首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glycosyl phosphatidylinositol (GPI) anchor of membrane proteins is widely distributed in eukaryotes and parasitic protozoa. The structure and biosynthetic pathway of its core have been elucidated and appear to be conserved in various species. Some of the genes involved in mammalian GPI-anchor biosynthesis have recently been isolated using GPI-anchor-deficient mutant cell lines and expression cloning methods. One of these genes proved to be responsible for a GPI-anchor deficiency known as paroxysmal nocturnal hemoglobinuria. Since the core of the GPI anchor is variously modified in different species and since there may be other differences between its biosynthetic pathway in parasites and their hosts, this pathway could be a target for chemotherapy. In this review, Taroh Kinoshita and Junji Takeda focus on the GPI-anchor biosynthetic pathway and the genes involved in it.  相似文献   

2.
A new study shows that Ras2 regulates GPI-anchor synthesis in the ER. Reciprocally, the targeted enzyme GPI-GlcNAc transferase regulates Ras2 signal output. This novel intersection of Ras2 signaling and an ER-localized protein complex has interesting implications for Ras function.  相似文献   

3.
4.
Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved post-translational modification in eukaryotes. GPI is synthesized and transferred to proteins in the endoplasmic reticulum. GPI-anchored proteins are then transported from the endoplasmic reticulum to the plasma membrane through the Golgi apparatus. GPI-anchor functions as a sorting signal for transport of GPI-anchored proteins in the secretory and endocytic pathways. After GPI attachment to proteins, the structure of the GPI-anchor is remodeled, which regulates the trafficking and localization of GPI-anchored proteins. Recently, genes required for GPI remodeling were identified in yeast and mammalian cells. Here, we describe the structural remodeling and function of GPI-anchors, and discuss how GPI-anchors regulate protein sorting, trafficking, and dynamics. This article is part of a Special Issue entitled Lipids and Vesicular Transport.  相似文献   

5.
MOTIVATION: The knowledge of the subcellular localization of a protein is fundamental for elucidating its function. It is difficult to determine the subcellular location for eukaryotic cells with experimental high-throughput procedures. Computational procedures are then needed for annotating the subcellular location of proteins in large scale genomic projects. RESULTS: BaCelLo is a predictor for five classes of subcellular localization (secretory pathway, cytoplasm, nucleus, mitochondrion and chloroplast) and it is based on different SVMs organized in a decision tree. The system exploits the information derived from the residue sequence and from the evolutionary information contained in alignment profiles. It analyzes the whole sequence composition and the compositions of both the N- and C-termini. The training set is curated in order to avoid redundancy. For the first time a balancing procedure is introduced in order to mitigate the effect of biased training sets. Three kingdom-specific predictors are implemented: for animals, plants and fungi, respectively. When distributing the proteins from animals and fungi into four classes, accuracy of BaCelLo reach 74% and 76%, respectively; a score of 67% is obtained when proteins from plants are distributed into five classes. BaCelLo outperforms the other presently available methods for the same task and gives more balanced accuracy and coverage values for each class. We also predict the subcellular localization of five whole proteomes, Homo sapiens, Mus musculus, Caenorhabditis elegans, Saccharomyces cerevisiae and Arabidopsis thaliana, comparing the protein content in each different compartment. AVAILABILITY: BaCelLo can be accessed at http://www.biocomp.unibo.it/bacello/.  相似文献   

6.
T-cadherin is a 95kDa glycoprotein member of the cadherin family of adhesion molecules attached to the extracellular surface of the cell membrane through a glycosyl-phosphatidylinositol (GPI)-anchor. Whether a T-cadherin ectodomain apical targeting signal or the GPI-anchor itself targets this protein to the apical membrane is not known. Chimeras of the reporter EGFP and T-cadherin have demonstrated that a minimal construct consisting of the C-terminal 25 amino acids including the N690 (omega-site) of T-cadherin was sufficient to GPI-anchor the EGFP protein. However, efficient GPI-anchor with minimal secretion of the protein required an additional 5 residues (omega-1 to omega-5). The GPI-anchored chimeras fractionated to the Triton X-100 detergent insoluble fraction and were released to the cell culture supernatant by phosphoinositide-specific phospho-lipase C digestion. When expressed in MDCK cells, all GPI-anchored chimeras targeted to the basolateral membrane, while the T/N-chimera and the wild-type T-cadherin targeted to the apical membrane. Therefore, T-cadherin is an example of another rare GPI-anchored protein where the anchor itself is not sufficient for apical targeting in MDCK cells.  相似文献   

