首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Background  

Broad-scale phylogeographic studies of freshwater organisms provide not only an invaluable framework for understanding the evolutionary history of species, but also a genetic imprint of the paleo-hydrological dynamics stemming from climatic change. Few such studies have been carried out in Siberia, a vast region over which the extent of Pleistocene glaciation is still disputed. Brachymystax lenok is a salmonid fish distributed throughout Siberia, exhibiting two forms hypothesized to have undergone extensive range expansion, genetic exchange, and multiple speciation. A comprehensive phylogeographic investigation should clarify these hypotheses as well as provide insights on Siberia's paleo-hydrological stability.  相似文献   

2.

Aim

Many freshwater fishes are migrating poleward to more thermally suitable habitats in response to warming climates. In this study, we aimed to identify which freshwater fishes are most sensitive to climatic changes and asked: (i) how fast are lakes warming? (ii) how fast are fishes moving? and (iii) are freshwater fishes tracking climate?

Location

Ontario, Canada.

Methods

We assembled a database containing time series data on climate and species occurrence data from 10,732 lakes between 1986 and 2017. We calculated the rate of lake warming and climate velocity for these lakes. Climate velocities were compared with biotic velocities, specifically the rate at which the northernmost extent of each species shifted north.

Results

Lakes in Ontario warmed by 0.2°C decade−1 on average, at a climate velocity of 9.4 km decade−1 between 1986 and 2017. In response, some freshwater fishes have shifted their northern range boundaries with considerable interspecific variation ranging from species moving southwards at a rate of −58.9 km decade−1 to species ranges moving northwards at a rate of 83.6 km decade−1 over the same time period. More freshwater fish species are moving into northern lakes in Ontario than those being lost. Generally, predators are moving their range edges northwards, whereas prey fishes are being lost from northern lakes.

Main Conclusions

The concurrent loss of cooler refugia, combined with antagonistic competitive and predatory interactions with the range expanding species, has resulted in many commercially important predators moving their range edges northwards, whereas prey species have contracted their northern range edge boundaries. Trophic partitioning of range shifts highlights a previously undocumented observation of the loss of freshwater fishes from lower trophic levels in response to climate-driven migrations.  相似文献   

3.

Background  

Owing to its independence from the main Central European drainage systems, the Italian freshwater fauna is characterized by a high degree of endemicity. Three main ichthyogeographic districts have been proposed in Italy. Yet, the validity of these regions has not been confirmed by phylogenetic and population genetic analyses and a phylogeographic scenario for Italy's primary freshwater fish fauna is still lacking. Here, we investigate the phylogeography of the Italian vairone (Telestes muticellus).  相似文献   

4.

Background  

Teleost fishes of the Coregonidae are good model systems for studying postglacial evolution, adaptive radiation and ecological speciation. Of particular interest is whether the repeated occurrence of sympatric species pairs results from in-situ divergence from a single lineage or from multiple invasions of one or more different lineages. Here, we analysed the genetic structure of Baltic ciscoes (Coregonus albula complex), examining 271 individuals from 8 lakes in northern Germany using 1244 polymorphic AFLP loci. Six lakes had only one population of C. albula while the remaining two lakes had C. albula as well as a sympatric species (C. lucinensis or C. fontanae).  相似文献   

5.

Background  

Cichlid fishes are classic examples of adaptive radiation because of their putative tendency to explosively diversify after invading novel environments. To examine whether ecological opportunity increased diversification (speciation minus extinction) early in a species-rich cichlid radiation, we determined if Heroine cichlids experienced a burst of diversification following their invasion of Central America.  相似文献   

6.

Background  

Lake Tanganyika (LT) is the oldest of the African Rift Lakes and is one of the richest freshwater ecosystems on Earth, with high levels of faunal diversity and endemism. The endemic species flocks that occur in this lake, such as cichlid fishes, gastropods, catfish and crabs, provide unique comparative systems for the study of patterns and processes of speciation. Mastacembelid eels (Teleostei: Mastacembelidae) are a predominately riverine family of freshwater fish, occurring across Africa and Asia, but which also form a small species flock in LT.  相似文献   

7.
8.

Background  

The dynamic geological and climatic histories of temperate South America have played important roles in shaping the contemporary distributions and genetic diversity of endemic freshwater species. We use mitochondria and nuclear sequence variation to investigate the consequences of mountain barriers and Quaternary glacial cycles for patterns of genetic diversity in the diadromous fish Galaxias maculatus in Patagonia (~300 individuals from 36 locations).  相似文献   

9.

