首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: In certain pathologic states, cytokine production may become spatially and temporally dysregulated, leading to their inappropriate production and potentially detrimental consequences. Tumor necrosis factor-α (TNF-α), interleukin (IL)-1, IL-6, and transforming growth factor-β (TGF-β) mediate a range of host responses affecting multiple cell types. To study the role of cytokines in the early stages of brain injury, we examined alterations in the 17-day-old mouse hippocampus during trimethyltin-induced neurodegeneration characterized by neuronal necrosis, microglia activation in the dentate, and astrocyte reactivity throughout the hippocampus. By 24 h after dosing, elevations in mRNA levels for TNF-α, IL-1α, IL-1β, and IL-6 mRNA were seen. TGF-β1 mRNA was elevated at 72 h. In situ hybridization showed that TNF-α and IL-1α were localized to the microglia, whereas TGF-β1 was expressed predominantly in hippocampal pyramidal cells. Intercellular adhesion molecule-1, EB-22, Mac-1, and glial fibrillary acidic protein mRNA levels were elevated within the first 3 days of exposure in the absence of increased inducible nitric oxide synthetase and interferon-γ mRNA. These data suggest that pro-inflammatory cytokines contribute to the progression and pattern of neuronal degeneration in the hippocampus.  相似文献   

2.
3.
Astrocytes have the ability to secrete colony-stimulating factor 1 (CSF-1), a growth factor known to stimulate the proliferation of brain macrophages. We have studied the effect of cytokines such as interleukin 1 (IL-1), tumor necrosis factor-alpha (TNF alpha), and interleukin 6 (IL-6) on the production of CSF-1 by cultured primary astrocytes and an astrocytic cell line derived from embryonic mouse brain. We observed that both TNF alpha and IL-1 increased CSF-1 mRNA and protein levels in the astrocytic cultures. In contrast, IL-6 was ineffective. The CSF-1 mRNA levels were strongly reduced by incubating immortalized astrocytic cells with staurosporine, a protein kinase C inhibitor, both in the absence and in the presence of cytokines. Conversely, 12-O-tetradecanoylphorbol 13-acetate, a protein kinase C activator, increased CSF-1 mRNA levels. These results suggest a mechanism whereby mononuclear phagocytes could favor their own recruitment in the CNS by producing cytokines.  相似文献   

4.
Abstract: Tumor necrosis factor-a (TNF-α), interferon-γ (IFN-7), and interleukin-6 (IL-6), but not TNF-β, can induce the in vitro differentiation of the neuroblastoma cell line N103 in a dose-dependent manner. Differentiation of N103 was accompanied by the arrest of cell growth and neurite formation. The induction of neuroblastoma cell differentiation by TNF-α and IFN-γ can be specifically inhibited by a nitric oxide (NO) synthase inhibitor, l -NG-monomethylarginine. In contrast, the differentiation of N103 cells by IL-6 was not affected by l -NG-monomethylarginine. These results indicate that TNF-α and IFN-γ, but not IL-6, induce the differentiation of neuroblastoma cells via NO. This is confirmed by the finding that the culture super- natants of N103 cells induced by TNF-α and IFN-γ, but not that by IL-6, contained high levels of NO2, the production of which was inhibited by l - N G-monomethylarginine. Furthermore, the differentiation of N103 cells can be induced directly in a dose-dependent manner by the addition of nitroprusside, a generator of NO, into the culture medium. These data therefore indicate that NO may be an important mediator in the induction of neuronal cell differentiation by certain cytokines such as TNF-α and IFN-γ and that neuronal cells, in addition to the macrophagelike brain cells, can be induced by immunological stimuli to produce large quantities of NO.  相似文献   

5.
6.
Abstract: Migration of astrocytes is thought to play a role in nerve regeneration and to be mediated, at least in part, by inflammation-associated cytokines. Plasminogen activators are secreted proteases that function in fibrinolysis and participate in cellular migration and invasion and, in some cases, are modulated by cytokines. Here, we show that two cytokines, tumor necrosis factor-α and interleukin-1β, can modulate plasminogen activation in astrocytes, each causing 90% reduction of total plasminogen activator activity. Direct and reverse zymography indicated that this reduction resulted from two simultaneous events, a pronounced decrease in tissue-type plasminogen activator activity and an induction of plasminogen activator inhibitor-1. Northern hybridization analysis indicated a 30-fold increase of the steady-state level of plasminogen activator inhibitor-1 mRNA following treatment with each of the two cytokines. Both of the cytokine-induced effects could be blocked by cycloheximide or actinomycin D. When signal transduction pathways were blocked, the results indicated the involvement of reduction in cyclic AMP levels, protein kinase activity, and arachidonic metabolites of the lipoxygenase pathway. The results thus show that the two cytokines reduce the ability of astrocytes to conduct fibrinolysis and extracellular proteolysis, and suggest that the effect of these cytokines on members of the plasminogen activation system is through a common signal transduction pathway.  相似文献   