7.
Glycosylphosphatidylinositols (GPIs) constitute a class of glycolipids that have various functions, the most basic being to attach proteins to the surface of eukaryotic cells. GPIs have to be taken into account, when expressing surface antigens from parasitic protozoa in heterologous systems. The synthesis of the GPI-anchors was previously reported to be drastically decreased to almost background level following baculovirus infection. Here we describe a new method to express GPI-anchor proteins in insect cells relying on using of a supplementary baculovirus construct that overexpresses the N-acetylglucosaminyl phosphatidylinositol de-N-acetylase, the enzyme catalyzing the second step in the GPI biosynthetic pathway.  相似文献   

8.
9.
Targeted knock-in supported by the CRISPR/Cas systems enables the insertion, deletion, and substitution of genome sequences exactly as designed. Although this technology is considered to have wide range of applications in life sciences, one of its prerequisites for practical use is to improve the efficiency, precision, and specificity achieved. To improve the efficiency of targeted knock-in, there first needs to be a reporter system that permits simple and accurate monitoring of targeted knock-in events. In the present study, we created such a system using the PIGP gene, an autosomal gene essential for GPI-anchor biosynthesis, as a reporter gene. We first deleted a PIGP allele using Cas9 nucleases and then incorporated a truncating mutation into the other PIGP allele in two near-diploid human cell lines. The resulting cell clones were used to monitor the correction of the PIGP mutations by detecting GPI anchors distributed over the cell membrane via flow cytometry. We confirmed the utility of these reporter clones by performing targeted knock-in in these clones via a Cas9 nickase-based strategy known as tandem paired nicking, as well as a common process using Cas9 nucleases, and evaluating the efficiencies of the achieved targeted knock-in. We also leveraged these reporter clones to test a modified procedure for tandem paired nicking and demonstrated a slight increase in the efficiency of targeted knock-in by the new procedure. These data provide evidence for the utility of our PIGP-based assay system to quantify the efficiency of targeted knock-in and thereby help improve the technology of targeted knock-in.  相似文献   

10.
11.
During recent years many protein fold recognition methods have been developed, based on different algorithms and using various kinds of information. To examine the performance of these methods several evaluation experiments have been conducted. These include blind tests in CASP/CAFASP, large scale benchmarks, and long-term, continuous assessment with newly solved protein structures. These studies confirm the expectation that for different targets different methods produce the best predictions, and the final prediction accuracy could be improved if the available methods were combined in a perfect manner. In this article a neural-network-based consensus predictor, Pcons, is presented that attempts this task. Pcons attempts to select the best model out of those produced by six prediction servers, each using different methods. Pcons translates the confidence scores reported by each server into uniformly scaled values corresponding to the expected accuracy of each model. The translated scores as well as the similarity between models produced by different servers is used in the final selection. According to the analysis based on two unrelated sets of newly solved proteins, Pcons outperforms any single server by generating approximately 8%-10% more correct predictions. Furthermore, the specificity of Pcons is significantly higher than for any individual server. From analyzing different input data to Pcons it can be shown that the improvement is mainly attributable to measurement of the similarity between the different models. Pcons is freely accessible for the academic community through the protein structure-prediction metaserver at http://bioinfo.pl/meta/.  相似文献   

12.
Glycosylphosphatidylinositol (GPI)-anchor attachment is one of the most common posttranslational protein modifications. Using the nematode Caenorhabditis elegans, we determined that GPI-anchored proteins are present in germline cells and distal tip cells, which are essential for the maintenance of the germline stem cell niche. We identified 24 C. elegans genes involved in GPI-anchor synthesis. Inhibition of various steps of GPI-anchor synthesis by RNA interference or gene knockout resulted in abnormal development of oocytes and early embryos, and both lethal and sterile phenotypes were observed. The piga-1 gene (orthologue of human PIGA) codes for the catalytic subunit of the phosphatidylinositol N-acetylglucosaminyltransferase complex, which catalyzes the first step of GPI-anchor synthesis. We isolated piga-1-knockout worms and found that GPI-anchor synthesis is indispensable for the maintenance of mitotic germline cell number. The knockout worms displayed 100% lethality, with decreased mitotic germline cells and abnormal eggshell formation. Using cell-specific rescue of the null allele, we showed that expression of piga-1 in somatic gonads and/or in germline is sufficient for normal embryonic development and the maintenance of the germline mitotic cells. These results clearly demonstrate that GPI-anchor synthesis is indispensable for germline formation and for normal development of oocytes and eggs.  相似文献   

