首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunofluorescence staining was used to study the precise subcellular distribution of the nuclear matrix antigen, mitotin, in mouse cells characterized by either a mitotic or an endomitotic organization of the cell cycle. In mitotically dividing cells, mitotin showed a speckled distribution within interphase nuclei. In addition, some interphase cells exhibited a weak, focused signal adjacent to the nucleus, reflecting a possible staining of the centrosome region. Using digital contrast-enhanced immunofluorescence microscopy, a distinct association of mitotin to the centrosome, pole microtubules, and midbody could be revealed in cells at different stages of mitosis. In parallel, trophoblast giant cells characterized by an endomitotic cell cycle were derived from blastocyst outgrowths and analyzed likewise. In all giant cells examined so far, mitotin was restricted to the nuclear compartment alone, although different patterns of intranuclear staining could be detected. The present study provides further information about the precise localization of mitotin in mitotic cells, especially during mitosis. In view of the results, the staining pattern observed in endomitotic cells may allow for a better understanding of the origin and the organization of the endomitotic cell cycle.  相似文献   

2.
Mitotin is a nuclear protein detectable in all proliferating cells investigated so far, including human and plant cells. In interphase cells the protein is localized mainly in the nucleoplasm. In G2/M phase it displays a characteristic redistribution and a marked increase which initiated the name mitotin. This study presents the precise localization of mitotin in cytoplasmic structures in two cell types, the potoroo rat kangaroo PtK2 cell and the human lung cancer EPLC 65 cell. In addition to its nuclear localization the antigen is detectable in centrosomes, in the poles of the mitotic spindle, and along spindle fibers. During the last mitotic stages, cytokinesis and reconstitution of nuclei, mitotin displays a rapid decrease and another redistribution. A significant amount of the antigen is retained in the bridge connecting the dividing cells, the midbody.  相似文献   

3.
The present report provides evidence for co-localization ofcytokinins with cell proliferation-associated nuclear proteins.Somatic embryos of Dactylis glomerata in two stages of developmentare used as a model system comprising both proliferating andinitially differentiated cells. Cytokinins are localized usingantibodies with marked specificity against isopentenyladenine/adenosine(2iP/2iPA) or zeatin/ riboside (Z/ZR). The proliferation-associatednuclear antigen, mitotin, is analysed using a specific monoclonalantibody. The nuclear protein BM28, required for the onset ofDNA replication and for cell division, is identified by an affinity-purifiedpolyclonal antibody. Using double immunofiuorescence labellingwith the antibodies against cytokinins and against each of thenuclear proteins, immunoreaction is observed generally in thesame nuclei of almost all cells in globular embryos and in thenuclei of cells in meristematic areas of the more developedembryos. Only small numbers of individual nuclei positive forboth type of antibodies were found in the surrounding vacuolatedparenchymatous cells. The occurrence of plant antigens homologousto BM28 and mitotin is confirmed by immunoblotting assay. InSDS-PAGE blots the anti-BM28 antibody reacts with a proteinof 58 kDa. The anti-mitotin antibody recognizes several (160,140, 125, 93, and 80 kDa) polypeptides. The data showing nuclearco-localization of cytokinins and proteins with a suggestedrole in the onset of DNA synthesis and in cell division providea new base for further study on the mode of action of cytokininsin cell cycle regulation. Key words: Immunolocalization, cytokinins, nuclear proteins, mitotin, BM28, cell proliferation, somatic embryo(s), Dactylis glomerata  相似文献   

4.
Mitotin is a 125 kDa/pI 6.5 nuclear protein specific for proliferating cells and markedly increased prior to and during mitosis. This study presents evidence for the expression of this protein during dimethylsulfoxide (DMSO) induced differentiation of human promyelocytic leukemia HL 60 cells. The expression had been followed at two levels: as antigen, using a specific antimitotin monoclonal antibody and as mRNA, using a specific cDNA probe. The results from the immunofluorescent study show a gradual disappearance of mitotin in differentiating HL 60 cells starting from the fourth day after DMSO induction. On the other hand, the changes in the expression of mitotin mRNA were much more dramatic. This mRNA is expressed at a high level during the first three days of differentiation but shows a striking decrease after the fourth day. This correlates with the rapid changes in the number of blast cells in the differentiating HL 60 cell population. Therefore, the expression of mitotin mRNA can serve as a marker for the changes accompanying the termination of cell proliferation in differentiating cells.  相似文献   

