首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Molecular modeling is used to study the opening pathways of bases within a B-DNA oligomer. It is demonstrated that many open states are possible for a single base pair, although a preference for opening towards the major groove of the double helix is found. In addition we show that opening is strongly influenced by the nature of the base involved and is also coupled in many cases to DNA bending.  相似文献   

2.
DNA and RNA are known to have different structural properties. In the present study, molecular dynamics (MD) simulations on a series of RNA and DNA duplexes indicate differential structural flexibility for the two classes of oligonucleotides. In duplex RNA, multiple base pairs experienced local opening events into the major groove on the nanosecond time scale, while such events were not observed in the DNA simulations. Three factors are indicated to be responsible for the base opening events in RNA: solvent-base interactions, 2'OH(n)-O4'(n+1) intra-strand hydrogen bonding, and enhanced rigid body motion of RNA at the nucleoside level. Water molecules in the major groove of RNA contribute to initiation of base pair opening. Stabilization of the base pair open state is due to a 'conformational switch' comprised of 2'OH(n)-O4'(n+1) hydrogen bonding and a rigid body motion of the nucleoside moiety in RNA. This rigid body motion is associated with decreased flexibility of the glycosyl linkage and sugar moieties in A-form structures. The observed opening rates in RNA are consistent with the imino proton exchange experiments for AU base pairs, although not for GC base pairs, while structural and flexibility changes associated with the proposed conformational switch are consistent with survey data of RNA and DNA crystal structures. The possible relevance of base pair opening events in RNA to its many biological functions is discussed.  相似文献   

3.
Abstract

In this work we explore the possibility of the opening of a single base without perturbation of its neighboring nucleotides. Low energy base opening into the grooves can be accomplished by rotation of the relevant backbone and glycosidic bond torsion angles. The pathway has been determined by identifying ζ torsion angle as the reaction coordinate together with the accompanying geometric requirement that guides the displacement of other torsion angles. Our study on Dickerson dodecamer duplex d(CGCGAATTCGCG)2 showed that all bases with normal equilibrium ζ can be rotated by ~ 30°, corresponding to ~ 3.5Å base displacement, towards the major groove. Such an opening extent is comparable with estimated amplitudes of local angular motions in DNA bases from NMR experiments, which might facilitate proton exchange. The computed base opening energy barrier is also comparable with measured base pair opening enthalpy. These results indicate possible relevance of the pathway studied in this work with experimentally observed base pair opening process. Our analysis also showed a preference for base opening along the major groove and an abnormal behavior for bases with unusual equilibrium ζ torsion angle.  相似文献   

4.
Dynamic opening of DNA during the enzymatic search for a damaged base   总被引:7,自引:0,他引:7  
Uracil DNA glycosylase (UDG) removes uracil from U.A or U.G base pairs in genomic DNA by extruding the aberrant uracil from the DNA base stack. A question in enzymatic DNA repair is whether UDG and related glycosylases also use an extrahelical recognition mechanism to inspect the integrity of undamaged base pairs. Using NMR imino proton exchange measurements we find that UDG substantially increases the equilibrium constant for opening of T-A base pairs by almost two orders of magnitude relative to free B-DNA. This increase is brought about by enzymatic stabilization of an open state of the base pair without increasing the rate constant for spontaneous base pair opening. These findings indicate a passive search mechanism in which UDG uses the spontaneous opening dynamics of DNA to inspect normal base pairs in a rapid genome-wide search for uracil in DNA.  相似文献   

