首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Confluent monolayers of bovine aortic endothelial cells were examined 2-72 h after exposure to 0.5-5.0 Gy of 60Co gamma-rays. Accumulation of prostacyclin [PGI2, measured as 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha)] in the culture media and PGI2 production stimulated by exogenous arachidonate were correlated with cell detachment and release of lactate dehydrogenase (LDH) activity. Platelet adherence to irradiated and control monolayers also was studied. There were simultaneous time- and dose-dependent increases in cell detachment and in the titers of 6-keto-PGF1 alpha and LDH activity in the culture medium. These changes were evident between 4 and 8 h after 5 Gy or at 24 h after 0.5 Gy. Four hours after 5 Gy, both adherent and detached endothelial cells showed a twofold increase in PGI2 production during a 15-min incubation with arachidonate (10 microM). However, by 72 h this increase was less significant. The accumulation of 6-keto-PGF1 alpha appeared to be related to cell destruction, but radiation also stimulated PGI2 synthesis independent of cell detachment. There was an increased platelet interaction with irradiated monolayers, as a result of platelet adherence to subendothelial matrix exposed after cell detachment. However, irradiation did not alter the nonadherent property of the endothelial cell surface toward platelets.  相似文献   

2.
Primary cultures of porcine aortic endothelial cells were used to assess the effects of O2 intermediates produced by 10-40 mU/ml xanthine oxidase (XO; +2 mM hypoxanthine) or 25-100 mU/ml glucose oxidase (GO; +5 mM glucose). A 60-min incubation in the presence of the enzyme systems resulted in a dose-dependent toxic effect with evidence of cytolysis (increased LDH release) and cell loss (decrease in DNA and protein content), when these indexes were measured 24 hr after completion of the enzyme reaction. Decreased [3H]thymidine incorporation into DNA was the most sensitive index of cell dysfunction for both enzyme systems. The effects of various scavengers and enzymes indicated that H2O2 was the main O2 intermediate involved in the cytotoxicity resulting from the XO-hypoxanthine reaction. Increased glutathione peroxidase activity associated with the addition of 2 X 10(-7) M selenomethionine to culture medium had a partial protective effect which could be related to an increased rate of H2O2 degradation. Evidence for increased DNA synthesis after injury was found in cells previously exposed to XO-hypoxanthine, the degree of increase in [3H]thymidine incorporation being dependent on the intensity of the initial cytotoxicity. Cultured endothelial cells provide a useful tool to evaluate the role of O2 intermediates in endothelial cell injury, to test the effects of protective agents, and to study the repair process.  相似文献   

3.
To investigate the response of cells to one type of DNA damage — namely DNA crosslinks — cell-cycle progression and macromolecular synthesis were studied with cultured mouse FM3A cells. Treatment of the cells with low doses of 8-methoxypsoralen (8-MOP) plus near-UV radiation (0.1 μg/ml plus 5 kJ/m2 or 1.0 μg/ml plus 1–2.5 kJ/m2)_halted the progression of cells through the cell cycle temporarily for the first several hours. Then the cells resumed progression through the cell cycle, and most of the cells reached, and were finally arrested at, the G2 phase of the cycle. There was a rapid decrease of incorporation of [3H]thymidine into cellular DNA immediately after the treatment. Then, after 8 h of incubation, the incorporation of [3H]thymidine recovered to some extent depending on the dose of 8-MOP plus near-UV radiation. Thus the decrease and recovery of the incorporation of [3]Hthymidine were correlated with the halt and resumption in the cell-cycle process.Synthesis of RNA and protein was measured by determination of the amounts in the cells or by the incorporation of radioactive precursors after treatment. RNA and protein synthesis were stimulated by low doses of 8-MOP plus near-UV radiation, but inhibited severely by high doses.  相似文献   