5.
6.
7.
The work presents the results of the immunoelectron microscopical localization of mitotin in different phases of the cell cycle. The distribution of the protein was studied using its specific monoclonal antibody and immunogold labeling in synchronized WISH cells. In S phase the antigen was found in the nucleoplasm usually over the interchromatin granules. In G2 phase the amount of mitotin increases and it can be found also in the nucleolus. In mitosis the immunogold granules are always out of the condensed chromosomes.  相似文献   

8.
The oncogenic nucleoporin CAN/Nup214 is essential in vertebrate cells. Its depletion results in defective nuclear protein import, inhibition of messenger RNA export and cell cycle arrest. We recently found that CAN associates with proteins of 88 and 112 kDa, which we have now cloned and characterized. The 88 kDa protein is a novel nuclear pore complex (NPC) component, which we have named Nup88. Depletion of CAN from the NPC results in concomitant loss of Nup88, indicating that the localization of Nup88 to the NPC is dependent on CAN binding. The 112 kDa protein is the human homologue of yeast CRM1, a protein known to be required for maintenance of correct chromosome structure. This human CRM1 (hCRM1) localized to the NPC as well as to the nucleoplasm. Nuclear overexpression of the FG-repeat region of CAN, containing its hCRM1-interaction domain, resulted in depletion of hCRM1 from the NPC. In CAN-/- mouse embryos lacking CAN, hCRM1 remained in the nuclear envelope, suggesting that this protein can also bind to other repeat-containing nucleoporins. Lastly, hCRM1 shares a domain of significant homology with importin-beta, a cytoplasmic transport factor that interacts with nucleoporin repeat regions. We propose that hCRM1 is a soluble nuclear transport factor that interacts with the NPC.  相似文献   

9.
Protein kinase CK2 is a ubiquitous protein serine/threonine kinase that is involved in cell growth and proliferation as well as suppression of apoptosis. Several studies have suggested that the kinase plays a role in cell cycle progression; however, changes in enzyme activity during phases of cell cycle have not been detected. Nuclear matrix is a key locus for CK2 signaling in the nucleus. We therefore examined CK2 signaling to the nuclear matrix in distinct phases of cell cycle by employing synchronized ALVA-41 prostate cancer cells. Removal of serum from the culture medium resulted in G0/G1 arrest, and a reduction in the nuclear matrix-associated CK2 activity which was rapidly reversed on addition of serum. Arresting the cells in G(0)/G(1) phase with hydroxyurea and subsequent release to S phase by serum gave similar results. Cells arrested in the G(2)/M phase by treatment with nocodazole demonstrated an extensive reduction in the nuclear matrix-associated CK2 which was reversed rapidly on addition of serum. Changes in the immunoreactive CK2 protein were concordant with the activity data reflecting a dynamic trafficking of the kinase in distinct phases of cell cycle. Under the same conditions, CK2 activity in total cellular lysate remained essentially unaltered. These results provide the first direct evidence of discrete modulations of CK2 in the nuclear matrix during the cell cycle progression. Inducible overexpression of CK2 in CHO cells yielded only a modest increase in CK2 activity even though a significant increase in expression was apparent at the level of CK2 alpha-specific message. Stably transfected ALVA-41 cells, however, did not show a significant change in CK2 levels despite increased expression at the message level. Not surprisingly, both types of the stably transfected cells failed to show any alteration in cell cycle progression. Distribution of the CK2 activity in the cytosolic versus nuclear matrix fractions in normal cells appears to be different from that in the cancer cells such that the ratio of nuclear matrix to cytosolic activity is much higher in the latter. Considering that nuclear matrix is central to several nuclear functions, this pattern of intracellular distribution of CK2 may have implications for its role in the oncogenic process. Published 2003 Wiley-Liss, Inc.  相似文献   

