangential forces applied by individual paws. Force data were collected throughout the night using an automated threshold trigger algorithm that synchronized force data with wheel-angle data and a high-speed infrared video file. During the first night of wheel running, mice reached consistent running speeds within the first 40 force events, indicating a rapid habituation to wheel running, given that mice generated >2,000 force-event files/night. Average running speeds and peak normal and tangential forces were consistent throughout the first four nights of running, indicating that one night of running is sufficient to characterize the locomotor biomechanics of healthy mice. Twelve weeks of wheel running significantly increased spontaneous wheel-running speeds (16 vs. 37 m/min), lowered duty factors (ratio of foot-ground contact time to stride time; 0.71 vs. 0.58), and raised hindlimb peak normal forces (93 vs. 115% body wt) compared with inexperienced mice. Peak normal hindlimb-force magnitudes were the primary force component, which were nearly tenfold greater than peak tangential forces. Peak normal hindlimb forces exceed the vertical forces generated during overground running (50-60% body wt), suggesting that wheel running shifts weight support toward the hindlimbs. This force-instrumented running-wheel system provides a comprehensive, noninvasive screening method for monitoring gait biomechanics in mice during spontaneous locomotion.  相似文献   

17.
Total elbow arthroplasty is a clinically successful procedure, yet long-term implant survival rates have historically lagged behind those reported for total hips and knees. Clinical complications associated with implant wear, osteolysis, stem loosening and device fracture have been implicated as reasons for limited long-term survivorship. Unfortunately, there is little published information on the biomechanics and method(s) for preclinical evaluation of total elbow prostheses that could provide insight into the mechanisms of failure. Additionally, there are no consensus testing standards or summaries of loading profiles of the humero-ulnar joint associated with a range of activities of daily living. Such data would facilitate the standardized preclinical assessment of total elbow devices such is commonplace for other large joints. The objective of the work here is therefore to provide a comprehensive review of elbow joint biomechanics as it relates to preclinical evaluation of total elbow implants. This summary includes a review of elbow joint forces, kinematics, the types and frequency of humero-ulnar joint motions associated with activities of daily living and clinical outcomes, as well as proposing a methodology for deriving humero-ulnar joint reaction force magnitudes and vector orientations as a function of a known mass/force at the hand. From these data, a scalable, bi-axial loading profile is proposed as a foundation for the development of clinically relevant, laboratory simulations for assessment of total elbow prostheses performance.  相似文献   

18.
Traction forces developed by most cell types play a significant role in the spatial organisation of biological tissues. However, due to the complexity of cell-extracellular matrix interactions, these forces are quantitatively difficult to estimate without explicitly considering cell properties and extracellular mechanical matrix responses. Recent experimental devices elaborated for measuring cell traction on extracellular matrix use cell deposits on a piece of gel placed between one fixed and one moving holder. We formulate here a mathematical model describing the dynamic behaviour of the cell-gel medium in such devices. This model is based on a mechanical force balance quantification of the gel visco-elastic response to the traction forces exerted by the diffusing cells. Thus, we theoretically analyzed and simulated the displacement of the free moving boundary of the system under various conditions for cells and gel concentrations. This modelis then used as the theoretical basis of an experimental device where endothelial cells are seeded on a rectangular biogel of fibrin cast between two floating holders, one fixed and the other linked to a force sensor. From a comparison of displacement of the gel moving boundary simulated by the model and the experimental data recorded from the moving holder displacement, the magnitude of the traction forces exerted by the endothelial cell on the fibrin gel was estimated for different experimental situations. Different analytical expressions for the cell traction term are proposed and the corresponding force quantifications are compared to the traction force measurements reported for various kind of cells with the use of similar or different experimental devices. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Direct person-to-person transmission of periodontal bacteria through saliva has recently been widely reported and dental units have been demonstrated to retract saliva from patients under treatment and to release it into the mouths of subjects undergoing the next operation. In this study the presence of a group of periodontal pathogenic bacteria inside waterlines in dental units was investigated using polymerase chain reaction (PCR) based methods. Briefly, 18 dental units of three different manufacturers were studied. Dental units were divided into two groups according to their prevalent use in routine practice. The first group consisted of nine dental units characterized by the frequent use of high-speed dental hand-pieces directly inside the mouth and in contact with patients' saliva. The second group, as a control, consisted of nine dental units where high-speed dental hand-pieces were not in use. A one cm section of the waterline tubing connected to the high-speed hand-piece was removed from each dental unit to evaluate the presence of DNA of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Bacteroides forsythus, Treponema denticola. Two specimens were positive for Prevotella intermedia DNA. All the positive results were from samples obtained from dental units categorised in the first group. These findings clearly suggest that dental units have the potential to transmit periodontal pathogens. Manufacturers should be invited to design dental units that incorporate automated devices to disinfect DUWLs between patients with minimal effort by dental staff.  相似文献   

20.
The anisotropic fracturing and differential wear properties of enamel microstructure represent factors that can obscure the predictive relationship between dental microwear and diet. To assess the impact of enamel structure on microwear, this in vitro experimental study examines the relative contributions to wear of three factors: 1) species differences in microstructure, 2) direction of shearing force relative to enamel prisms and crystallites, and 3) size of abrasive particles. Teeth of Lemur, Ovis, Homo, and Crocodylus, representing, respectively, the structural categories of prismatic patterns 1, 2, and 3 and nonprismatic enamel, were abraded by shearing forces (forces having a component directed parallel to abraded surfaces) and examined by scanning electron microscopy. Striation width increased with particle size for nonprismatic, but not for prismatic, specimens. Direction of shear relative to prism and crystallite orientation had a significant influence on striation width in only some prismatic enamels. The different responses of prismatic and nonprismatic enamels to abrasion reflect the influence of structure, but at the level of organization of crystallites rather than prisms per se. Such interactions explain in part the inability of striation width to discriminate among animals with different dietary habits. Heteroscedasticity and deviations from normality also may confound parametric analyses of microwear variables. Variation in crystallite orientation in prismatic enamels may contribute to optimal dental function through the property of differential wear in functionally distinct regions of teeth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号