7.
Abstract: Tumor necrosis factor-α is a pluripotent cytokine that is reportedly mitogenic to astrocytes. We examined expression of the astrocyte intermediate filament component glial fibrillary acidic protein in astrocyte cultures and the U373 glioblastoma cell line after treatment with tumor necrosis factor-α. Treatment with tumor necrosis factor-α for 72 h resulted in a decrease in content of glial fibrillary acidic protein and its encoding mRNA. At the same time, tumor necrosis factor-α treatment increased the expression of the cytokine interleukin-6 by astrocytes. The decrease in glial fibrillary acidic protein expression was greater when cells were subconfluent than when they were confluent. Thymidine uptake studies demonstrated that U373 cells proliferated in response to tumor necrosis factor-α, but primary neonatal astrocytes did not. However, in both U373 cells and primary astrocytes tumor necrosis factor-α induced an increase in total cellular protein content. Treatment of astrocytes and U373 cells for 72 h with the mitogenic cytokine basic fibroblast growth factor also induced a decrease in glial fibrillary acidic protein content and an increase in total protein level, demonstrating that this effect is not specific for tumor necrosis factor-α. The decrease in content of glial fibrillary acidic protein detected after tumor necrosis factor-α treatment is most likely due to dilution by other proteins that are synthesized rapidly in response to cytokine stimulation.  相似文献   

8.
p53是一种重要的肿瘤抑制因子,是迄今发现与人类肿瘤相关性最高的分子之一。超过50%的人类肿瘤含有p53基因突变。因此,p53是肿瘤治疗中的重要分子靶点。p53依赖的细胞凋亡是其抑制肿瘤的重要机制之一。然而,最近研究发现,p53不仅参与细胞凋亡,还与程序性细胞坏死、细胞自噬以及铁诱导的细胞死亡等细胞死亡途径相关。促使肿瘤细胞死亡是肿瘤治疗的重要目标。因此,进一步了解p53与细胞死亡之间的关系,将有助于探索以p53为靶点的肿瘤治疗和p53相关肿瘤细胞耐药机制。  相似文献   

9.
Peripheral-type benzodiazepine binding sites (PTBBS) are markedly increased in the injured CNS. Astrocytes appear to be the primary cell type which express increased PTBBS. Because certain cytokines within the injured CNS are potent mitogens for astrocytes, we examined the effects of two such cytokines, interleukin (IL)-1 beta and tumor necrosis factor (TNF), on PTBBS in cultured astrocytes using [3H]Ro 5-4864 as the specific ligand. Purified cultures of either polygonal or process-bearing astrocytes were prepared from neonatal rat cerebral hemispheres. At a concentration of 1.8 nM, specific binding of the radioactive ligand to polygonal astrocytes reached equilibrium within 60 min and was half-maximal by 5-10 min. By contrast, specific binding to process-bearing astrocytes barely exceeded background levels. IL-1 and TNF increased PTBBS within polygonal astrocytes in both dose- and time-dependent manners. At 10-50 ng/ml, IL-1 beta and TNF-alpha elevated [3H]Ro 5-4864 binding in polygonal astrocyte cultures 65 and 87%, respectively, above the level in control cultures. However, no changes in PTBBS were seen within polygonal astrocytes after IL-2 treatment. Scatchard analysis of saturation binding experiments suggested that the increase in PTBBS promoted by TNF was due to an increased number of binding sites present in polygonal astrocytes and not due to an increase in receptor affinity. Binding data suggested that PTBBS within cultures of process-bearing astrocytes were virtually absent irrespective of the treatment. These in vitro data suggest that certain cytokines found in the injured brain may be involved in up-regulating PTBBS within a particular subtype of astrocyte.  相似文献   

10.
Trifluorothymidine (TFT), a potent anticancer agent, inhibits thymidylate synthase (TS) and is incorporated into the DNA, both events resulting in cell death. Cell death induction related to DNA damage often involves activation of p53. We determined the role of p53 in TFT cytotoxicity and cell death induction, using, respectively, the sulforhodamine B-assay and FACS analysis, in a panel of cell lines with either wild type, inactive, or mutated p53. Neither TFT cytotoxicity nor cell death induction changed with TFT exposure in cell lines with wt, inactive or mutated p53. Conclusion: sensitivity to TFT is not dependent on the expression of wt p53.  相似文献   

11.
12.
13.
14.
Abstract The ability of Mycobacterium tuberculosis H37Rv and H37Ra, M. bovis BCG and M. smegmatis to induce the secretion of tumor necrosis factor-α (TNF-α) by cultured murine peritoneal macrophages is inversely related to their virulence. The avirulent species of mycobacteria which were unable to persist in macrophages were capable of inducing significant levels of TNF-α compared to that formed in cultures infected with the virulent M. tuberculosis H37Rv. This difference was also associated with an inherent toxicity by live H37Rv for macrophage cultures. Heat-killed H37Rv was non-toxic and induced significant levels of TNF-α; in contrast, live and heat-killed suspensions of avirulent mycobacteria had an equivalent ability to trigger TNF-α secretion. The TNF-α response was dose-dependent, related directly to the percentage of infected cells, and peaked 6–12 h post-infection. An early and vigorous TNF-α response appears to be a marker of macrophage resistance, while the downregulation of this response seems associated with macrophage toxicity and unrestricted mycobacterial growth.  相似文献   