10.
11.
Cell division cycle 5‐like protein (Cdc5L) is a core component of the putative E3 ubiquitin ligase complex containing Prp19/Pso4, Plrg1 and Spf27. This complex has been shown to have a role in pre‐messenger RNA splicing from yeast to humans; however, more recent studies have described a function for this complex in the cellular response to DNA damage. Here, we show that Cdc5L interacts physically with the cell‐cycle checkpoint kinase ataxia‐telangiectasia and Rad3‐related (ATR). Depletion of Cdc5L by RNA‐mediated interference methods results in a defective S‐phase cell‐cycle checkpoint and cellular sensitivity in response to replication‐fork blocking agents. Furthermore, we show that Cdc5L is required for the activation of downstream effectors or mediators of ATR checkpoint function such as checkpoint kinase 1 (Chk1), cell cycle checkpoint protein Rad 17 (Rad17) and Fanconi anaemia complementation group D2 protein (FancD2). In addition, we have mapped the ATR‐binding region in Cdc5L and show that a deletion mutant that is unable to interact with ATR is defective in the rescue of the checkpoint deficiency in Cdc5L‐depleted cells. These findings show a new function for Cdc5L in the regulation of the ATR‐mediated cell‐cycle checkpoint in response to genotoxic agents.  相似文献   

12.
Subnuclear organization and spatiotemporal regulation of pre-mRNA processing factors is essential for the production of mature protein-coding mRNAs. We have discovered that a large protein called Son has a novel role in maintaining proper nuclear organization of pre-mRNA processing factors in nuclear speckles. The primary sequence of Son contains a concentrated region of multiple unique tandem repeat motifs that may support a role for Son as a scaffolding protein for RNA processing factors in nuclear speckles. We used RNA interference (RNAi) approaches and high-resolution microscopy techniques to study the functions of Son in the context of intact cells. Although Son precisely colocalizes with pre-mRNA splicing factors in nuclear speckles, its depletion by RNAi leads to cell cycle arrest in metaphase and causes dramatic disorganization of small nuclear ribonuclear protein and serine-arginine rich protein splicing factors during interphase. Here, we propose that Son is essential for appropriate subnuclear organization of pre-mRNA splicing factors and for promoting normal cell cycle progression.  相似文献   

13.
Cyclic adenosine monophosphate arrests proliferating T lymphocytes in the G1 phase of the cell cycle. Here we demonstrate that exogenous and endogenous elevations in cyclic AMP concentration result in diminished mitogen stimulation, cell cycle arrest, and decreased ribonucleotide reductase messenger RNA concentrations in peripheral blood mononuclear cells. At lower concentrations (less than 1mM) of dibutyryl cyclic AMP that do not generate cell cycle arrest there is inhibition of ribonucleotide reductase activity without decreased messenger RNA concentration for the M2 subunit of ribonucleotide reductase. However, at higher concentrations of dibutyryl cyclic AMP there is G1 cell cycle arrest and reduced M2 specific messenger RNA concentration. Thus, cyclic AMP inhibition of lymphocyte activation may occur by different mechanisms that are dose dependent.  相似文献   

14.
15.
We examined the feasibility of performing non-radioactive in situ hybridization (ISH) in flow cytometrically sorted (tumor) cells with a chromosome #1 specific centromere probe. The study was performed in a model system of HL60 cells mixed with different quantities of HeLa cells. These latter cells were sorted directly onto poly-l-lysine coated glass slides on the basis of their keratin content, a cytoskeletal component not present in HL60 cells. Overall morphology of the separated HeLa cells was excellent and, after the ISH procedure, the appropriate number of ISH spots was observed in more than 85% of the sorted cells. This percentage did not differ significantly in cell mixtures with different percentages of HeLa cells (down to 1%). Sorting of HeLa cells in different phases of the cell cycle, and subsequent ISH, revealed the same spot number for chromosome #1 in all cell cycle stages, including mitosis. In the latter phase of the cell cycle we did not find a duplication of the chromosome #1 centromere, not even after sorting of the mitotic cells on the basis of specific labeling with an antibody to mitotin. The early G2 mitotin negative fraction, however, showed a significant percentage of cells with a duplicate spot number, most likely representing a tetraploid cell fraction in this HeLa cell culture. The protocol that evolved from these model studies was applied to cell suspensions of malignant body cavity effusions as well as solid bladder carcinomas. In several of these cases numerical chromosome aberrations could be detected by ISH more evidently after sorting on the basis of keratin labeling.  相似文献   