5.
Huang Y  Weng X  Russu IM 《Biochemistry》2011,50(11):1857-1863
Proton exchange and nuclear magnetic resonance spectroscopy are being used to characterize the kinetics and energetics of base-pair opening in two nucleic acid double helices. One is the RNA duplex 5'-r(GCGAUAAAAAGGCC)-3'/5'-r(GGCCUUUUUAUCGC)-3', which contains a central tract of five AU base pairs. The other is the homologous DNA duplex with a central tract of five AT base pairs. The rates and the equilibrium constants of the opening reaction of each base pair are measured from the dependence of the exchange rates of imino protons on ammonia concentration, at 10 °C. The results reveal that the tract of AU base pairs in the RNA duplex differs from the homologous tract of AT base pairs in DNA in several ways. The rates of opening of AU base pairs in RNA are high and increase progressively along the tract, reaching their largest values at the 3'-end of the tract. In contrast, the opening rates of AT base pairs in DNA are much lower than those of AU base pairs. Within the tract, the largest opening rate is observed for the AT base pair at the 5'-end of the tract. These differences in opening kinetics are paralleled by differences in the stabilities of individual base pairs. All AU base pairs in the RNA are less stable than the AT base pairs in the DNA. The presence of the tract enhances these differences by increasing the stability of AT base pairs in DNA while decreasing the stability of AU base pairs in RNA. Due to these divergent trends, along the tracts, the AU base pairs become progressively less stable than AT base pairs. These findings demonstrate that tracts of AU base pairs in RNA have specific dynamic and energetic signatures that distinguish them from similar tracts of AT base pairs in DNA.  相似文献   

6.
Nuclear magnetic resonance spectroscopy has been used to characterize the kinetics and energetics of opening of base pairs in the DNA dodecamer [d(CGCAAATTTGCG)]2. The dodecamer contains an A3T3 tract that induces intrinsic curvature of the helix axis. Previous studies from this and other laboratories have shown that the kinetics of base pair opening in AnTn tracts is unique: the opening rates of the A.T base pairs in the interior of the tract are much lower than that of the A.T base pair at the 5'-end of the tract. In the present work, we have investigated the energetics of the pathways for opening of the A.T base pairs in the A3T3 tract. The energetic parameters of the activated state(s) are obtained from the temperature dependence of the opening rate constants. The lower opening rates for the A.T base pairs situated in the interior of the tract are shown to originate from higher activation enthalpies which are compensated, in part, by increases in the activation entropies. We have also obtained an energetic characterization of the open state(s) of the A.T base pairs in the dodecamer by measuring the equilibrium constants for base pair opening and their temperature dependence. The results suggest that the transitions from closed to open state(s) in the A.T base pairs of the A3T3 tract are energetically similar.  相似文献   

7.
DNA-unwinding elements are specific base sequences that are located in the origin of DNA replication where they provide the start point for strand separation and unwinding of the DNA double helix. In the present work we have obtained the first characterization of the opening of individual base pairs in DNA-unwinding elements. The three DNA molecules investigated reproduce the 13-mer DNA-unwinding elements present in the Escherichia coli chromosome. The base sequences of the three 13-mers are conserved in the origins of replication of enteric bacterial chromosomes. The exchange of imino protons with solvent protons was measured for each DNA as a function of the concentration of exchange catalyst using nuclear magnetic resonance spectroscopy. The exchange rates provided the rates and the equilibrium constants for opening of individual base pairs in each DNA at 20 degrees C. The results reveal that the kinetics and energetics of the opening reactions for AT/TA base pairs are different in the three DNA-unwinding elements due to long range effects of the base sequence. These differences encompass the AT/TA base pairs that are conserved in various bacterial genomes. Furthermore, a qualitative correlation is observed between the kinetics and energetics of opening of AT/TA base pairs and the location of the corresponding DNA-unwinding element in the origin of DNA replication.  相似文献   