4.
HUMAN VASCULAR ENDOTHELIAL CELLS IN CULTURE : Growth and DNA Synthesis   总被引:83,自引:15,他引:68       下载免费PDF全文
Human endothelial cells, obtained by collagenase treatment of term umbilical cord veins, were cultured using Medium 199 supplemented with 20% fetal calf serum. Small clusters of cells initially spread on plastic or glass, coalesced and grew to form confluent monolayers of polygonal cells by 7 days. Cells in primary and subcultures were identified as endothelium by the presence of Weibel-Palade bodies by electron microscopy. A morphologically distinct subpopulation of cells contaminating some primary endothelial cultures was selectively subcultured, and identified by ultrastructural criteria as vascular smooth muscle. Autoradiography of endothelial cells after exposure to [3H]thymidine showed progressive increases in labeling in growing cultures beginning at 24 h. In recently confluent cultures, labeling indices were 2.4% in central closely packed regions, and 53.2% in peripheral growing regions. 3 days after confluence, labeling was uniform, being 3.5 and 3.9% in central and peripheral areas, respectively. When small areas of confluent cultures were experimentally "denuded," there were localized increases in [3H]thymidine labeling and eventual reconstitution of the monolayer. Liquid scintillation measurements of [3H]thymidine incorporation in primary and secondary endothelial cultures in microwell trays showed a similar correlation of DNA synthesis with cell density. These data indicate that endothelial cell cultures may provide a useful in vitro model for studying pathophysiologic factors in endothelial regeneration.  相似文献   

5.
The effects of oxidized human plasma low density lipoproteins (Ox-LDL) on the proliferation of cultured aortic smooth muscle cells was studied, employing viable cell counting, [3H] thymidine incorporation into DNA, and the release of lactate dehydrogenase (LDH) into the medium. Oxidized LDL (prepared by incubation of LDL with copper sulfate) exerted a concentration-dependent stimulation (2 fold, compared to control) of aortic smooth muscle cell proliferation at low concentrations (0.1 µg – 10 µg/ml medium). On the other hand, at high concentrations (25–200 µg/ml), Ox-LDL produced a pronounced decrease in viable cells, a decrease in the incorporation of [3H] thymidine into DNA, and an increase in the release of LDH in the medium. In this report, the previously postulated biological roles of oxidized-LDL in atherosclerosis are discussed in view of these findings.Abbreviations Ox-LDL Oxidized human plasma Low Density Lipoproteins - SMC Smooth Muscle Cells - LDH Lactate Dehydrogenase - LPC Lysophosphatidycholine - PC Phosphatidylcholine - TNF Tumor Necrosis Factor  相似文献   

6.
The effects of sodium butyrate on [3H]thymidine incorporation and cell growth characteristics in randomly growing and synchronized HeLa S3 cells have been examined in an attempt to determine what effects, if any, butyrate has on S phase cells. Whereas 5 mM sodium butyrate rapidly inhibits [5H]thymidine incorporation in a randomly growing cell populations, it has no effect on incorporation during the S phase in cells synchronized by double thymidine block techniques. This lack of effect does not result from an impaired ability of the S phase cells to take up butyrate, since butyrate administration during this period leads to histone hyperacetylation that is identical with that seen with butyrate treatment of randomly growing cells. Furthermore, the ability to induce such hyperacetylation with butyrate during an apparently normal progression through S phase indicates that histone hyperacetylation probably has no effect on the overall process of DNA replication. Temporal patterns of [3H]thymidine incorporation and cell growth following release from a 24-h exposure to butyrate confirm blockage of cell growth in the G1 phase of the cell cycle. Thus, the inhibition by butyrate of [3H]thymidine incorporation in randomly growing HeLa S3 cell populations can be accounted for solely on the basis of a G1 phase block, with no inhibitory effects on cells already engaged in DNA synthesis or cells beyond the G1 phase block at the time of butyrate administration.  相似文献   

7.
Vascular and airway remodeling, which are characterized by airway smooth muscle (ASM) and pulmonary arterial vascular smooth muscle (VSM) proliferation, contribute to the pathology of asthma, pulmonary hypertension, restenosis and atherosclerosis. To evaluate the proliferation of VSM and ASM cells in response to mitogens, we perform a [3H]thymidine incorporation assay. The proliferation protocol takes approximately 48 h and includes stimulating cells synchronized in G0/G1 phase of the cell cycle with agonists, labeling cells with [3H]thymidine and examining levels of [3H]thymidine incorporation by scintillation counting. Although using radiolabeled [3H]thymidine incorporation is a limitation, the greatest benefit of the assay is providing reliable and statistically significant data.  相似文献   

