首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human peripheral blood lymphocytes were separated by a combination of rosette formation with sheep erythrocytes and differential density centrifugation into subpopulations of rosette positive (T-enriched) cells and rosette negative (T depleted) cells. These were then tested in vitro for the production of macrophage migration inhibitory factor (MIF) and for incorporation of 3H-thymidine in response to specific antigens. Both T enriched and T depleted cell populations produced MIF but only T enriched cells exhibited significant antigen-induced 3H-thymidine incorporation. These findings using a T cell surface marker as the basis for cell separation, a technique which should not alter the B cell surface, confirm an earlier report in which human cells were separated on the basis of surface immunoglobulin, a B cell marker.  相似文献   

2.
Serratia marcescens is an opportunistic pathogen and a major cause of ocular infections. In previous studies of S. marcescens MG1, we showed that biofilm maturation and sloughing were regulated by N-acyl homoserine lactone (AHL)-based quorum sensing (QS). Because of the importance of adhesion in initiating biofilm formation and infection, the primary goal of this study was to determine whether QS is important in adhesion to both abiotic and biotic surfaces, as assessed by determining the degree of attachment to hydrophilic tissue culture plates and human corneal epithelial (HCE) cells. Our results demonstrate that while adhesion to the abiotic surface was AHL regulated, adhesion to the HCE cell biotic surface was not. Type I fimbriae were identified as the critical adhesin for non-QS-mediated attachment to the biotic HCE cell surface but played no role in adhesion to the abiotic surface. While we were not able to identify a single QS-regulated adhesin essential for attachment to the abiotic surface, four AHL-regulated genes involved in adhesion to the abiotic surface were identified. Interestingly, two of these genes, bsmA and bsmB, were also shown to be involved in adhesion to the biotic surface in a non-QS-controlled fashion. Therefore, the expression of these two genes appears to be cocontrolled by regulators other than the QS system for mediation of attachment to HCE cells. We also found that QS in S. marcescens regulates other potential cell surface adhesins, including exopolysaccharide and the outer membrane protein OmpX. We concluded that S. marcescens MG1 utilizes different regulatory systems and adhesins in attachment to biotic and abiotic surfaces and that QS is a main regulatory pathway in adhesion to an abiotic surface but not in adhesion to a biotic surface.  相似文献   

3.
4.
Cellulose is synthesized by the so called rosette protein complex and the catalytic subunits of this complex are the cellulose synthases (CESAs). It is thought that the rosette complexes in the primary and secondary cell walls each contains at least three different non-redundant cellulose synthases. In addition to the CESA proteins, cellulose biosynthesis almost certainly requires the action of other proteins, although few have been identified and little is known about the biochemical role of those that have been identified. One of these proteins is KORRIGAN (KOR1). Mutant analysis of this protein in Arabidopsis thaliana showed altered cellulose content in both the primary and secondary cell wall. KOR1 is thought to be required for cellulose synthesis acting as a cellulase at the plasma membrane–cell wall interface. KOR1 has recently been shown to interact with the primary cellulose synthase rosette complex however direct interaction with that of the secondary cell wall has never been demonstrated. Using various methods, both in vitro and in planta, it was shown that KOR1 interacts specifically with only two of the secondary CESA proteins. The KOR1 protein domain(s) involved in the interaction with the CESA proteins were also identified by analyzing the interaction of truncated forms of KOR1 with CESA proteins. The KOR1 transmembrane domain has shown to be required for the interaction between KOR1 and the different CESAs, as well as for higher oligomer formation of KOR1.  相似文献   

5.
The possibility that Ia antigens are unique among H-2 antigens in their relationship to the Fc receptor was investigated in an EA rosette assay. Antibody specific for antigens in various regions of theH-2 complex was incubated with mouse cells, and the ability of the cells to form rosettes with antibody-coated chicken erythrocytes was tested. Antibody raised against the H-2 antigens of Ia-negative tumor cells was highly effective in inhibiting rosette formation. A variety of antisera againstK-, I-, andD-region antigens tested in recombinant mice inhibited EA rosette formation, suggesting that antigens in each of these regions could be detected in rosette inhibition. The F(ab′)2 fragments of all antisera tested also produced specific EA rosette inhibition. Finally, antibody against Ia antigens failed to inhibit bone marrow RFCs, although antibody against H-2K and H-2D antigens did inhibit. Although H-2 serology is in a state of rapid change at present, it must be concluded that in this assay, antibody against antigens in theK andD regions as well as theI region can inhibit EA rosette formation. Inhibition of these rosettes by anti H-2 sera is therefore not due to a special association of Ia antigens with Fc receptors.  相似文献   