8.
The conformational pathways and the free energy variations for base opening into the major and minor grooves of a B-DNA duplex are studied using umbrella sampling molecular dynamics simulations. We compare both GC and AT base pair opening within a double-stranded d(GAGAGAGAGAGAG)· d(CTCTCTCTCTCTC) oligomer, and we are also able to study the impact of opening on the conformational and dynamic properties of DNA and on the surrounding solvent. The results indicate a two-stage opening process with an initial coupling of the movements of the bases within the perturbed base pair. Major and minor groove pathways are energetically comparable in the case of the pyrimidine bases, but the major groove pathway is favored for the larger purine bases. Base opening is coupled to changes in specific backbone dihedrals and certain helical distortions, including untwisting and bending, although all these effects are dependent on the particular base involved. Partial opening also leads to well defined water bridging sites, which may play a role in stabilizing the perturbed base pairs.  相似文献   

9.
The thermodynamics and kinetics for base-pair opening of the P1 duplex of the Tetrahymena group I ribozyme were studied by NMR hydrogen exchange experiments. The apparent equilibrium constants for base pair opening were measured for most of the imino protons in the P1 duplex using the base catalysts NH3, HPO4(2-) or TRIS. These equilibrium constants were also measured for several modified P1 duplexes, and the C-2.G23 base pair was the most stable base pair in all the duplexes. The conserved U-1*G22 base pair is required for activity of the ribozyme and the data here show that this wobble base pair destabilizes neighboring base pairs on only one side of the wobble. A 2'-OMe modification on the U-3 residue stabilized its own base pair but had little effect on the neighboring base pairs. Three base pairs, U-1*G22, C-2*G23 and A2*U21 showed unusual equilibrium constants for opening and possible implications of the opening thermodynamics of these base pairs on the undocking rates of the P1 helix with catalytic core are discussed.  相似文献   

10.
The effect of an open loop of various sizes on the thermal stability of the adjoining intact base pairs in a duplex DNA chain is studied in a lattice model of Poly(dG).Poly(dC). We find that for a Y-shaped fork configuration the thermal fluctuation at the fork is so enhanced that the life time of the adjoining base pair is much smaller than the 1 millisecond time scale associated with helicase separation of a base pair in some systems. Our analysis indicates that thermal fluctuational base pair opening may be of importance in facilitating the enzyme unwinding process during chain elongation of a replicating DNA. It is most likely that the thermal fluctuational opening of the base pair at the junction of a replicating fork is fast enough so that a DNA unwinding enzyme can encounter an unstacked base pair with reasonable probability. This conclusion can explain several experimental observations regarding the temporal relationship between ATP hydrolysis by accessory proteins and primer elongation by a holoenzyme complex in ssDNA. We also discuss a mechanism by which the energy associated with ATP hydrolysis may enhance the thermal driven base opening mechanism.  相似文献   

11.
Using (1)H NMR spectroscopy, the base-pair opening dynamics of an antiparallel foldback DNA triplex and the corresponding duplex has been characterized via catalyzed imino proton exchange. The triplex system was found to be in an equilibrium between a duplex and a triplex form. The exchange rate between the two forms (i.e., the on/off-rate of the third strand) was measured to be 5 s(-1) at 1 degrees C, and the base-pair dynamics of both forms were investigated separately. Both Watson-Crick and reverse Hoogsteen base pairs were found to have base-pair lifetimes in the order of milliseconds. The stability of the Watson-Crick base pairs was, however, substantially increased in the presence of the third strand. In the DNA triplex, the opening dynamics of the reverse Hoogsteen base pairs was significantly faster than the dynamics of the Watson-Crick pairs. We were able to conclude that, for both Watson-Crick and reverse Hoogsteen base pairs, spontaneous and individual opening from within the closed base triplet is the dominating opening pathway.  相似文献   