13.
Tumor necrosis factor-alpha (TNF-alpha) binds to TNF-alpha receptors (TNFR) to produce a hexameric (TNF-alpha)(3)-(TNFR)(3) structure that stimulates apoptosis. We found by using ELISA that TNF-alpha binds to the glycosylphosphatidylinositol (GPI) anchor glycans of carcinoembryonic antigen, human placental alkaline phosphatase (hAP), and Tamm-Horsfall glycoprotein. These binding abilities were inhibited by 10(-6)M mannose-6-phosphate. Treatment of hAP with mild acid and phosphatase, which releases the N-acetylglucosamine (GlcNAc) beta1 -->phosphate-->6 residue from the GPI-anchor glycan of hAP, abrogated the binding of TNF-alpha to hAP. Thus, TNF-alpha binds to the GlcNAcbeta1-->phosphate-->6Man residue in GPI-anchor glycans. To investigate whether the carbohydrate-binding ability of TNF-alpha is related to its physiological functions, human lymphoma U937 cells were used. TNF-alpha stimulates U937 cell apoptosis in a dose-dependent manner and the presence of mannose-6-phosphate inhibited this. TNF-alpha-dependent tyrosine phosphorylation of several proteins in U937 cells was also diminished by mannose-6-phosphate. Phosphatidylinositol-specific phospholipase C-pretreatment also inhibited this tyrosine phosphorylation. These data suggest that TNF-alpha stimulates U937 cell apoptosis by forming a high-affinity nanomeric (TNF-alpha)(3)-(TNFR)(3)-(GPI-anchored glycan)(3) complex. The GPI-anchored glycoprotein involved remains to be identified.  相似文献   

14.
15.
Knowledge of the subcellular location of a protein provides valuable information about its function, possible interaction with other proteins and drug targetability, among other things. The experimental determination of a protein’s location in the cell is expensive, time consuming and open to human error. Fast and accurate predictors of subcellular location have an important role to play if the abundance of sequence data which is now available is to be fully exploited. In the post-genomic era, genomes in many diverse organisms are available. Many of these organisms are important in human and veterinary disease and fall outside of the well-studied plant, animal and fungi groups. We have developed a general eukaryotic subcellular localisation predictor (SCL-Epred) which predicts the location of eukaryotic proteins into three classes which are important, in particular, for determining the drug targetability of a protein—secreted proteins, membrane proteins and proteins that are neither secreted nor membrane. The algorithm powering SCL-Epred is a N-to-1 neural network and is trained on very large non-redundant sets of protein sequences. SCL-Epred performs well on training data achieving a Q of 86 % and a generalised correlation of 0.75 when tested in tenfold cross-validation on a set of 15,202 redundancy reduced protein sequences. The three class accuracy of SCL-Epred and LocTree2, and in particular a consensus predictor comprising both methods, surpasses that of other widely used predictors when benchmarked using a large redundancy reduced independent test set of 562 proteins. SCL-Epred is publicly available at http://distillf.ucd.ie/distill/.  相似文献   

16.
Single amino acid polymorphisms (SAPs), also known as non-synonymous single nucleotide polymorphisms (nsSNPs), are responsible for most of human genetic diseases. Discriminate the deleterious SAPs from neutral ones can help identify the disease genes and understand the mechanism of diseases. In this work, a method of deleterious SAP prediction at system level was established. Unlike most existing methods, our method not only considers the sequence and structure information, but also the network information. The integration of network information can improve the performance of deleterious SAP prediction. To make our method available to the public, we developed SySAP (a System-level predictor of deleterious Single Amino acid Polymorphisms), an easy-to-use and high accurate web server. SySAP is freely available at http://www.biosino.org/SySAP/and http://lifecenter.sgst.cn/SySAP/.  相似文献   