Background  

Comparisons of functionally important changes at the molecular level in model systems have identified key adaptations driving isolation and speciation. In cichlids, for example, long wavelength-sensitive (LWS) opsins appear to play a role in mate choice and male color variation within and among species. To test the hypothesis that the evolution of elaborate coloration in male guppies (Poecilia reticulata) is also associated with opsin gene diversity, we sequenced long wavelength-sensitive (LWS) opsin genes in six species of the family Poeciliidae.  相似文献   

10.
11.

Background  

Climate in alpine habitats has undergone extreme variation during Pliocene and Pleistocene epochs, resulting in repeated expansion and contraction of alpine glaciers. Many cold-adapted alpine species have responded to these climatic changes with long-distance range shifts. These species typically exhibit shallow genetic differentiation over a large geographical area. In contrast, poorly dispersing organisms often form species complexes within mountain ranges, such as the California endemic ice-crawlers (Grylloblattodea: Grylloblattidae: Grylloblatta). The diversification pattern of poorly dispersing species might provide more information on the localized effects of historical climate change, the importance of particular climatic events, as well as the history of dispersal. Here we use multi-locus genetic data to examine the phylogenetic relationships and geographic pattern of diversification in California Grylloblatta.  相似文献   

12.

Background  

After a volcano erupts, a lake may form in the cooled crater and become an isolated aquatic ecosystem. This makes fishes in crater lakes informative for understanding sympatric evolution and ecological diversification in barren environments. From a geological and limnological perspective, such research offers insight about the process of crater lake ecosystem establishment and speciation. In the present study we use genetic and coalescence approaches to infer the colonization history of Midas cichlid fishes (Amphilophus cf. citrinellus) that inhabit a very young crater lake in Nicaragua-the ca. 1800 year-old Lake Apoyeque. This lake holds two sympatric, endemic morphs of Midas cichlid: one with large, hypertrophied lips (~20% of the total population) and another with thin lips. Here we test the associated ecological, morphological and genetic diversification of these two morphs and their potential to represent incipient speciation.  相似文献   

13.
Peripatric speciation and the importance of founder effects have long been controversial, and multilocus sequence data and coalescent methods now allow hypotheses of peripatric speciation to be tested in a rigorous manner. Using a multilocus phylogeographical data set for two species of salamanders (genus Hydromantes) from the Sierra Nevada of California, hypotheses of recent divergence by peripatric speciation and older, allopatric divergence were tested. Phylogeographical analysis revealed two divergent lineages within Hydromantes platycephalus, which were estimated to have diverged in the Pliocene. By contrast, a low‐elevation species, Hydromantes brunus, diverged from within the northern lineage of H. platycephalus much more recently (mid‐Pleistocene), during a time of major climatic change in the Sierra Nevada. Multilocus species tree estimation and coalescent estimates of divergence time, migration rate, and growth rate reject a scenario of ancient speciation of H. brunus with subsequent gene flow and introgression from H. platycephalus, instead supporting a more recent divergence with population expansion. Although the small, peripheral distribution of H. brunus suggests the possibility of peripatric speciation, the estimated founding population size of the species was too large to have allowed founder effects to be important in its divergence. These results provide evidence for both recent speciation, most likely tied to the climatic changes of the Pleistocene, and older lineage divergence, possibly due to geological events, and add to evidence that Pleistocene glacial cycles were an important driver of diversification in the Sierra Nevada.  相似文献   

14.

Background  

Mesoamerica is one of the most threatened biodiversity hotspots in the world, yet we are far from understanding the geologic history and the processes driving population divergence and speciation for most endemic taxa. In species with highly differentiated populations selective and/or neutral factors can induce rapid changes to traits involved in mate choice, promoting reproductive isolation between allopatric populations that can eventually lead to speciation. We present the results of genetic differentiation, and explore drift and selection effects in promoting acoustic and morphological divergence among populations of Campylopterus curvipennis, a lekking hummingbird with an extraordinary vocal variability across Mesoamerica.  相似文献   

15.

Background  

Exploring the genetic mechanisms underlying speciation is a hot topic in modern genetics and evolutionary studies. Distortion of marker transmission ratio is frequently ascribed to selection against alleles that cause hybrid incompatibility. The natural introgression between P. massoniana and P. hwangshanensis and their distribution ranges lead to the emergence of the two species as desirable organisms to study the genetic mechanisms for speciation.  相似文献   

16.
17.

Background  

During vertebrate head evolution, muscle changes accompanied radical modification of the skeleton. Recent studies have suggested that muscles and their innervation evolve less rapidly than cartilage. The freshwater teleostean zebrafish (Danio rerio) is the most studied actinopterygian model organism, and is sometimes taken to represent osteichthyans as a whole, which include bony fishes and tetrapods. Most work concerning zebrafish cranial muscles has focused on larval stages. We set out to describe the later development of zebrafish head muscles and compare muscle homologies across the Osteichthyes.  相似文献   

18.