12.
Abstract

The effect of an open loop of various sizes on the thermal stability of the adjoining intact base pairs in a duplex DNA chain is studied in a lattice model of Poly(dG) · Poly(dC). We find that for a Y-shaped fork configuration the thermal fluctuation at the fork is so enhanced that the life time of the adjoining base pair is much smaller than the 1 millisecond time scale associated with helicase separation of a base pair in some systems. Our analysis indicates that thermal fluctuational base pair opening may be of importance in facilitating the enzyme unwinding process during chain elongation of a replicating DNA. It is most likely that the thermal fluctuational opening of the base pair at the junction of a replicating fork is fast enough so that a DNA unwinding enzyme can encounter an unstacked base pair with reasonable probability. This conclusion can explain several experimental observations regarding the temporal relationship between ATP hydrolysis by accessory proteins and primer elongation by a holoenzyme complex in ssDNA. We also discuss a mechanism by which the energy associated with ATP hydrolysis may enhance the thermal driven base opening mechanism.  相似文献   

13.
14.
A Pardi  K M Morden  D J Patel  I Tinoco 《Biochemistry》1982,21(25):6567-6574
The relaxation lifetimes of imino protons from individual base pairs were measured in (I) a perfect helix, d(C-G-C-G-A-A-T-T-C-G-C-G), (II) this helix with a G . C base pair replaced with a G . T base pair, d(C-G-T-G-A-A-T-T-C-G-C-G), and (III) the perfect helix with an extra adenine base in a mismatch, d(C-G-C-A-G-A-A-T-T-C-G-C-G). The lifetimes were measured by saturation recovery proton nuclear magnetic resonance experiments performed on the imino protons of these duplexes. The measured lifetimes of the imino protons were shown to correspond to chemical exchange lifetimes at higher temperatures and spin-lattice relaxation times at lower temperatures. Comparison of the lifetimes in these duplexes showed that the destabilizing effect of the G . T base pair in II affected the opening rate of only the nearest-neighbor base pairs. For helix III, the extra adenine affected the opening rates of all the base pairs in the helix and thus was a larger perturbation for opening of the base pairs than the G . T base pair. The temperature dependence of the exchange rates of the imino proton in the perfect helix gives values of 14-15 kcal/mol for activation energies of A . T imino protons. These relaxation rates were shown to correspond to exchange involving individual base pair opening in this helix, which means that one base-paired imino proton can exchange independent of the others. For the other two helices that contain perturbations, much larger activation energies for exchange of the imino protons were found, indicating that a cooperative transition involving exchange of at least several base pairs was the exchange mechanism of the imino protons. The effects of a perturbation in a helix on the exchange rates and the mechanisms for exchange of imino protons from oligonucleotide helices are discussed.  相似文献   

15.
A comparison of imino proton NMR spectra of yeast tRNAPhe recorded at various solution conditions indicates, that polyamines have a limited effect on the structure of this tRNA molecule. Polyamines are found to catalyse the solvent exchange of several imino protons in yeast tRNAPhe not only of non hydrogen bonded imino protons, but also of imino protons of the GU and of some AU and tertiary base pairs. It is concluded that at low levels of catalysing components the exchange rates of the latter protons are not determined by the base pair lifetime. In the presence of high levels of spermidine the solvent exchange rates of imino protons of several base pairs in the molecule were assessed as a function of the temperature. Apparent activation energies derived from these rates were found to be less than 80 kJ/mol, which is indicative for (transient) independent opening of the corresponding base pairs. In the acceptor helix the GU base pair acts as a dynamic dislocation. The AU base pairs at one side of the GU base pair exhibit faster transient opening than the GC base pairs on the other side of this wobble pair. The base pairs m2GC10 and GC11 from the D stem and GC28 from the anticodon stem show relatively slow opening up to high temperatures. Model studies suggest that 1-methyladenosine, an element of tRNA itself, catalyses imino proton solvent exchange in a way similar to polyamines.  相似文献   