6.
The ability of Escherichia coli to colonize both intestinal and extraintestinal sites is driven by the presence of specific virulence factors, among which are the autotransporter (AT) proteins. Members of the trimeric AT adhesin family are important virulence factors for several gram-negative pathogens and mediate adherence to eukaryotic cells and extracellular matrix (ECM) proteins. In this study, we characterized a new trimeric AT adhesin (UpaG) from uropathogenic E. coli (UPEC). Molecular analysis of UpaG revealed that it is translocated to the cell surface and adopts a multimeric conformation. We demonstrated that UpaG is able to promote cell aggregation and biofilm formation on abiotic surfaces in CFT073 and various UPEC strains. In addition, UpaG expression resulted in the adhesion of CFT073 to human bladder epithelial cells, with specific affinity to fibronectin and laminin. Prevalence analysis revealed that upaG is strongly associated with E. coli strains from the B2 and D phylogenetic groups, while deletion of upaG had no significant effect on the ability of CFT073 to colonize the mouse urinary tract. Thus, UpaG is a novel trimeric AT adhesin from E. coli that mediates aggregation, biofilm formation, and adhesion to various ECM proteins.  相似文献   

7.
In vitro neural differentiation of human embryonic stem cells (hESCs) is an advantageous system for studying early neural development. The process of early neural differentiation in hESCs begins by initiation of primitive neuroectoderm, which is manifested by rosette formation, with consecutive differentiation into neural progenitors and early glial-like cells. In this study, we examined the involvement of early neural markers – OTX2, PAX6, Sox1, Nestin, NR2F1, NR2F2, and IRX2 – in the onset of rosette formation, during spontaneous neural differentiation of hESC and human induced pluripotent stem cell (hiPSC) colonies. This is in contrast to the conventional way of studying rosette formation, which involves induction of neuronal differentiation and the utilization of embryoid bodies. Here we show that OTX2 is highly expressed at the onset of rosette formation, when rosettes comprise no more than 3–5 cells, and that its expression precedes that of established markers of early neuronal differentiation. Importantly, the rise of OTX2 expression in these cells coincides with the down-regulation of the pluripotency marker OCT4. Lastly, we show that cells derived from rosettes that emerge during spontaneous differentiation of hESCs or hiPSCs are capable of differentiating into dopaminergic neurons in vitro, and into mature-appearing pyramidal and serotonergic neurons weeks after being injected into the motor cortex of NOD-SCID mice.  相似文献   

8.
The localization of the LapA protein to the cell surface is a key step required by Pseudomonas fluorescens Pf0-1 to irreversibly attach to a surface and form a biofilm. LapA is a member of a diverse family of predicted bacterial adhesins, and although lacking a high degree of sequence similarity, family members do share common predicted domains. Here, using mutational analysis, we determine the significance of each domain feature of LapA in relation to its export and localization to the cell surface and function in biofilm formation. Our previous work showed that the N terminus of LapA is required for cleavage by the periplasmic cysteine protease LapG and release of the adhesin from the cell surface under conditions unfavorable for biofilm formation. We define an additional critical region of the N terminus of LapA required for LapG proteolysis. Furthermore, our results suggest that the domains within the C terminus of LapA are not absolutely required for biofilm formation, export, or localization to the cell surface, with the exception of the type I secretion signal, which is required for LapA export and cell surface localization. In contrast, deletion of the central repetitive region of LapA, consisting of 37 repeats of 100 amino acids, results in an inability to form a biofilm. We also used single-molecule atomic force microscopy to further characterize the role of these domains in biofilm formation on hydrophobic and hydrophilic surfaces. These studies represent the first detailed analysis of the domains of the LapA family of biofilm adhesin proteins.  相似文献   

9.
Mycoplasma pneumoniae is a pathogenic bacterium colonizing epithelial cells of the human respiratory tract. Using an erythrocyte binding assay we isolated a cytadsorption negative mutant designated M7 which has lost 12 of a total of 13 repetitive sequences of a proline rich C-terminal region of the adhesin related 30-kDa protein. The truncated adhesin related protein of 22 kDa showed reduced antigenicity compared to the corresponding wild-type protein. Moreover, the mutant M7 proved incapable of adhering to erythrocytes and to a human colon carcinoma cell line indicating that the repetitive C-terminal region of the 30-kDa protein is essential for effective cytadherence. The adhesin related 30-kDa protein as well as the truncated forms of the corresponding protein were accessible to carboxypeptidase Y which clearly shows surface exposure of the C-terminus of this protein.  相似文献   

