首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Lbx2 regulates formation of myofibrils   总被引:1,自引:0,他引:1  

Background  

Skeletal muscle differentiation requires assembly of contractile proteins into organized myofibrils. The Drosophila ladybird homeobox gene (lad) functions in founder cells of the segmental border muscle to promote myoblast fusion and muscle shaping. Tetrapods have two homologous genes (Lbx). Lbx1 functions in migration and/or proliferation of hypaxial myoblasts, whereas the function of Lbx2 is poorly understood.  相似文献   

2.
Ladybird-like genes were recently identified in mammals. The first member characterized, Lbx1, is expressed in developing skeletal muscle and the nervous system. However, little is known about the porcine Lbx1 gene. In the present study, we cloned and characterized Lbx1 from porcine muscle. RT-PCR analyses showed that Lbx1 was highly expressed in porcine skeletal muscle tissues. And we provide the first evidence that Lbx1 has a certain regulated expression pattern during the postnatal period of the porcine skeletal muscle development. Lbx1 gene expressed at higher levels in biceps femoris muscles compared with masseter, semitendinosus and longissimus dorsi muscles in Meishan pigs. Phylogenetic tree was constructed by aligning the amino acid sequences of different species. Moreover, single nucleotide polymorphism (SNP) scanning in the Lbx1 genomic fragment identified two mutations, g.752A>G and g.−1559C>G. Association analysis in our experimental pig populations showed that the mutation of g.752A>G was significantly associated with loin muscle area (P < 0.05) and internal fat rate (P < 0.05). Our results suggest that the Lbx1 gene might be a candidate gene of carcass traits and provide useful information for further studies on its roles in porcine skeletal muscle.  相似文献   

3.
In order to identify prospective limb muscle cells in a frog, we cloned Lbx1 from the direct developing frog Eleutherodactylus coqui. Like in embryos of the frog Xenopus laevis but unlike in other vertebrates, EcLbx1 is expressed in all trunk somites. Like in embryos of chick, mouse, and zebrafish, cells expressing EcLbx1 are then found in limb buds, consistent with migration of those cells from somites. EcLbx1 is also expressed in the dorsal spinal cord as in other vertebrates.  相似文献   

4.
5.

Background  

Functional studies in model organisms, such as vertebrates and Drosophila, have shown that basic Helix-loop-Helix (bHLH) proteins have important roles in different steps of neurogenesis, from the acquisition of neural fate to the differentiation into specific neural cell types. However, these studies highlighted many differences in the expression and function of orthologous bHLH proteins during neural development between vertebrates and Drosophila. To understand how the functions of neural bHLH genes have evolved among bilaterians, we have performed a detailed study of bHLH genes during nervous system development in the polychaete annelid, Platynereis dumerilii, an organism which is evolutionary distant from both Drosophila and vertebrates.  相似文献   

6.
Nk homeobox genes are important regulators of many different developmental processes including muscle, heart, central nervous system and sensory organ development. They are thought to have arisen as part of the ANTP megacluster, which also gave rise to Hox and ParaHox genes, and at least some NK genes remain tightly linked in all animals examined so far. The protostome–deuterostome ancestor probably contained a cluster of nine Nk genes: (Msx)–(Nk4/tinman)–(Nk3/bagpipe)–(Lbx/ladybird)–(Tlx/c15)–(Nk7)–(Nk6/hgtx)–(Nk1/slouch)–(Nk5/Hmx). Of these genes, only NKX2.6NKX3.1, LBX1TLX1 and LBX2TLX2 remain tightly linked in humans. However, it is currently unclear whether this is unique to the human genome as we do not know which of these Nk genes are clustered in other vertebrates. This makes it difficult to assess whether the remaining linkages are due to selective pressures or because chance rearrangements have “missed” certain genes. In this paper, we identify all of the paralogs of these ancestrally clustered NK genes in several distinct vertebrates. We demonstrate that tight linkages of Lbx1Tlx1, Lbx2Tlx2 and Nkx3.1Nkx2.6 have been widely maintained in both the ray-finned and lobe-finned fish lineages. Moreover, the recently duplicated Hmx2Hmx3 genes are also tightly linked. Finally, we show that Lbx1Tlx1 and Hmx2Hmx3 are flanked by highly conserved noncoding elements, suggesting that shared regulatory regions may have resulted in evolutionary pressure to maintain these linkages. Consistent with this, these pairs of genes have overlapping expression domains. In contrast, Lbx2Tlx2 and Nkx3.1Nkx2.6, which do not seem to be coexpressed, are also not associated with conserved noncoding sequences, suggesting that an alternative mechanism may be responsible for the continued clustering of these genes.  相似文献   

7.

