首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
DNA错配修复     
DNA错配修复*任庆虎张宗玉童坦君(北京医科大学生化与分子生物学系,北京100083)关键词错配修复遗传性非息肉型结直肠癌微卫星DNADNA错配修复基因(DNAmismatchrepairgene)首先在细菌和酵母中发现,最近在人类基因组中也找到了类...  相似文献   

2.
DNA错配修复、染色体不稳定和肿瘤的关系   总被引:1,自引:0,他引:1  
DNA错配修复系统可以识别并纠正DNA复制过程中出现的错误.保证基因组的稳定性和完整性.错配修复系统缺陷可能导致遗传物质发生突变,引发恶性肿瘤.肿瘤患者经常表现出染色体不稳定,具体表现为微卫星不稳定性和杂合性缺失.本文就DNA错配修复、染色体不稳定和肿瘤之间的联系予以综述.  相似文献   

3.
DNA错配修复系统研究进展   总被引:3,自引:0,他引:3       下载免费PDF全文
DNA错配修复(mismatch repair, MMR)系统广泛存在于生物体中.从原核生物大肠杆菌到真核生物及人类,MMR系统有不同的组成成分和修复机制.人体内MMR基因缺陷会造成基因组的不稳定并诱发遗传性非息肉型直肠癌以及其他自发性肿瘤.大肠杆菌MMR系统中的MutS蛋白可特异识别错配或未配对碱基,目前已经发展了多种基于MutS蛋白的基因突变/多态性检测技术.  相似文献   

4.
将DNA错配修复基因mutS(2.56kb)克隆于分泌型原核表达载体pET32a( )上,以N端融合6个组氨酸的形式在E.col AD494(DE3)中进行了IPTG诱导表达。SDS-PAGE分析证实有一与预期分子量相应的诱导表达条带,其表达量占全菌蛋白质的35%左右,且表达蛋白以可溶形式存在。利用固定化金属离子(Ni^2 )配体亲和层析柱纯化目的蛋白,其纯度为90%以上。与含有错配碱基DNA双链的结合反应证明该蛋白具有特异性识别,结合含有错配碱基DNA双链的生物活性。  相似文献   

5.
DNA错配修复与癌症的发生及治疗   总被引:3,自引:0,他引:3       下载免费PDF全文
DNA错配修复是细胞复制后的一种修复机制,具有维持DNA复制保真度,控制基因变异的作用。DNA错配修复缺陷使整个基因组不稳定,最终会导致肿瘤和癌症的发生。DNA错配修复系统不仅通过矫正在DNA重组和复制过程中产生的碱基错配而保持基因组的稳定,而且通过诱导DNA损伤细胞的凋亡而消除由突变细胞生长形成的癌变。错配修复缺陷细胞的抗药性也引起了癌症化疗研究方面的关注。大多数情况下,错配修复健全型细胞对肿瘤化疗药物敏感,而错配修复缺陷细胞却有较高的抗性。DNA错配修复系统通过修复和诱导细胞凋亡维护基因组稳定的功能,显示了错配修复途径在癌症生物学和分子医学中的重要性。  相似文献   

6.
错配修复蛋白是DNA错配修复系统中主要功能蛋白质,主要参与DNA复制过程中对错配碱基的识别和修复.近年来研究表明错配修复蛋白还参与DNA损伤信号的传递、细胞周期的调控、减数分裂和有丝分裂等.错配修复蛋白缺陷会增加患肿瘤的危险性或者直接导致肿瘤;由于错配修复蛋白参与了DNA损伤信号传递、周期调控,错配修复蛋白缺陷还会导致细胞对相关抗癌药物产生耐受.  相似文献   

7.
李学璐  李芳 《中国微生态学杂志》2012,24(10):958-959,961
通过人类错配修复基因( hMLHl)启动子CpG岛甲基化与微卫星不稳定性(MSI)的分析,探讨癌症发病的机制.错配修复基因hMLH1启动子CpG岛甲基化是hMLH1基因失活的重要机制,而hMLH1的表达失活则可导致MSI的产生,促进癌症的发生.根据一系列研究得出结论,在肿瘤组织中hMLH1基因启动子CpG岛甲基化和微卫星不稳定(MSI)有显著相关性,并在癌症早期发生、发展过程中起重要作用.因此临床检测hMLH1基因启动子CpG岛甲基化及微卫星不稳定可能成为癌症鉴别诊断、评价预后、指导化疗的分子标志物之一.  相似文献   

8.
目的:用近缘物种鲤微卫星引物来分离鲫鱼微卫星标记并对其多态性进行分析。方法:以鲫鱼基因组DNA为模板,采用6对鲤微卫星引物进行PCR扩增,PCR产物经8%的非变性聚丙烯酰胺凝胶电泳和银染色检测。结果:筛选出2个以AC和TA为重复单元的鲫鱼新的微卫星标记。多态性分析表明,这2个微卫星标记的遗传杂合度分别为0.611和0.644,多态信息含量为0.536和0.572,属于高度多态性标记。结论:该研究筛选的2个微卫星标记可应用于鲫鱼遗传多样性、遗传连锁图谱构建及分子标记辅助育种等方面的研究。  相似文献   