10.
Microchannels can be used to simulate xylem vessels and investigate phytopathogen colonization under controlled conditions. In this work, we explore surface functionalization strategies for polydimethylsiloxane and glass microchannels to study microenvironment colonization by Xylella fastidiosa subsp. pauca cells. We closely monitored cell initial adhesion, growth, and motility inside microfluidic channels as a function of chemical environments that mimic those found in xylem vessels. Carboxymethylcellulose (CMC), a synthetic cellulose, and an adhesin that is overexpressed during early stages of X. fastidiosa biofilm formation, XadA1 protein, were immobilized on the device’s internal surfaces. This latter protocol increased bacterial density as compared with CMC. We quantitatively evaluated the different X. fastidiosa attachment affinities to each type of microchannel surface using a mathematical model and experimental observations acquired under constant flow of culture medium. We thus estimate that bacterial cells present ~4 and 82% better adhesion rates in CMC- and XadA1-functionalized channels, respectively. Furthermore, variable flow experiments show that bacterial adhesion forces against shear stresses approximately doubled in value for the XadA1-functionalized microchannel as compared with the polydimethylsiloxane and glass pristine channels. These results show the viability of functionalized microchannels to mimic xylem vessels and corroborate the important role of chemical environments, and particularly XadA1 adhesin, for early stages of X. fastidiosa biofilm formation, as well as adhesivity modulation along the pathogen life cycle.  相似文献   

11.
Ultrastructure and previtellogenic growth of ovaries of Peripsocus phaeopterus (Stephens) and Stenopsocus stigmaticus (Imhof and Labram) (Insecta : Psocoptera) are described. The germ cell cluster formation was analyzed in an ovariole of a nymph using ultrathin serial sectioning. Fifteen germ cell clusters were found; 13 contained 4 cystocytes each, while 2 clusters, situated in the very tip, were composed of 2 cystocytes each. A fully developed cluster rises by 2 synchronized mitotic divisions, each followed by incomplete cytokinesis. Microtubules derived from the preceding mitoses form a transient midbody within the intercellular bridge. Later on, a fusome fills each bridge, while at fusomal rims parallel oriented microtubules are tightly associated. Some of these microtubules stretch to cell membranes nearby. The fusomes fuse into a polyfusome and a rosette is thus formed by which all intercellular bridges are drawn together. All cystocytes enter the prophase of meiosis up to pachynema. One of the 2 inner cells continues meiosis and develops as an oocyte, whereas all others transform into nurse cells. After rosette formation, the polyfusome-associated microtubules vanish and some time later, when the nurse cell-oocyte differentiation becomes apparent, the polyfusome itself becomes destroyed. The intercellular bridge, joining the first nurse cell with the 3rd moves away from the other 2. During previtellogenesis, 5 phases can be distinguished, 2 of which are interpreted as logarithmical growth phases with different slopes. The whole set of characters elaborated here for the polytrophic meroistic ovary of psocopterans is fully consistent with the characters of polytrophic meroistic ovaries of Holometabola, indicating a monophyletic origin.  相似文献   

12.
Human T cells spontaneously bind sheep E and this reflects physiologic interactions between specific adhesion molecules, principally T cell CD2, and the sheep equivalent of LFA-3. This interaction is important in T cell adhesion and in transmission of accessory activational signals. In this respect, E rosettes provide a partial analogue for T cell:accessory cell interaction and rosetting induces functional alterations in T cells. In studies of Ag-dependent T cell activation, we have obtained evidence that the formation of covalent Schiff bases between ligands on APC and T cell is an essential element. In our study, the specific chemical criteria defining Schiff base formation were applied to T cell E rosettes formed at room temperature, as follows: 1) Prior formation of Schiff bases on T cell epsilon-amino groups by glutaraldehyde inhibited E rosette formation. 2) Rosette formation was inhibited in the presence of exogenous lysine. 3) Reduction of constitutive T cell aldehydes by NaBH4 inhibited subsequent E rosette formation. In response to these chemical modifications of cellular ligands, T cell E rosette formation and T cell inductive interaction with APC were affected in the same way. 4) Oxidation of NaBH4-treated T cells by NaIO4 or galactose oxidase to regenerate cell-surface aldehydes on N-acetylneuraminic acid or galactose residues respectively, consistently restored E rosette formation. 5) Conversion of reversible Schiff bases to irreversible secondary amines by NaCNBH3 stabilized E rosettes against mechanical disruption. Together, these data demonstrate that E rosettes provide an analogue for the Schiff base-forming reactions that are essential in specific T cell activation.  相似文献   