8.
Confluent monolayers of bovine aortic endothelial and smooth muscle cells were exposed to 0-5.0 Gy of 60Co gamma rays. From 0 to 72 hr after irradiation, the monolayer and culture medium were analyzed for cell (nuclei) number, DNA and protein content, the activities of angiotensin converting enzyme (ACE), lactate dehydrogenase (LDH), and superoxide dismutase (SOD), and LDH isoenzyme profile. Irradiated endothelial cells exhibited a time- and dose-dependent increase in cell detachment, decreased DNA and protein content and reduced ACE active per attached cell, increased LDH and SOD activities per microgram of DNA, and increased LDH activity in the culture medium. The latter was accompanied by a shift from LDH 1 to LDH 4 and 5. The release of LDH activity, observed after 0.5 Gy, was the most sensitive endothelial response, and occurred independent of or preceding cell detachment. Vascular smooth muscle cells contained two to three times more SOD activity than did endothelial cells and exhibited no significant responses to 5.0 Gy.  相似文献   

9.
The effect of microwave radiation on the cell genome   总被引:12,自引:0,他引:12  
Cultured V79 Chinese hamster cells were exposed to continuous radiation, frequency 7.7 GHz, power density 30 mW/cm2 for 15, 30, and 60 min. The parameters investigated were the incorporation of [3H]thymidine and the frequency of chromosome aberrations. Data obtained by 2 methods (the incorporation of [3H]thymidine into DNA and autoradiography) showed that the inhibition of [3H]thymidine incorporation took place by complete prevention of DNA from entering into the S phase. The normal rate of incorporation of [3H]thymidine was recovered within 1 generation cycle of V79 cells. Mutagenic tests performed concurrently showed that even DNA macromolecules were involved in the process. In comparison with the control samples there was a higher frequency of specific chromosome lesions in cells that had been irradiated. Results discussed in this study suggest that microwave radiation causes changes in the synthesis as well as in the structure of DNA molecules.  相似文献   

10.
Continuous exposure of chicken embryo limb bud mesenchyme cells undergoing chondrogenesis in vitro to [3H] thymidine thymidine [(3H]TdR) revealed that more than 90% of the cells synthesized DNA at least once during 120 h of culture. When cells were exposed to [3H]TdR for 24 h beginning at various times throughout the culture period, the percentage of cells which incorporated [3H]TdR during each period was approximately 92%. However, when the period for incorporation of radioisotope was limited to two hours, the number of cells which incorporated [3H]TdR was found to decline during chondrogenesis in vitro. This decline was coincident with the appearance of extracellular matrix material and occurred in those cells which had, and had not, expressed the cartilage phenotype. We conclude from these studies that (1) practically all of the cells continue to proliferate while chondrogenesis is occurring in vitro, (2) there is an increase in the length of the cell cycle during chondrogenesis in vitro, and (3) withdrawal from the cell cycle is not required for differentiation of mesenchyme into cartilage.  相似文献   

11.
We investigated the influence of transforming growth factor-beta (TGF-beta) on DNA synthesis in human fetal fibroblasts, as measured by the incorporation of [3H]thymidine and cell replication. In serum-free medium, without additional peptide growth factors, TGF-beta had no action on thymidine incorporation. However, in the presence of 0.1% v/v fetal calf serum, TGF-beta exhibited a bi-functional action on the cells. A dose-dependent stimulation of [3H]thymidine incorporation, and an increase in cell number, occurred with fibroblasts established from fetuses under 50 g body weight, with a maximum stimulation seen at 1.25 ng/ml. For fibroblasts from fetuses of 100 g or greater body weight, TGF-beta caused a dose-related decrease in thymidine uptake with a maximal inhibition at 2.5 ng/ml, and a small decrease in cell number. When DNA synthesis was stimulated by the addition of somatomedin-C/insulin-like growth factor I, epidermal growth factor, or platelet-derived growth factor, their actions were potentiated by the presence of TGF-beta on cells derived from fetuses under 50 g body weight, but inhibited on cells obtained from the larger fetuses weighing more than 100 g. Similar results were found for changes in cell number in response to TGF-beta when stimulated by SM-C/IGF I. The ability of TGF-beta to modulate [3H] thymidine incorporation did not involve a change in the time required for growth-restricted cells to enter the S phase of the replication cycle. These data suggest that TGF-beta may exert either a growth-promoting or growth-inhibiting action on human fetal connective tissues in the presence of other peptide growth factors, which is dependent on fetal age and development.  相似文献   

