首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rates of synthesis and degradation of enolase and total soluble proteins slow with age in the free-living nematode, Turbatrix aceti. The half-lives are 73 and 58 h for soluble protein and enolase, respectively, in young organisms (5 days old). The respective figures are 163 and 161 h for old organisms (22–30 days old). Similar slowing of protein turnover occurs when the organisms are aged by a repeated screening procedure which avoids the use of fluorodeoxyuridine, an inhibitor of DNA synthesis normally added to aging cultures to obtain synchrony. The results support the idea that slowed protein turnover may be responsible for the formation of altered enzymes in old organisms.  相似文献   

2.
Brain Slice Protein Degradation and Development   总被引:2,自引:2,他引:0  
Protein degradation rates were measured in brain slices prepared from rats of various ages. This was done by adding the protein synthesis rate, determined by incorporation of a labeled precursor, and the net protein degradation rate, determined by measuring the changes with time of total free amino acids. These rates are about 30% higher than those previously calculated from data on protein synthesis rates and protein accumulation rates in vico. The protein degradation rates in brain slices diminish with age; i.e., 2-day cerebellum > 2-day cerebral hemisphere > 12-day cerebral hemisphere > young adult cerebral hemisphere. Protein degradation rates in slices from young brain are initially slightly higher than protein synthesis rates, resulting in a small net degradation with time. Unlike slices from adult brain, the protein degradation rates in slices from young brain decline only modestly with time for as much as 100 min of incubation. The characteristics of protein degradation in brain slices from young animals are roughly similar to some of the data calculated for protein degradation in vivi. suggesting that this system may prove useful for studying factors which control or affect brain protein degradation.  相似文献   

3.
S I Rattan 《Mutation research》1991,256(2-6):115-125
The slowing down of protein synthesis is a change widely observed during the aging of organisms. It has also been claimed that a decline in the rate of protein synthesis occurs during cellular aging. However, the evidence in favour of this view is not clear-cut, and reliable estimates of rates of protein synthesis during cellular aging have yet to be made. Studies on various components of the protein synthetic machinery during cellular aging have revealed a decline in the efficiency and accuracy of ribosomes, an increase in the levels of rRNA and tRNA, and a decrease in the amounts and activities of elongation factors. Detailed studies on the structure and function of ribosomes, tRNA isoacceptor profiles, activities of aminoacyl-tRNA synthetases, levels and activities of initiation factors, rates of protein elongation, and the accuracy of protein synthesis will be needed before the molecular mechanisms of the regulation of protein synthesis during cellular aging can be understood.  相似文献   

4.
The rates of degradation of total soluble proteins in the free-living nematode, Turbatrix aceti, have been estimated by following the loss of acid-insoluble insoluble radioactivity from protein during a nonradioactive chase period after initial labeling with [35S]methionine. These proteins appear to lose label kinetically as a homogeneous class in age-synchronized nematode populations. However, proteins are degraded more slowly in senescent cultures than in young cultures. Protein degradation rates decline progressively during nematode aging. These findings suggest that the protein degradative system in T. aceti may become partially defective with advancing age which may result in the accumulation of aberrant protein molecules in senescent organisms.  相似文献   

5.
Chaperone‐mediated autophagy (CMA), a cellular process that contributes to protein quality control through targeting of a subset of cytosolic proteins to lysosomes for degradation, undergoes a functional decline with age. We have used a mouse model with liver‐specific defective CMA to identify changes in proteostasis attributable to reduced CMA activity in this organ with age. We have found that other proteolytic systems compensate for CMA loss in young mice which helps to preserve proteostasis. However, these compensatory responses are not sufficient for protection against proteotoxicity induced by stress (oxidative stress, lipid challenges) or associated with aging. Livers from old mice with CMA blockage exhibit altered protein homeostasis, enhanced susceptibility to oxidative stress and hepatic dysfunction manifested by a diminished ability to metabolize drugs, and a worsening of the metabolic dysregulation identified in young mice. Our study reveals that while the regulatory function of CMA cannot be compensated for in young organisms, its contribution to protein homeostasis can be handled by other proteolytic systems. However, the decline in the compensatory ability identified with age explains the more severe consequences of CMA impairment in older organisms and the contribution of CMA malfunction to the gradual decline in proteostasis and stress resistance observed during aging.  相似文献   