13.
Streptococci and veillonellae occur in mixed-species colonies during formation of early dental plaque. One factor hypothesized to be important in assembly of these initial communities is coaggregation (cell-cell recognition by genetically distinct bacteria). Intrageneric coaggregation of streptococci occurs when a lectin-like adhesin on one streptococcal species recognizes a receptor polysaccharide (RPS) on the partner species. Veillonellae also coaggregate with streptococci. These genera interact metabolically; lactic acid produced by streptococci is a carbon source for veillonellae. To transpose these interactions from undisturbed dental plaque to an experimentally tractable in vitro biofilm model, a community consisting of RPS-bearing streptococci juxtaposed with veillonellae was targeted by quantum dot-based immunofluorescence and then micromanipulated off the enamel surface and cultured. Besides the expected antibody-reactive cell types, a non-antibody-reactive streptococcus invisible during micromanipulation was obtained. The streptococci were identified as Streptococcus oralis (RPS bearing) and Streptococcus gordonii (adhesin bearing). The veillonellae could not be cultivated; however, a veillonella 16S rRNA gene sequence was amplified from the original isolation mixture, and this sequence was identical to the sequence of the previously studied organism Veillonella sp. strain PK1910, an oral isolate in our culture collection. S. oralis coaggregated with S. gordonii by an RPS-dependent mechanism, and both streptococci coaggregated with PK1910, which was used as a surrogate during in vitro community reconstruction. The streptococci and strain PK1910 formed interdigitated three-species clusters when grown as a biofilm using saliva as the nutritional source. PK1910 grew only when streptococci were present. This study confirms that RPS-mediated intrageneric coaggregation occurs in the earliest stages of plaque formation by bringing bacteria together to create a functional community.  相似文献   

14.
Gram‐positive bacteria deploy type IV secretion systems (T4SSs) to facilitate horizontal gene transfer. The T4SSs of Gram‐positive bacteria rely on surface adhesins as opposed to conjugative pili to facilitate mating. Enterococcus faecalis PrgB is a surface adhesin that promotes mating pair formation and robust biofilm development in an extracellular DNA (eDNA) dependent manner. Here, we report the structure of the adhesin domain of PrgB. The adhesin domain binds and compacts DNA in vitro. In vivo PrgB deleted of its adhesin domain does not support cellular aggregation, biofilm development and conjugative DNA transfer. PrgB also binds lipoteichoic acid (LTA), which competes with DNA binding. We propose that PrgB binding and compaction of eDNA facilitates cell aggregation and plays an important role in establishment of early biofilms in mono‐ or polyspecies settings. Within these biofilms, PrgB mediates formation and stabilization of direct cell‐cell contacts through alternative binding of cell‐bound LTA, which in turn promotes establishment of productive mating junctions and efficient intra‐ or inter‐species T4SS‐mediated gene transfer.  相似文献   

15.
The self-associating autotransporters (SAATs) are multifunctional secreted proteins of Escherichia coli, comprising the AIDA-I, TibA and Ag43 proteins. One of their characteristics is that they can be glycosylated. Glycosylation of AIDA-I and Ag43 have been investigated, but not that of TibA. It is still not clear whether glycosylation of the SAATs affect their structure or their functionality. Therefore, we have looked at the effects of glycosylation on the TibA adhesin/invasin. TibA is glycosylated by TibC, a specific glycosyltransferase, and the two genes are encoded in an operon. In this study, we have found that the glycosylation of TibA is not limited to the extracellular functional domain, as previously observed with AIDA-I and Ag43. We have determined that unglycosylated TibA is not able to promote the adhesion of bacteria on cultured epithelial cell, even though it is still able to promote invasion, biofilm formation and autoaggregation of bacteria. We have purified the glycosylated and unglycosylated forms of TibA, and determined that TibA is less stable when not glycosylated. We finally observed that glycosylation affects the oligomerisation of TibA and that unglycosylated TibA is locked in a conformation that is not suited for adhesion. Our results suggest that the effect of glycosylation on the functionality of TibA is indirect.  相似文献   