16.
Epac belongs to a new family of proteins that can directly mediate the action of the intracellular second messenger cAMP by activating a downstream small GTPase Rap1. The Epac/Rap1 pathway represents a novel cAMP-signaling cascade that is independent of the cAMP-dependent protein kinase (PKA). In this study, we have used fluorescence microscopy to probe the intracellular targeting of Epac during different stages of the cell division cycle and the structural features that are important for Epac localization. Our results suggest Epac, endogenous or expressed as a green fluorescent protein fusion protein, is mainly localized to the nuclear membrane and mitochondria during interphase in COS-7 cells. Deletion mutagenesis analysis reveals that whereas the DEP domain is responsible for membrane association, the mitochondrial-targeting sequence is located at the N terminus. Although Epac predominantly exhibits perinuclear localization in interphase, the subcellular localization of Epac is cell cycle-dependent. Epac disassociates from the nuclear membrane and localizes to the mitotic spindle and centrosomes in metaphase. At the end of the cell cycle, Epac is observed to reassociate with the nuclear envelope and concentrate around the contractile ring. Furthermore, overexpression of Epac in COS-7 cells leads to an increase in multinuclear cell populations. These results suggest that Epac may play an important role in mitosis.  相似文献   

17.
18.
Gupta N  Binu KB  Singh S  Maturu NV  Sharma YP  Bhansali A  Gill KD 《Gene》2012,491(1):13-19
Posttranslational modifications of proteins have profound effects on many aspects of their function and have received much attention due to the importance of these processes in epigenetic regulation. In this study, we report that deleted azoospermia associated protein 1 (DAZAP1)/proline-rich RNA binding protein (Prrp), a multifunctional RNA binding protein which is essential for spermatogenesis and normal cell growth, is acetylated at Lysine 150 within its RNA binding domain. The acetylation is predominantly observed in nuclear Prrp, and the nonacetylated form is in cytoplasm. Considering that Prrp is a shuttling protein, we suggest that the acetylation cycle at Prrp K150 regulates nucleocytoplasmic transport in cells.  相似文献   

19.
A combination of methods was used to study the cell cycle-dependent expression of nuclear matrix proteins of Ehrlich ascites cells: Separation of asynchronous cells growing in vivo into fractions of G1-, S- and G2- phase cells by centrifugal elutriation with less than 10% cross-contamination. Isolation of poly(A+) RNA populations from total cytoplasmic RNA by affinity chromatography on messenger affinity paper (mAP). In vitro translation of poly(A+) RNA from asynchronous and phase synchronous cells. Immunoprecipitation of in vitro synthesized nuclear matrix proteins by a monoclonal antibody with anti-lamin specificity (PKB8) and by a polyspecific anti-nuclear matrix serum (AMS5) followed by analysis of immunoprecipitated materials on SDS-polyacrylamide gels. The results indicate that mRNAs for nuclear matrix-associated proteins including the lamins B and C are either exclusively or at least predominantly present in the cytoplasm of cells in S phase suggesting a high rate of in vivo synthesis of these proteins during S phase. This is consistent with an anticipated biological function of the nuclear matrix which is considered to organize parental and newly synthesized DNA in higher order structures.  相似文献   

20.
Transforming growth factor-Beta (TGF-beta) is a potent growth inhibitor for several cell types including epithelial cells and hematopoietic progenitor cells. Using a human promonocytic leukemia cell line, THP-1, we have shown that TGF-beta inhibits their proliferation and promotes differentiation into cells exhibiting macrophage-like properties. Therefore, a key question is whether TGF-beta influences the expression of genes associated with proliferation and/or growth inhibition. TGF-beta treatment of THP-1 cells results in downregulation of expression of c-myc. We also observe that TGF-beta 1-treated cells express reduced levels of the cell cycle regulated histone, H2B, but express elevated levels of an RNA splicing variant of this histone that has been observed to be upregulated in growth inhibited and terminally differentiated cells. In addition, a nuclear protein associated with senescence and withdrawal of cells from the cell cycle, statin, is also expressed by THP-1 cells in response to TGF-beta 1 treatment. These results suggest that TGF-beta 1 is capable of inducing expression of specific nuclear proteins associated with differentiation and/or cessation of proliferation that may result in changes in nuclear organization and altered gene expression. Such changes in nuclear organization may be incompatible with continued proliferation of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号