6.
7.
Cellular aging is characterized by the build-up of oxidatively modified protein that results, at least in part, from impaired redox homeostasis associated with the aging process. Protein degradation and repair are critical for eliminating oxidized proteins from the cell. Oxidized protein degradation is mainly achieved by the proteasomal system and it is now well established that proteasomal function is generally impaired with age. Specific enzymatic systems have been identified which catalyze the regeneration of cysteine and methionine following oxidation within proteins. Protein-bound methionine sulfoxide diastereoisomers S and R are repaired by the combined action of the enzymes MsrA and MsrB that are subsequently regenerated by thioredoxin/thioredoxin reductase. Importantly, the peptide methionine sulfoxide reductase system has been implicated in increased longevity and resistance to oxidative stress in different cell types and model organisms. In a previous study, we reported that peptide methionine sulfoxide reductase activity as well as gene and protein expression of MsrA are decreased in various organs as a function of age. More recently, we have shown that gene expression of both MsrA and MsrB2 (Cbs-1) is decreased during replicative senescence of WI-38 fibroblasts, and this decline is associated with an alteration in catalytic activity and the accumulation of oxidized protein. In this review, we will address the importance of protein maintenance in the aging process as well as in replicative senescence, with a special focus on regulation of the peptide methionine sulfoxide reductase systems.  相似文献   

8.
9.
The main objective of this study was to determine if the activities of the mitochondrial citric acid cycle enzymes are altered during the normal aging process. Flight muscle mitochondria of houseflies of different ages were used as a model system because of their apparent age-related decline in bioenergetic efficiency, evident as a failure of flying ability. The maximal activities of each of the citric acid cycle enzymes were determined in preparations of mitochondria from flies of relatively young, middle, and old age. Aconitase was the only enzyme exhibiting altered activity during aging. The maximal activity of aconitase from old flies was decreased by 44% compared to that from young flies while the other citric acid cycle enzymes showed no change in activity with age. It is suggested that the selective age-related decrease in aconitase activity is likely to contribute to a decline in the efficiency of mitochondrial bioenergetics, as well as result in secondary effects associated with accumulation of citrate and redox-active iron.  相似文献   

10.
Cell volume alteration represents an important factor contributing to the pathology of late-onset diseases. Previously, it was reported that protein biosynthesis and degradation are inversely (trans) regulated during cell volume regulation. Upon cell shrinkage, protein biosynthesis was up-regulated and protein degradation down-regulated. Cell swelling showed opposite regulation. Recent evidence suggests a decrease of protein biodegradation activity in many neurodegenerative diseases and even during aging; both also show prominent cell shrinkage. To clarify the effect of cell volume regulation on the overall protein turnover dynamics, we investigated mouse embryonic stem cells under hyper- and hypotonic osmotic conditions using a 2-D gel based proteomics approach. These conditions cause cell swelling and shrinkage, respectively. Our results demonstrate that the adaption to altered osmotic conditions and therefore cell volume alterations affects a broad spectrum of cellular pathways, including stress response, cytoskeleton remodeling and importantly, cellular metabolism and protein degradation. Interestingly, protein synthesis and degradation appears to be cis-regulated (same direction) on a global level. Our findings also support the hypothesis that protein alterations due to osmotic stress contribute to the pathology of neurodegenerative diseases due to a 60% expression overlap with proteins found altered in Alzheimer's, Huntington's, or Parkinson's disease. Eighteen percent of the proteins altered are even shared with all three disorders.  相似文献   