16.
The incubation ratio of sheep red blood cells (SRBC) to lymphocytes is a critical factor in rosette formation, whereas the length of time SRBC and lymphocytes are incubated together does not significantly affect the percentage of lymphocytes forming rosettes. The graph obtained by plotting percentage of rosette formation against the ratio of SRBC to lymphocytes is similar to that resulting from the formation of bimolecular complexes. If rosette formation is analogous to formation of bimolecular complexes, maximal rosette formation occurs when the system is saturated, i.e., with excess SRBC, and is a measure of the total capacity of a lymphocyte population to form rosettes. In addition, the percentage of rosette formation observed at a limiting SRBC/lymphocyte ratio gives an indication of the avidity of the lymphocytes for SRBC. This interpretation may provide an explanation for the difference between the "active" and "total" rosettes. When the log of the SRBC/lymphocyte ratio is plotted against percentage of rosette formation, a straight line is obtained, suggesting that within a given normal lymphocyte sample, T cell subsets with different avidities are not detected by rosette formation at different SRBC/lymphocyte ratios.  相似文献   

17.
The Candida albicans Als adhesin Als5p has an amyloid-forming sequence that is required for aggregation and formation of model biofilms on polystyrene. Because amyloid formation can be triggered by force, we investigated whether laminar flow could activate amyloid formation and increase binding to surfaces. Shearing Saccharomyces cerevisiae cells expressing Als5p or C. albicans at 0.8 dyne/cm2 increased the quantity and strength of cell-to-surface and cell-to-cell binding compared to that at 0.02 dyne/cm2. Thioflavin T fluorescence showed that the laminar flow also induced adhesin aggregation into surface amyloid nanodomains in Als5p-expressing cells. Inhibitory concentrations of the amyloid dyes thioflavin S and Congo red or a sequence-specific anti-amyloid peptide decreased binding and biofilm formation under flow. Shear-induced binding also led to formation of robust biofilms. There was less shear-activated increase in adhesion, thioflavin fluorescence, and biofilm formation in cells expressing the amyloid-impaired V326N-substituted Als5p. Similarly, S. cerevisiae cells expressing Flo1p or Flo11p flocculins also showed shear-dependent binding, amyloid formation, biofilm formation, and inhibition by anti-amyloid compounds. Together, these results show that laminar flow activated amyloid formation and led to enhanced adhesion of yeast cells to surfaces and to biofilm formation.  相似文献   

18.
The afa-3 gene cluster determines the formation of an afimbrial adhesive sheath that is expressed by uropathogenic as well as diarrhoea-associated Escherichia coli strains. It contains six genes ( afaA–afaF  ), among which the afaE3 gene is known to code for the structural AfaE-III adhesin (previously designated AFA-III), whereas no role has yet been identified for the afaD gene product. The afa-3 gene cluster is closely related to the daa operon that codes for an adhesin, the F1845 adhesin, which is highly related to the AfaE-III adhesin; however, unlike the AfaE-III adhesin, F1845 is a fimbrial adhesin. Reported in this work is the construction of chimeras between the afa-3 and daa operons. Analyses of the phenotypes conferred by these afa-3 / daa chimeric clusters allowed us to conclude that the biogenesis of a fimbrial or an afimbrial adhesin is fully determined by the amino acid sequence of the AfaE-III and F1845 adhesins. Moreover, the role of the AfaD product in the biosynthesis of the afimbrial sheath was assessed by immunogold and immunofluorescence experiments. The AfaD and the AfaE-III products were purified and used to raise rabbit and mouse antisera. Similar to AfaE-III, AfaD was found to be a surface-exposed protein as well as an adhesin; both AfaD and AfaE-III are concomittantly expressed by the bacterial cell. These results demonstrate, for the first time, that the afimbrial adhesive sheath expressed by pathogenic E. coli is composed of two adhesins.  相似文献   

19.
We used the mouse monocyte/macrophage-like tumor cell line P388D1 to test whether or not interleukin-1 (IL-1) stimulates differentiation of monocyte/macrophage progenitors. Incubation of these cells with recombinant human interleukin-1 (rhIL-1) alpha and beta resulted in their increased adherence, stimulation of nonspecific esterase activity, and increased Fc rosette formation. rhIL-1s inhibited cell growth and stimulated Fc rosette formation in a dose-dependent fashion. The cell growth inhibition due to rhIL-1s depended on the concentration of serum in culture medium. Synergism between rhIL-1 and calcium ionophore A23187 was found for the cell growth inhibition and Fc rosette formation. The presence of ethylene glycol bis- (beta-aminoethyl ether) N,N,N,N,-tetraacetic acid(EGTA) in the medium abolished the stimulatory effect of rhIL-1 on Fc rosette formation of the cell line. These results demonstrate that rhIL-1s are a potent inducer of the differentiation of the macrophage-like tumor cell line P388D1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号