Aim

Hydrologic alterations are widespread in freshwater ecosystems worldwide and often detrimentally impact fish populations. Habitat suitability models are commonly used to assess these impacts, but these models frequently rely upon observed fish–habitat relationships rather than more mechanistic underpinnings. The aim of this study was to demonstrate how to incorporate swim performance into a measure of habitat connectivity at a fine scale, providing a method for assessing the availability of suitable habitat for stream fishes.

Location

We applied this technique to an endangered species, the Western Silvery Minnow Hybognathus argyritis, in the Milk River of southern Alberta, Canada. The Milk River is an augmented system, where a diversion in nearby St. Mary River augments flow by a factor >3 × (from 1–5 m3/s to 15–20 m3/s).

Methods

We used laboratory measured swim performance of Western Silvery Minnow to develop a movement cost function that was used in conjunction with a habitat suitability model to assess habitat availability via a recently developed graph‐theoretic metric, equivalent connected area (ECA).

Results

Stream augmentation altered not only habitat suitability but also habitat connectivity for this species. During augmentation, suitable habitat area declined by 81.3%. Changes in habitat connectivity were site dependent. Movement costs between habitat patches were lower during augmentation due to current‐assisted dispersal and increased distance to patches during natural flows from dried streambeds. When movement costs were incorporated into ECA, ECA decreased by 78.0% during augmentation.

Main conclusions

With changing climate and increasing anthropogenic impacts on aquatic ecosystems, understanding how freshwater fishes relate to their habitat is critical for appropriate management. In many cases, such as the Western Silvery Minnow, mitigating habitat suitability may not be sufficient, as species are unable to reach suitable habitat. The incorporation of swim performance into habitat connectivity assessments, as carried out here, can be easily adapted to other species and situations and can improve the understanding of impacts to stream fishes and increase the effectiveness of mitigation efforts.  相似文献   

19.

Aim

Past climatic oscillations are the main driving force of evolutionary changes in alpine species. Species' response to paleoclimatic oscillations is crucial in forecasting their future response in face of climate warming. The aim of this research is to explore the effect of climatic fluctuations on the evolutionary history, demography, and distribution of high-mountain bellflowers (Campanula lehmanniana complex), the flagship and taxonomically problematic members of chasmophytic vegetation within an underexplored biodiversity hotspot, the Mountains of Central Asia.

Location

Central Asia (Tian Shan, Alai and Zeravshan-Hissar Mountains).

Methods

We used molecular data (ITS, cpDNA, DArTseq-based SNPs) of 262 individuals (70 for the phylogeny reconstruction, and 247 from 31 localities for population studies). We analysed the data using phylogenetic and molecular clock reconstructions, coalescent simulations, and ecological niche modelling.

Results

Tertiary isolation between the Tian-Shanian and Pamir-Alaian populations led to the differentiation of the two main lineages (~5–6 Mya) corresponding to C. eugeniae and C. lehmanniana, whereas further Quaternary isolation into subregions led to intraspecific genetic differentiation, which starts almost simultaneously for both species (~2.7–1.5 Mya). The relatively small genetic admixture among populations indicates rare historic events of connectivity. In response to Holocene warming, the analysed species experienced a substantial decline in effective population size. Currently, the distribution of both taxa is highly influenced by precipitation in the coldest and driest quarters.

Main Conclusions

Our results highlight a general principle that glacial–interglacial cycles and contemporary island-like habitats distribution, shape the genomic variation of high-mountain species. The similar declining demographic trend of examined taxa may suggest the overall response to ongoing climate warming. The results underline also the urgent need for conservation action in alpine regions to preserve their biodiversity.  相似文献   

20.
The high speciation rate of Chirostoma in Central Mexico has been associated with allopatric speciation events promoted by the emergence of vicariant barriers in freshwater habitats, as well as by sympatric ecological segregation, common in those species inhabiting lacustrine ecosystems. Through nuclear and mitochondrial markers, this study revealed a speciation process within Chirostoma attenuatum resulting in two evolutionary independent units that coincide with their morphological differentiation, indicating that Chirostoma attenuatum and Chirostoma zirahuen may be considered separate species. This process was the result of vicariance associated with geological dynamics of the region. Phylogeographic findings indicated two speciation stages: early allopatric isolation, during which the isolated populations accumulated unique adaptations, and secondary contact with low migration rate and the maintenance of the evolutionary trajectory. Historical demographic analysis indicated that the two well‐differentiated lineages underwent independent evolutionary histories in their respective lakes. Chirostoma zirahuen from Zirahuen and C. attenuatum from Patzcuaro represent unique and irreplaceable genetic diversity that must to be conserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号