16.
The family of adenosine deaminases acting on RNA (ADARs) targets adenosines in RNA that is mainly double stranded. Some substrates are promiscuously deaminated whereas others, such as the mammalian glutamate receptor B (gluR-B) pre-mRNA, are more selectively deaminated. Many DNA/RNA-base modification enzymes use a base flipping mechanism to be able to reach their target base and it is believed that ADARs function in a similar way. In this study we used molecular dynamics (MD) simulations to describe two sites on the gluR-B pre-mRNA, the selectively targeted R/G site and the nontargeted 46 site, in an attempt to explain the substrate specificity. We used regular MD and also a forced base flipping method with umbrella sampling to calculate the free energy of base opening. Spontaneous opening of the mismatched adenosine was observed for the R/G site but not for the 46 site.  相似文献   

17.
18.
J G Moe  I M Russu 《Biochemistry》1992,31(36):8421-8428
Proton nuclear magnetic resonance (NMR) spectroscopy is used to characterize the kinetics and energetics of base-pair opening in the dodecamers 5'-d(CGCGAATTCGCG)-3' and 5'-d(CGCGAATTTGCG)-3'. The latter dodecamer contains two symmetrical G.T mismatched base pairs. The exchange kinetics of imino protons is measured from resonance line widths and selective longitudinal relaxation times. For the G.T pair, the two imino protons (G-N1H and T-N3H) provide probes for the opening of each base in the mismatched pair. The lifetimes of individual base pairs in the closed state and the equilibrium constants for formation of the open state are obtained from the dependence of the exchange rates on the concentration of ammonia catalyst. The activation energies and standard enthalpy changes for base-pair opening are obtained from the temperature dependence of the lifetimes and equilibrium constants, respectively. The results indicate that the G.T mismatched pairs are kinetically and energetically destabilized relative to normal, Watson-Crick base pairs. The lifetimes of the G.T pairs are of the order of 1 ms or less, over the temperature range from 0 to 20 degrees C. The equilibrium constants for base-pair opening, at 20 degrees C, are increased up to 4000-fold, relative to those of normal base pairs. The energetic destabilization of the G.T base pairs is, at least in part, enthalpic in origin. The presence of the G.T mismatched base pairs destabilizes also neighboring base pairs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Upon binding to the 15.5K protein, two tandem-sheared G–A base pairs are formed in the internal loop of the kink-turn motif of U4 snRNA (Kt-U4). We have reported that the folding of Kt-U4 is assisted by protein binding. Unstable interactions that contribute to a large opening of the free RNA (‘k–e motion’) were identified using locally enhanced sampling molecular dynamics simulations, results that agree with experiments. A detailed analysis of the simulations reveals that the k–e motion in Kt-U4 is triggered both by loss of G–A base pairs in the internal loop and backbone flexibility in the stems. Essential dynamics show that the loss of G–A base pairs is correlated along the first mode but anti-correlated along the third mode with the k–e motion. Moreover, when enhanced sampling was confined to the internal loop, the RNA adopted an alternative conformation characterized by a sharper kink, opening of G–A base pairs and modified stacking interactions. Thus, loss of G–A base pairs is insufficient for achieving a large opening of the free RNA. These findings, supported by previously published RNA structure probing experiments, suggest that G–A base pair formation occurs upon protein binding, thereby stabilizing a selective orientation of the stems.  相似文献   

20.
Sequence-dependent structural features of the DNA double helix have a strong influence on the base pair opening dynamics. Here we report a detailed study of the kinetics of base pair breathing in tracts of GC base pairs in DNA duplexes derived from 1H NMR measurements of the imino proton exchange rates upon titration with the exchange catalyst ammonia. In the limit of infinite exchange catalyst concentration, the exchange times of the guanine imino protons of the GC tracts extrapolate to much shorter base pair lifetimes than commonly observed for isolated GC base pairs. The base pair lifetimes in the GC tracts are below 5 ms for almost all of the base pairs. The unusually rapid base pair opening dynamics of GC tracts are in striking contrast to the behavior of AT tracts, where very long base pair lifetimes are observed. The implication of these findings for the structural principles governing spontaneous helix opening as well as the DNA-binding specificity of the cytosine-5-methyltransferases, where flipping of the cytosine base has been observed, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号