12.
CL (cardiolipin) is a key phospholipid involved in ATP generation. Since progression through the cell cycle requires ATP we examined regulation of CL synthesis during S-phase in human cells and investigated whether CL or CL synthesis was required to support nucleotide synthesis in S-phase. HeLa cells were made quiescent by serum depletion for 24 h. Serum addition resulted in substantial stimulation of [methyl-(3)H]thymidine incorporation into cells compared with serum-starved cells by 8 h, confirming entry into the S-phase. CL mass was unaltered at 8 h, but increased 2-fold by 16 h post-serum addition compared with serum-starved cells. The reason for the increase in CL mass upon entry into S-phase was an increase in activity and expression of CL de novo biosynthetic and remodelling enzymes and this paralleled the increase in mitochondrial mass. CL de novo biosynthesis from D-[U-(14)C]glucose was elevated, and from [1,3-(3)H]glycerol reduced, upon serum addition to quiescent cells compared with controls and this was a result of differences in the selection of precursor pools at the level of uptake. Triascin C treatment inhibited CL synthesis from [1-(14)C]oleate but did not affect [methyl-(3)H]thymidine incorporation into HeLa cells upon serum addition to serum-starved cells. Barth Syndrome lymphoblasts, which exhibit reduced CL, showed similar [methyl-(3)H]thymidine incorporation into cells upon serum addition to serum-starved cells compared with cells from normal aged-matched controls. The results indicate that CL de novo biosynthesis is up-regulated via elevated activity and expression of CL biosynthetic genes and this accounted for the doubling of CL seen during S-phase; however, normal de novo CL biosynthesis or CL itself is not essential to support nucleotide synthesis during entry into S-phase of the human cell cycle.  相似文献   

13.
The radioresistance of lymphocytes increases after mitogenic stimulation, suggesting that a radiosensitive activation event contributes to the overall radiosensitivity of lymphocytes. We have sought to identify this activation event by determining the extent of activation of mitogen-stimulated lymphocytes previously exposed to growth-inhibiting doses of radiation. Mouse splenic lymphocytes were exposed to 0-15 Gy 137Cs radiation, and structural and functional damage were assayed. Although damage to cellular thiols and nonprotein thiols was modest, there was a significant loss of viability by 6 h as determined by uptake of propidium iodide (PI). Since cells did not die immediately after irradiation, the activation events which remained were evaluated. Growth-inhibiting doses of radiation left cells partially responsive to mitogen, in that cells were able to exit G0 phase, but they could progress no further into the cell cycle than G1a phase. It is important to note that assessment of viability by uptake of PI indicated substantial cell death after 15 Gy (45%, 6 h; 90%, 24 h); however, cell cycle analysis at 24 h indicated no significant decrease in progression from G0 to G1a phase. The LPS-stimulated response of B cells was more radiosensitive than the Con A-stimulated response of T cells. Further analysis of the Con A response indicated that production of interleukin-2 (IL-2) was unaffected, but expression of the IL-2 receptor was inhibited. Inhibition of poly-ADP-ribosylation and damage to lipids did not prevent the lack of mitogen responsiveness, since neither the ADP-ribose transferase inhibitor 3-aminobenzamide nor lipid radical scavengers had restorative effects on the mitogenic response. Nor was Con A-stimulated incorporation of [3H]thymidine restored with inhibitors of prostaglandin or leukotriene synthesis, suggesting that inhibition was due to direct effects on the Con A responders, and not indirect effects mediated by arachidonate metabolites. These results indicate that growth-inhibiting doses of radiation trigger the process in lymphocytes that culminates in apoptosis, yet leave the cells partially responsive to mitogenic stimuli.  相似文献   