9.
猪13号染色体部分微卫星标记与肉质性状关系的研究   总被引:11,自引:0,他引:11  
从已公布的猪13号染色体连锁图谱中选择与PPAR基因连锁的7个微卫星座位,在苏太猪群体中对这些位点进行群体遗传学特性分析。研究结果表明:各位点等位基因数为6~9个,杂合度为0.59~0.81,多态信息含量为0.51~0.76。方差分析结果显示:微卫星位点S0021对pH值、SW937对系水力影响均达到极显著水平(P<0.01);位点S0293对嫩度、SW482对背膘厚也有显著影响(P<0.05);其他位点S0222、S0281和SWR2054对各性状影响均未达到显著水平(P>0.05)。  相似文献   

10.
MNNG诱发的遗传不稳定vero细胞中错配修复功能的研究   总被引:4,自引:0,他引:4  
Gel retardation analysis and in vitro DNA mismatch repair system were used to examine whether there were mismatch repair deficiency in MNNG-induced genetically unstable vero cell, which was manifested by a delayed and highly increased rate of non-targeted mutation. A mismatch binding protein which could selectively bind to G.T mispair in DNA was identified in its whole-cell extracts. It was also identified that G.T mispair could be specifically and effectively corrected into G.C pair in its nuclear extracts. Compared with normal vero cell, there were no functional deficiency of the above mismatch repair mechanisms. So it could be excluded the possibility that the functional deficiency of mismatch binding protein or G.T mismatch repair pathway participated in the induction of genetic instability in vero cell by MNNG.  相似文献   

11.
Mismatch repair     
Specific repair systems are activated in response to DNA lesions. Mismatch repair protects the genome of prokaryotic and eukaryotic cells from errors arising during replication or induced by mutagenic factors. The mismatch repair system distinguishes between the newly synthesized and pattern DNA strands by the extent of methylation and checks the accuracy of genetic information after homologous recombination. Very short-patch repair corrects mismatches in CC(A/T)GG sites. The 8-oxoguanine system is independent of DNA hemimethylation and removes oxidized bases from prokaryotic and eukaryotic genomes. Mutations of repair genes increase mutagenesis in prokaryotic cells and cause colorectal cancer in humans. The review considers the repair mechanisms and the role of repair defects in mutagenesis and carcinogenesis.  相似文献   

12.
Mismatch Repair     
Highly conserved MutS homologs (MSH) and MutL homologs (MLH/PMS) are the fundamental components of mismatch repair (MMR). After decades of debate, it appears clear that the MSH proteins initiate MMR by recognizing a mismatch and forming multiple extremely stable ATP-bound sliding clamps that diffuse without hydrolysis along the adjacent DNA. The function(s) of MLH/PMS proteins is less clear, although they too bind ATP and are targeted to MMR by MSH sliding clamps. Structural analysis combined with recent real-time single molecule and cellular imaging technologies are providing new and detailed insight into the thermal-driven motions that animate the complete MMR mechanism.  相似文献   

13.
Both genotoxic and non-genotoxic chemicals can act as carcinogens. However, while genotoxic compounds lead directly to mutations that promote unregulated cell growth, the mechanism by which non-genotoxic carcinogens lead to cellular transformation is poorly understood. Using a model non-genotoxic carcinogen, arsenic, we show here that exposure to arsenic inhibits mismatch repair (MMR) in human cells, possibly through its ability to stimulate epidermal growth factor receptor (EGFR)-dependent tyrosine phosphorylation of proliferating cellular nuclear antigen (PCNA). HeLa cells exposed to exogenous arsenic demonstrate a dose- and time-dependent increase in the levels of EGFR and tyrosine 211-phosphorylated PCNA. Cell extracts derived from arsenic-treated HeLa cells are defective in MMR, and unphosphorylated recombinant PCNA restores normal MMR activity to these extracts. These results suggest a model in which arsenic induces expression of EGFR, which in turn phosphorylates PCNA, and phosphorylated PCNA then inhibits MMR, leading to increased susceptibility to carcinogenesis. This study suggests a putative novel mechanism of action for arsenic and other non-genotoxic carcinogens.  相似文献   

14.
Colorectal cancer (CRC) is a heterogeneous disease and a major contributor to world cancer mortality rates. Molecular subtypes of CRC have become standards for CRC classification and have established prognostic potential. Here, we attempt to corroborate and provide further insight pertinent to the fragile histidine triad (FHIT) gene in microsatellite instable (MSI), microsatellite stable (MSS), and CpG island methylator phenotype (CIMP) CRC subtypes. We employed array comparative genomic hybridization and multiplex ligation-dependent probe amplification (MLPA) techniques to survey genomic aberrations in FHIT gene and their effects on FHIT protein expression using immunohistochemistry (IHC) in a CRC cohort. We further studied FHIT protein expression by IHC in a larger CRC cohort defined for its mismatch repair (MMR) protein expression and genomic methylation profiles. Our results show FHIT genomic deletions centered in exons 4 and 5 in most of MSI-CRC samples. Moreover, we confirmed the significant association of FHIT protein expression diminution (p=0.035) with MSI-CRC. In the larger cohort, reduced FHIT protein expression was significantly associated with CIMP-high subtype of CRC (p=0.009) and loss of PMS2 protein expression (p=0.017). We conclude that FHIT expression may be a valuable marker for CRC subtyping, and its diagnostic, prognostic, and therapeutic potential should be perused.  相似文献   