Background  

Intron gains reportedly are very rare during evolution of vertebrates, and the mechanisms underlying their creation are largely unknown. Previous investigations have shown that, during metazoan radiation, the exon-intron patterns of serpin superfamily genes were subject to massive changes, in contrast to many other genes.  相似文献   

8.
9.
The homeobox gene Lbx1 not only plays critical roles in myogenesis and neurogenesis during embryonic development but is also expressed in activated satellite cells of adult mice. To address the potential postnatal functions of Lbx1, we generated conditional Lbx1-null mice using the Cre-loxP system. We generated a mouse in which Exon 2 of Lbx1 was floxed (Lbx1flox/flox), followed by cross-breeding between the Lbx1flox/flox mouse and either a transgenic mouse where a tamoxifen-inducible Cre-recombinase (Cre) was ubiquitously expressed, or a Myf5Cre mouse where Cre was inserted into the Myf5 locus. In both Lbx1-null mouse lines generated, Pax3-expressing limb muscle precursor cells were seriously reduced during embryonic development and eventually the limb extensor muscles were lost after birth. Since the conditional Lbx1-null mice generated were viable for a prolonged time, they will be useful in the investigation of Lbx1 function throughout the lifespan of the mouse.  相似文献   

10.
11.

Background  

One of the many gene families that expanded in early vertebrate evolution is the neuropeptide (NPY) receptor family of G-protein coupled receptors. Earlier work by our lab suggested that several of the NPY receptor genes found in extant vertebrates resulted from two genome duplications before the origin of jawed vertebrates (gnathostomes) and one additional genome duplication in the actinopterygian lineage, based on their location on chromosomes sharing several gene families. In this study we have investigated, in five vertebrate genomes, 45 gene families with members close to the NPY receptor genes in the compact genomes of the teleost fishes Tetraodon nigroviridis and Takifugu rubripes. These correspond to Homo sapiens chromosomes 4, 5, 8 and 10.  相似文献   

12.

Background  

Elasmobranch fishes are an ancient group of vertebrates which have high potential as model species for research into evolutionary physiology and genomics. However, no comparative studies have established suitable reference genes for quantitative PCR (qPCR) in elasmobranchs for any physiological conditions. Oxygen availability has been a major force shaping the physiological evolution of vertebrates, especially fishes. Here we examined the suitability of 9 reference candidates from various functional categories after a single hypoxic insult or after hypoxia preconditioning in epaulette shark (Hemiscyllium ocellatum).  相似文献   

13.
14.

Background  

Vasopressin and oxytocin are mammalian neurohypophysial hormones with distinct functions. Vasopressin is involved mainly in osmoregulation and oxytocin is involved primarily in parturition and lactation. Jawed vertebrates contain at least one homolog each of vasopressin and oxytocin, whereas only a vasopressin-family hormone, vasotocin, has been identified in jawless vertebrates. The genes encoding vasopressin and oxytocin are closely linked tail-to-tail in eutherian mammals whereas their homologs in chicken, Xenopus and coelacanth (vasotocin and mesotocin) are linked tail-to-head. In contrast, their pufferfish homologs, vasotocin and isotocin, are located on the same strand of DNA with isotocin located upstream of vasotocin and separated by five genes. These differences in the arrangement of the two genes in different bony vertebrate lineages raise questions about their origin and ancestral arrangement. To trace the origin of these genes, we have sequenced BAC clones from the neurohypophysial gene loci in a cartilaginous fish, the elephant shark (Callorhinchus milii), and in a jawless vertebrate, the Japanese lamprey (Lethenteron japonicum). We have also analyzed the neurohypophysial hormone gene locus in an invertebrate chordate, the amphioxus (Branchiostoma floridae).  相似文献   

15.
Lbx2 is a member of the ladybird family of homeobox genes. The first murine ortholog identified, Lbx1, is required for hypaxial musculature and dorsal spinal cord neuron development. The second murine ortholog, Lbx2, is expressed in the developing urogenital and nervous systems. To elucidate the function of Lbx2, we generated a gene-targeted allele of Lbx2 in mice. Lbx2 deficiency did not impair mouse development, and Lbx2 null mice appeared healthy and fertile. Replacement of Lbx2 by the lacZ gene provides a valuable histological marker for Lbx2-expressing cells. Given the important role of Pax3 in neural crest, we intercrossed our Lbx2 deficient mice with Splotch Pax3 mutant mice to determine if Pax3 affects Lbx2 expression. There was reduced Lbx2 expression in dorsal root ganglia and cranial nerve ganglia with Pax3 deficiency, but not in the genital tubercle. This suggested that Pax3 is required for Lbx2 expression in affected neural crest-derived tissues.  相似文献   

16.
17.
18.
19.

Background  

One of the many ascribed functions of CCCTC-binding factor (CTCF) in vertebrates is insulation of genes via enhancer-blocking. Insulation allows genes to be shielded from "cross-talk" with neighboring regulatory elements. As such, endogenous insulator sequences would be valuable elements to enable stable transgene expression. Recently, CTCF joined Su(Hw), Zw5, BEAF32 and GAGA factor as a protein associated with insulator activity in the fruitfly, Drosophila melanogaster. To date, no known insulators have been described in mosquitoes.  相似文献   

20.

Background  

Action potential generation in excitable cells such as myocytes and neurons critically depends on voltage-gated sodium channels. In mammals, sodium channels exist as macromolecular complexes that include a pore-forming alpha subunit and 1 or more modulatory beta subunits. Although alpha subunit genes have been cloned from diverse metazoans including flies, jellyfish, and humans, beta subunits have not previously been identified in any non-mammalian species. To gain further insight into the evolution of electrical signaling in vertebrates, we investigated beta subunit genes in the teleost Danio rerio (zebrafish).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号