15.
Mycobacterial infection occurs commonly in patients with acquired immune deficiency syndrome. Incubation of monocytoid cell line U937 cells, which was cotransfected HIV-1 long terminal repeat sequence (LTR) chloramphenicol acetyltransferase (CAT) plasmid and Tat expression plasmid, with Mycobacterium smegmatis, Mycobacterium avium, Mycobacterium bovis BCG and Mycobacterium tuberculosis resulted in enhancement of CAT production, indicating that these mycobacteria could activate LTR in this cell line. The amount of CAT in the cells coexisting with M. smegmatis was higher than that infected with other mycobacteria. The amounts of CAT production in the cells coculturing with M. avium and M. bovis BCG were intermediate. M. tuberculosis slightly stimulated CAT production. The amount of tumor necrosis factor (TNF)-alpha produced by transfected U937 cells was correlated with the amount of CAT production. The interleukin (IL)-1beta and IL-6 levels in the supernatant from coculturing with all species were similar. The antibody to TNF-alpha inhibited CAT production induced by mycobacterial infections. The anti-IL-1beta and anti-IL-6 antibodies, however, scarcely influenced stimulation of LTR by mycobacteria. In addition, U937 cells transfected with full length LTR CAT plasmid showed increased CAT production by activation with mycobacteria, but the cells transfected with mutant LTR CAT constructs from which the nuclear factor (NF)-kappaB binding site was deleted did not show activation. These findings indicated that activation of Mycobacterium-induced LTR CAT is NF-kappaB dependent. These findings suggested that activation of HIV-1 LTR by mycobacteria was mainly mediated by NF-kappaB-induced secondary release of cytokine TNF-alpha.  相似文献   

16.
17.
Abstract The growth of Mycobacterium microti was inhibited within J774A. 1 macrophage cells activated with either interferon-γ or tumor necrosis factor-α. Activation with interferon-γ or tumor necrosis factor-α alone did not stimulate the production of nitrite in J774A. 1 cells. Interferon-γ but not tumor necrosis factor-a increased the production of hydrogen peroxide in a concentration dependent manner but scavengers of reactive oxygen species did not influence the growth inhibiting effect of interferon-γ within J774A.1 cells. Both interferon-γ and tumor necrosis factor-α enhanced the fusion of M. microti containing phagosomes with lysosomes and the ultimate degradation of bacteria. Our results showed that growth inhibition of M. microti within interferon-γ or tumor necrosis factor-a stimulated J774A. 1 cells was independent of reactive oxygen intermediate and reactive nitrogen intermediate production.  相似文献   

18.
19.
Ras association domain family (RASSF) 6 is a member of the C-terminal RASSF proteins such as RASSF1A and RASSF3. RASSF6 is involved in apoptosis in various cells under miscellaneous conditions, but it remains to be clarified how RASSF6 exerts tumor-suppressive roles. We reported previously that RASSF3 facilitates the degradation of MDM2, a major E3 ligase of p53, and stabilizes p53 to function as a tumor suppressor. In this study, we demonstrate that RASSF6 overexpression induces G1/S arrest in p53-positive cells. Its depletion prevents UV- and VP-16-induced apoptosis and G1/S arrest in HCT116 and U2OS cells. RASSF6-induced apoptosis partially depends on p53. RASSF6 binds MDM2 and facilitates its ubiquitination. RASSF6 depletion blocks the increase of p53 in response to UV exposure and up-regulation of p53 target genes. RASSF6 depletion delays DNA repair in UV- and VP-16-treated cells and increases polyploid cells after VP-16 treatment. These findings indicate that RASSF6 stabilizes p53, regulates apoptosis and the cell cycle, and functions as a tumor suppressor. Together with the previous reports regarding RASSF1A and RASSF3, the stabilization of p53 may be the common function of the C-terminal RASSF proteins.  相似文献   

20.
Tyrosinase, the key gene in melanin pigment synthesis, is tissue-specifically expressed in melanocytic cells. Expression of this gene is regulated by various hormones, carcinogens, and environmental factors. The molecular basis underlying tyrosinase gene regulation is still not clear. In this report, we present the effects of tumor suppressor p53 protein on tyrosinase gene expression and melanin synthesis in human melanoma. After stable transfection of wild type p53 expression plasmid into a highly pigmented melanoma cell line, overexpression of wt p53 suppressed the pigmentation of the melanoma cells. The loss of pigmentation was associated with the loss of endogenous tyrosinase expression at the activity and mRNA levels. In order to determine whether the p53 repression of tyrosinase mRNA involved modulation of tyrosinase promoter activity, transient transfection approaches involving p53 expression plasmid and construct containing chloramphenicol acetyl transferase (CAT) reporter gene linked to 270 bp tissue-specific tyrosinase promoter have been used. p53 specifically repressed CAT gene expression from the tyrosinase promoter and not from the Rous sarcoma virus promoter. These data suggest that in human melanoma p53 down-regulates the tissue-specific expression of tyrosinase gene and subsequent melanin synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号