15.
DNA mismatch repair (MMR) is a DNA excision–resynthesis process that principally enhances replication fidelity. Highly conserved MutS (MSH) and MutL (MLH/PMS) homologs initiate MMR and in higher eukaryotes act as DNA damage sensors that can trigger apoptosis. MSH proteins recognize mismatched nucleotides, whereas the MLH/PMS proteins mediate multiple interactions associated with downstream MMR events including strand discrimination and strand-specific excision that are initiated at a significant distance from the mismatch. Remarkably, the biophysical functions of the MLH/PMS proteins have been elusive for decades. Here we consider recent observations that have helped to define the mechanics of MLH/PMS proteins and their role in choreographing MMR. We highlight the stochastic nature of DNA interactions that have been visualized by single-molecule analysis and the plasticity of protein complexes that employ thermal diffusion to complete the progressions of MMR.  相似文献   

16.
DNA mismatch repair (MMR) corrects DNA base-pairing errors that occur during DNA replication. MMR catalyzes strand-specific DNA degradation and resynthesis by dynamic molecular coordination of sequential downstream pathways. The temporal and mechanistic order of molecular events is essential to insure interactions in MMR that occur over long distances on the DNA. Biophysical real-time studies of highly conserved components on mismatched DNA have shed light on the mechanics of MMR. Single-molecule imaging has visualized stochastically coordinated MMR interactions that are based on thermal fluctuation-driven motions. In this review, we describe the role of diffusivity and stochasticity in MMR beginning with mismatch recognition through strand-specific excision. We conclude with a perspective of the possible research directions that should solve the remaining questions in MMR.  相似文献   

17.
目的:研究海南汉族人群MICB等位基因的多态性与肺癌易感性之间的关联性。方法:采用PCR-SSP(PCR sequence-specific primers)和PCR-SBT(PCR sequence-based typing)方法对样本MICB等位基因的多态性进行检测。结果:肺癌患者中检出14种MICB等位基因;和对照组相比较,MICB*00502等位基因在肺癌患者组分布频率较少(43.5%vs 57.8%),MICB*016等位基因在肺癌患者组分布较多(5.9%vs 0.6%);MICB*016等位基因可能对肺癌易感(OR=11.19,95%CI:2.59-48.24,Pc0.05);MICB*00502等位基因可能对肺癌不易感(MICB*00502:OR=0.56,95%CI:0.42-0.76,Pc0.05)。结论:MICB等位基因的多态性与肺癌的易感性之间存在关联性。  相似文献   

18.
《Epigenetics》2013,8(10):1431-1438
Lynch syndrome (LS) is a tumor predisposing condition caused by constitutional defects in genes coding for components of the mismatch repair (MMR) apparatus. While hypermethylation of the promoter of the MMR gene MLH1 occurs in about 15% of colorectal cancer samples, it has also been observed as a constitutional alteration, in the absence of DNA sequence mutations, in a small number of LS patients. In order to obtain further insights on the phenotypic characteristics of MLH1 epimutation carriers, we investigated the somatic and constitutional MLH1 methylation status of 14 unrelated subjects with a suspicion of LS who were negative for MMR gene constitutional mutations and whose tumors did not express the MLH1 protein. A novel case of constitutional MLH1 epimutation was identified. This patient was affected with multiple primary tumors, including breast cancer, diagnosed starting from the age of 55 y. Investigation of her offspring by allele specific expression revealed that the epimutation was not stable across generations. We also found MLH1 hypermethylation in cancer samples from 4 additional patients who did not have evidence of constitutional defects. These patients had some characteristics of LS, namely early age at onset and/or positive family history, raising the possibility of genetic influences in the establishment of somatic MLH1 methylation.  相似文献   

19.
Abstract

Our genetic information is constantly challenged by exposure to endogenous and exogenous DNA-damaging agents, by DNA polymerase errors, and thereby inherent instability of the DNA molecule itself. The integrity of our genetic information is maintained by numerous DNA repair pathways, and the importance of these pathways is underscored by their remarkable structural and functional conservation across the evolutionary spectrum. Because of the highly conserved nature of DNA repair, the enzymes involved in this crucial function are often able to function in heterologous cells; as an example, the E. coli Ada DNA repair methyltransferase functions efficiently in yeast, in cultured rodent and human cells, in transgenic mice, and in ex vivo-modified mouse bone marrow cells. The heterologous expression of DNA repair functions has not only been used as a powerful cloning strategy, but also for the exploration of the biological and biochemical features of numerous enzymes involved in DNA repair pathways. In this review we highlight examples where the expression of DNA repair enzymes in heterologous cells was used to address fundamental questions about DNA repair processes in many different organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号