11.
Previous studies with Arabidopsis accessions revealed that biomass correlates negatively to dusk starch content and total protein, and positively to the maximum activities of enzymes in photosynthesis. We hypothesized that large accessions have lower ribosome abundance and lower rates of protein synthesis, and that this is compensated by lower rates of protein degradation. This would increase growth efficiency and allow more investment in photosynthetic machinery. We analysed ribosome abundance and polysome loading in 19 accessions, modelled the rates of protein synthesis and compared them with the observed rate of growth. Large accessions contained less ribosomes than small accessions, due mainly to cytosolic ribosome abundance falling at night in large accessions. The modelled rates of protein synthesis resembled those required for growth in large accessions, but were up to 30% in excess in small accessions. We then employed 13CO2 pulse‐chase labelling to measure the rates of protein synthesis and degradation in 13 accessions. Small accessions had a slightly higher rate of protein synthesis and much higher rates of protein degradation than large accessions. Protein turnover was negligible in large accessions but equivalent to up to 30% of synthesised protein day?1 in small accessions. We discuss to what extent the decrease in growth in small accessions can be quantitatively explained by known costs of protein turnover and what factors may lead to the altered diurnal dynamics and increase of ribosome abundance in small accessions, and propose that there is a trade‐off between protein turnover and maximisation of growth rate.  相似文献   

12.
Loss of muscle strength is a principal factor in the development of physical frailty, a condition clinically associated with increased risk of bone fractures, impairments in the activities of daily living, and loss of independence in older humans. A primary determinant in the decline in muscle strength that occurs during aging is a loss of muscle mass, which could occur through a reduction in the rate of protein synthesis, an elevation in protein degradation, or a combination of both. In the present study, rates of protein synthesis and the relative expression and function of various biomarkers involved in the initiation of mRNA translation in skeletal muscle were examined at different times throughout the life span of the rat. It was found that between 1 and 6 mo of age, body weight increased fourfold. However, by 6 mo, gastrocnemius protein synthesis and RNA content per gram of muscle were lower than values observed in 1-mo-old rats. Moreover, the relative expression of two proteins involved in the binding of initiator methionyl-tRNA to the 40S ribosomal subunit, eukaryotic initiation factors (eIF)2 and eIF2B, as well as the 70-kDa ribosomal protein S6 kinase, S6K1, was lower at 6 mo compared with 1 mo of age. Muscle mass, protein synthesis, and the aforementioned biomarkers remained unchanged until approximately 21 mo. Between 21 and 24 mo of age, muscle mass decreased precipitously. Surprisingly, during this period protein synthesis, relative RNA content, eIF2B activity, relative eIF2 expression, and S6K1 phosphorylation all increased. The results are consistent with a model wherein protein synthesis is enhanced during aging in a futile attempt to maintain muscle mass.  相似文献   

13.
14.
15.
We examined the alterations in 20S proteasome homeostasis, protein oxidation, and cell viability that occur during the stationary phase or chronological model of yeast aging. Data in this report demonstrate that proteasome subunit expression is increased, proteasome composition is altered, and levels of individual proteasome proteolytic activities are elevated during stationary phase-induced aging in Saccharomyces cerevisiae. Despite such alterations, a progressive loss of proteasome-mediated protein degradation and a significant increase in protein oxidation were observed in cells maintained under stationary phase conditions. Deletion of UMP1, a gene necessary for 20S proteasome biogenesis, had no effect on cellular viability under normal growth conditions, but impaired the ability of cells to survive under stationary phase conditions. During stationary phase, the levels of oxidized protein increased more rapidly and to higher levels in the mutant lacking UMP1 than in the wild-type cells. Taken together, these data implicate a role for proteasome synthesis and altered 20S proteasome composition in maintaining viability during stationary phase, and demonstrate that even with these modifications a gradual loss of proteasome-mediated protein degradation occurs during stationary phase-induced aging. These data also suggest a role for impaired proteasome-mediated protein degradation in increased protein oxidation and cell death observed during the aging of eukaryotic cells.  相似文献   

16.
The biosynthesis and degradation of two lipogenic enzymes were studied during the differentiation of 3T3-L1 preadipocytes into adipocytes. The activity and mass of malic enzyme, rose by an order of magnitude during adipocyte development and the enzyme accounted for 0.3% of the cytosol protein in mature fat cells. Similarly, the activity and amount of ATP-citrate lyase increased approximately 7-fold during the adipose conversion. The relative rates of synthesis of the two enzymes were less than or equal to 0.02% in preadipocytes, but increased sharply as the cells began to differentiate. Maximal steady state rates of malic enzyme and ATP-citrate lyase synthesis in 3T3-L1 adipocytes were 13- and 8-fold higher, respectively, than the basal rates in preadipocytes. In contrast, the half-lives of malic enzyme (67 h) and ATP-citrate lyase (47 h) were not altered during adipocyte development. Thus, accelerated rates of enzyme synthesis account for the differentiation-dependent accumulation of the two lipogenic enzymes. Increased rates of malic enzyme, ATP-citrate lyase, and fatty acid synthetase biosynthesis are expressed in a highly coordinated manner during adipocyte differentiation and are associated with parallel elevations in the levels of translatable mRNAs for these enzymes.  相似文献   