17.
The procyclic form of Trypanosoma brucei expresses procyclin surface glycoproteins with unusual glycosylphosphatidylinositol-anchor side chain structures that contain branched N-acetyllactosamine and lacto-N-biose units. The glycosyltransferase TbGT8 is involved in the synthesis of the branched side chain through its UDP-GlcNAc: βGal β1-3N-acetylglucosaminyltransferase activity. Here, we explored the role of TbGT8 in the mammalian bloodstream form of the parasite with a tetracycline-inducible conditional null T. brucei mutant for TbGT8. Under non-permissive conditions, the mutant showed significantly reduced binding to tomato lectin, which recognizes poly-N-acetyllactosamine-containing glycans. Lectin pull-down assays revealed differences between the wild type and TbGT8 null-mutant T. brucei, notably the absence of a broad protein band with an approximate molecular weight of 110 kDa in the mutant lysate. Proteomic analysis revealed that the band contained several glycoproteins, including the acidic ecto-protein phosphatase AcP115, a stage-specific glycoprotein in the bloodstream form of T. brucei. Western blotting with an anti-AcP115 antibody revealed that AcP115 was approximately 10 kDa smaller in the mutant. Enzymatic de-N-glycosylation demonstrated that the underlying protein cores were the same, suggesting that the 10-kDa difference was due to differences in N-linked glycans. Immunofluorescence microscopy revealed the colocalization of hemagglutinin epitope-tagged TbGT8 and the Golgi-associated protein GRASP. These data suggest that TbGT8 is involved in the construction of complex poly-N-acetyllactosamine-containing type N-linked and GPI-linked glycans in the Golgi of the bloodstream and procyclic parasite forms, respectively.  相似文献   

18.
目前,已知超过150种糖基磷脂酰肌醇锚定蛋白(glycosylphosphatidylinositol anchored protein, GPI-anchored protein)在哺乳动物细胞中表达,并参与免疫识别、细胞通讯与信号转导等多种生理过程。当蛋白质无法被GPI修饰时,前体蛋白质通过内质网相关蛋白质降解(endoplasmic reticulum associated degradation, ERAD)途径降解。然而,GPI锚定蛋白ERAD的降解机制尚不清楚。为了探究GPI锚定蛋白前体的ERAD途径的具体机制,本研究敲除人胚胎肾细胞293细胞株(HEK293)的GPI转酰胺酶复合物亚基PIGS基因,进而敲除E3泛素连接酶HRD1和GP78基因,之后随机在PIGS-KO,PIGS-HRD1-KO和PIGS-GP78-KO过表达16种GPI锚定蛋白质(以亲本PIGS-KO细胞株作为对照组),Western印迹结果证明,GPI锚定蛋白前体在细胞株PIGS-HRD1-KO中的蛋白质积累量(IPHK)和PIGS-GP78-KO中的蛋白质积累量(IPG...  相似文献   

19.
The plasma membrane of Plasmodium sporozoites is uniformly covered by the glycosylphosphatidylinositol (GPI)-anchored circumsporozoite (CS) protein. Sporozoites form in the mosquito midgut through a budding process that occurs within a multinucleate oocyst underneath the basal lamina of the gut. Earlier genetic studies established that normal sporozoite development requires CS. Mutant parasites lacking CS [CS (-)] do not form sporozoites. Ultrastructural analysis of the oocysts from these parasites revealed that there is an early block in the cytokinesis that occurs within the multinucleate oocysts to generate individual sporozoites. Parasites that are hypomorphic for CS expression gave rise to sporozoites with abnormal morphology. These results proved that CS plays a direct role in the maturation of oocysts and in the normal budding of sporozoites. In this article, we examined if the membrane localization of CS via a GPI-anchor, is crucial for its function during sporozoite formation. We generated three mutants in Plasmodium berghei CS, CS-DeltaGPI, CS-TM1 and CS-TM2. In CS-DeltaGPI, we deleted the signal sequence required for the addition of a GPI-anchor to CS. The resulting protein was found only in the cytoplasm of the oocyst. In CS-TM1 and CS-TM2, the GPI-anchor addition sequence of CS was substituted by the transmembrane domain and truncated (to different degrees) cytoplasmic tail of Plasmodium thrombospondin-related anonymous protein (TRAP). The resulting CS protein was detected on the plasma membrane of the oocysts. The amount of CS in the mutants was similar to that of wild type. The sporozoite budding and development were abrogated in both CS-DeltaGPI and CS-TM mutants. The ultrastructure of the mutant oocysts was indistinguishable from that of the CS (-) parasites. Our results suggest that the GPI-anchor of the CS protein is required for sporogenesis.  相似文献   

20.
SUMMARY: We present an operon predictor for prokaryotic operons (PPO), which can predict operons in the entire prokaryotic genome. The prediction algorithm used in PPO allows the user to select binary particle swarm optimization (BPSO), a genetic algorithm (GA) or some other methods introduced in the literature to predict operons. The operon predictor on our web server and the provided database are easy to access and use. The main features offered are: (i) selection of the prediction algorithm; (ii) adjustable parameter settings of the prediction algorithm; (iii) graphic visualization of results; (iv) integrated database queries; (v) listing of experimentally verified operons; and (vi) related tools. Availability and implementation: PPO is freely available at http://bio.kuas.edu.tw/PPO/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号