14.
Summary Cultured cells from the bovine endosalpinx were used to evaluate effects of estradiol-17β, progesterone, epidermal growth factor, and insulinlike growth factors I and II on [3H]thymidine incorporation. Cells were treated with hormones and growth factors when approximately 50% confluent. After 24 h, DNA synthesis was quantified by pulsing cells with [3H]thymidine for 12 h and determining uptake into DNA. Cells prepared by mechanical dispersal incorporated more [3H]thymidine than cells dispersed with collagenase. However, hormonal responses were the same for both types of cells. As compared to plastic, cells on a Matrigel substratum exhibited lower incorporation of [3H]thymidine and were unresponsive to hormones. Estradiol-17β increased [3H]thymidine incorporation slightly at 10−10 mol/liter and higher. Epidermal growth factor, insulinlike growth factor-I, and insulinlike growth factor-II also stimulated [3H]thymidine incorporation. Effects of insulinlike growth factor-I were greater for cells treated with estradiol-17β. In the absence of estradiol, progesterone inhibited [3H]thymidine incorporation at 1, 10, and 100 ng/ml. When estradiol-17β was present, progesterone stimulated [3H]thymidine incorporation at 1 ng/ml and reduced incorporation at 100 ng/ml. In conclusion, [3H]thymidine incorporation by cultured oviductal endosalpingeal cells can be regulated by ovarian steroids and growth factors. These molecules may represent signals through which the ovary, embryo, and oviduct regulate oviductal growth. Work conducted while on a sabbatical leave supported by the Deutsche Forschungsgemeinschaft.  相似文献   

15.
Cultured bovine aortic endothelial cells treated with tunicamycin, an inhibitor of glycoprotein synthesis, developed a concentration-dependent inhibition of N-acetylglucosamine-1-phosphate transferase activity, and this inhibition was correlated with a substantial decrease in [3H]mannose incorporation by the cells. Endothelial cells were very sensitive to tunicamycin, and changes in their morphology occurred as a result of the inhibition of glycoprotein synthesis. The cells became elongated, the surface irregular, roughened, and granular, and there was an increase in the interstitial space between the cells. Electron dense material was accumulated within and dilated the rough endoplasmic reticulum, and the distribution of the glycoproteins laminin and fibronectin throughout the endothelial cell monolayer was modified. These morphological changes coincided with functional impairment with the permeability of endothelial cell monolayers to both 125I-albumin and [3H]inulin being increased by treatment with tunicamycin (10(-6) M) for 24 h. These results indicate that the synthesis of glycoproteins is crucial for cell-cell adhesion and the functional properties of the endothelial lining of blood vessels.  相似文献   

16.
Nuclear DNA (ncDNA) synthesis in Chlamydomonas reinhardtii was measured by both 32P[or-thophosphoric acid] (32P) and [14C]adenine incorporation and found to be highly synchronous. Ca. 85% of incorporation was confined to the first 6 h of the dark period of a synchronized regime consisting of an alternating light-dark period of 12 h each. In contrast, no such synchronous incorporation pattern was found for chloroplast (cp) and mitochondrial (mt) DNAs in the same cell population. These two organellar DNAs also exhibited different 32P-incorporation patterns in the cell cycle. Considerable amounts of 32P were incorporated into cpDNA throughout the light-dark synchronous cycle under both mixo- and phototrophic growth conditions, although the second 6-h light period under phototrophy showed an increase not apparent under mixotrophy. This change in growth conditions did not affect 32P incorporation into mtDNA, which was found throughout the cell cycle, with a modest peak in the first 6-h of the dark period. The pattern of [3H]thymidine incorporation into cpDNA was also determined. Under synchronous phototrophic conditions, this pattern was quite different from that obtained with 32P. Most [3H]thymidine incorporation occurred during the light period of the synchronous cycle; this period had been shown previously by density transfer experiments to be the time of cpDNA duplication. Such preferential [3H]thymidine incorporation into cpDNA in the light period was not observed under mixotrophic synchronous growth conditions; in these, [3H]thymidine incorporation was detected throughout the cell cycle. This lack of coincidence between the patterns of 32P- and of [3H]thymidine incorporation into cpDNA during the synchronous cell cycle indicates that in addition to replication, the considerably reiterated organelle-DNA molecules may also regularly undergo an extensive repair process during each cell cycle.  相似文献   