17.
The mechanisms of aging are not well understood in animals with continuous growth such as fish, reptiles, amphibians and numerous invertebrates, including mollusks. We studied the effects of age on oxidative stress, cellular defense mechanisms (including two major antioxidant enzymes, superoxide dismutase (SOD) and catalase), and molecular chaperones in two mollusks--eastern oysters Crassostrea virginica and hard clams Mercenaria mercenaria. In order to detect the age-related changes in these parameters, correction for the effects of size was performed where appropriate to account for growth-related dilution. Fluorescent age pigments accumulated with age in both species. Protein carbonyls did not change with age or size indicating that they are not a good marker of aging in mollusks possibly due to the fast turnover and degradation of oxidized proteins in growing tissues. SOD did not show a compensatory increase with aging in either species, while catalase significantly decreased with age. Mitochondrial heat shock protein (HSP60) decreased with age in mollusks suggesting an age-related decline in mitochondrial chaperone protection. In contrast, changes in cytosolic chaperones were species-specific. HSP70 increased and HSP90 declined with age in clams, whereas in oysters HSP70 expression did not change, and HSP90 increased with aging.  相似文献   

18.
19.
Combating the social and economic consequences of a growing elderly population will require the identification of interventions that slow the development of age‐related diseases. Preserved cellular homeostasis and delayed aging have been previously linked to reduced cell proliferation and protein synthesis rates. To determine whether changes in these processes may contribute to or predict delayed aging in mammals, we measured cell proliferation rates and the synthesis and replacement rates (RRs) of over a hundred hepatic proteins in vivo in three different mouse models of extended maximum lifespan (maxLS): Snell Dwarf, calorie‐restricted (CR), and rapamycin (Rapa)‐treated mice. Cell proliferation rates were not consistently reduced across the models. In contrast, reduced hepatic protein RRs (longer half‐lives) were observed in all three models compared to controls. Intriguingly, the degree of mean hepatic protein RR reduction was significantly correlated with the degree of maxLS extension across the models and across different Rapa doses. Absolute rates of hepatic protein synthesis were reduced in Snell Dwarf and CR, but not Rapa‐treated mice. Hepatic chaperone levels were unchanged or reduced and glutathione S‐transferase synthesis was preserved or increased in all three models, suggesting a reduced demand for protein renewal, possibly due to reduced levels of unfolded or damaged proteins. These data demonstrate that maxLS extension in mammals is associated with improved hepatic proteome homeostasis, as reflected by a reduced demand for protein renewal, and that reduced hepatic protein RRs hold promise as an early biomarker and potential target for interventions that delay aging in mammals.  相似文献   

20.
Age-specific metabolic rates and mortality rates in the genus Drosophila   总被引:2,自引:1,他引:1  
Early theories of aging suggested that organisms with relatively high metabolic rates would live shorter lives. Despite widespread tests of this 'rate of living' theory of aging, there is little empirical evidence to support the idea. A more fine-grained approach that examined age-related changes in metabolic rate over the life span could provide valuable insight into the relationship between metabolic rate and aging. Here we compare age-related metabolic rate (measured as CO2 production per hour) and age-related mortality rate among five species in the genus Drosophila. We find no evidence that longer-lived species have lower metabolic rates. In all five species, there is no clear evidence of an age-related metabolic decline. Metabolic rates are strikingly constant throughout the life course, with the exception of females of D. hydei, in which metabolic rates show an increase over the first third of the life span and then decline. We argue that some physiological traits may have been shaped by such strong selection over evolutionary time that they are relatively resistant to the decline in the force of selection that occurs within the life time of a single individual. We suggest that comparisons of specific traits that do not show signs of aging with those traits that do decline with age could provide insight into the aging process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号