17.
18.
K Asami 《Radiation research》1987,109(2):216-226
A rat was irradiated to the upper abdomen including the liver and then partially hepatectomized. The subsequent synthesis and phosphorylation of histone H1 and nonhistone chromosomal high mobility group (HMG) proteins were investigated. Incorporation of [3H]lysine into histone H1 was increased and reached its peak at 27 h after hepatectomy, and 14 Gy of X rays inhibited the increase. Increase in the incorporation of [3H]lysine into HMG (1 + 2), 14, and 17 which occurred around 27 h after hepatectomy was not inhibited by 14 Gy irradiation. Phosphorylation of histone H1, measured with 32Pi incorporation in vivo, was maximal between 21 and 24 h, and it was inhibited by 4.8 Gy of X rays and delayed with 1.9 Gy. Phosphorylation of HMG 14, which was the only HMG protein phosphorylated under present conditions, was not affected by X irradiation. The [3H]thymidine incorporation into nuclear DNA started increasing at 21 h and reached its maximum at 27 h after hepatectomy. X irradiation with 4.8 Gy inhibited the incorporation, and 1.9 Gy lowered it.  相似文献   

19.
Multiplication stimulating activity (MSA) has been purified from the conditioned media of rat liver cells in culture by a modification of the procedure of Dulak and Temin. Purified MSA stimulates [3H] thymidine incorporation into DNA in subconfluent, serum starved 3T3 cells. Cell cycle analysis by the flow microfluorometer shows that the [3H] thymidine incorporation data reflects DNA synthesis. MSA also stimulates the multiplication of serum starved subconfluent 3T3 cells. MSA is approximately 10-fold less active in 3T3 cells than in chick embryo fibroblasts in stimulating [3H] thymidine incorporation into DNA. MSA causes a 2–10-fold increase in ornithine decarboxylase (ODC) activity in 3T3 cells and the dose response curve parallels the dose response curve for [3H] thymidine incorporation into DNA. The Km of ODC for ornithine is 0.12 mM. There is a 30% decrease in the activity of ornithine transaminase (OTA) during the time period in which MSA causes an increase in ODC activity. Insulin also stimulates [3H] thymidine incorporation into DNA, cell multiplication and ODC activity over the same concentration range as shown for MSA, however, the extent of stimulation by insulin is less than that observed following MSA addition.  相似文献   

20.
Experiments were conducted to determine (1) whether glucocorticoids directly protected endothelial cells (EC) from radiation and (2) if angiotensin converting enzyme (ACE) activity, known to be increased by glucocorticoid, played a role in the EC response to radiation. Confluent monolayers of EC cultured from bovine aorta EC were treated with dexamethasone (10(-6) M); after irradiation (5.0 Gy, 60Co gamma), ACE and lactate dehydrogenase (LDH) activities, DNA and protein contents, and nuclei number were measured. Twenty-four hours after 5 Gy, there was increased cell loss (-40%, P less than 0.001), greater LDH release (greater than 100%, P less than 0.001), more LDH activity per cell (+40%, P less than 0.001), and unchanged ACE activity compared to sham-irradiated control EC. However, 48 hr after 5 Gy, ACE activity per cell was decreased (-24%, P less than 0.005). A 48-hr exposure to dexamethasone alone was accompanied by a slight cell loss (-10%, P less than 0.001) and increased cellular ACE activity (+40-140%, P less than 0.001), but a 24-hr dexamethasone exposure was not cytotoxic and did not change ACE activity. Dexamethasone exposure for 48 hr before and after irradiation did not attenuate cell loss or LDH release. However, combined dexamethasone treatment and radiation increased cellular ACE activity at a time when neither agent alone had an effect (24-hr dexamethasone exposure before 5 Gy and assayed 24 hr after 5 Gy). This interaction between radiation and dexamethasone treatment suggests that the glucocorticoid modifies the cell's response to injury. Although this interaction does not ameliorate radiation cytotoxicity, maintenance of ACE levels in injured vessels by hormones may have physiological significance in the hemodynamics of irradiated tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号