首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary rDNA magnification in D. melanogaster increases the redundancy of that locus to a value higher than the wild type. A magnified locus (bb m) can lose the express copies according to rDNA content of partner sexual chromosome. This paper is a study of behaviour of two bb m loci put together to show their interaction.  相似文献   

2.
rDNA magnification in Drosophila melanogaster is defined experimentally as the ability of bb/Ybb- males to produce exceptional progeny that are wild type with respect to rDNA associated phenotypes. Here, we show that some of these bobbed-plus progeny result not from genetic reversion at the bb locus but rather from variants at two or more autosomal loci that ameliorate the bobbed phenotype of rDNA deficient males in Drosophila. In doing so we resolve several aspects of a long-standing paradox concerning the phenomenon of rDNA magnification. This problem arose from the use of two genetic assays, which were presumed to be identical, but paradoxically, produced conflicting data on both the kinetics of reversion and the stability of magnified bb+ chromosomes. We resolve this problem by demonstrating that in one assay bobbed-plus progeny arise primarily by genetic reversion at the bobbed locus, whereas in the other assay bobbed-plus progeny arise both by reversion and by an epistatic effect of autosomal modifiers on the bobbed phenotype. We further show that such modifiers can facilitate the appearance of phenotypically bobbed-plus progeny even under conditions where genetic reversion is blocked by magnification defective mutants. Finally, we present a speculative model relating the action of these modifiers to the large increases in rDNA content observed in males undergoing magnification.  相似文献   

3.
In Drosophila melanogaster the tandemly arranged repetitive sequences coding for 18S and 28S rRNA are heterogenous at the level of the spacers between units and insertions that interrupt many 28S rRNA genes. This heterogeneity contrasts with the homogeneity of the regions transcribed into 18S and 28S rRNA. Homogenization and evolution of repetitive genes are usually explained by conversion, amplification events or unequal crossovers. In this paper we studied the change in rDNA patterns associated with partial reversion of bobbed mutations. In most cases, no increase in rDNA gene number, but a new repartition of gene types were found.  相似文献   

4.
Summary The proportion of magnified individuals in the progeny of bobbed males is dependant upon different factors: the bobbed allele used (Fig. 3), the age of the male (Table 2, 3) and the individual male tested (Table 1). From this, it can be thought that the first event leading to magnification happens before the separation of the germ line in the egg.A number of individuals carrying bobbed alleles more extreme than the parental one were observed (Table 4); these alleles were lethal in combination with Ybb-. It cannot yet be acertained whether they are produced during the first step of magnification process itself or whether they originate later on.  相似文献   

5.
Summary In Drosophila melanogaster a partial loss of ribosomal genes leads to the bobbed phenotype. Magnification is a heritable increase in rDNA that may occur in males carrying a deleted X chromosome with a strong bobbed phenotype. The restriction patterns of X chromosome total rDNA, insertions and spacers from magnified bobbed strains were compared with those of the original bobbed mutations. It was found that magnification modifies restriction patterns and differentially affects gene types, increasing specific genes lacking insertions (INS-). Increases in copy number of genes with type I insertions are generally lower than the total number of INS- genes, while type II insertion genes are not perceptibly increased. The recovery of homogeneous progeny from a single premagnified male indicates that the magnification event might take place and become stable very early in the germ line, arguing against magnification being due to extrachromosomal amplification. Additionally, some gene types increase 3.5-fold while others are eliminated, indicating that they could not result from a single unequal cross-over. These results are in good agreement with the existence of partial clustering of rDNA genes according to type, and suggest that magnification could result from local amplification of genes.  相似文献   

6.
Summary Cochliobolus heterostrophus protoplasts transformed with a plasmid carrying the Aspergillus nidulans amdS gene (Hynes et al. 1983) gave rise to colonies on a selective medium that did not support significant growth of wild type cells. The plasmid integrated at a single chromosomal locus in each transformant analyzed and the site of integration differed among transformants. Some transformants had one copy of the plasmid, others had multiple copies tandemly arranged and oriented head-to-tail. Both single and multiple copies segregated meiotically as single genes and were mitotically stable on either selective or nonselective medium. The andS gene is advantageous for transformation of genetically undeveloped fungi because it is selectable in wild type cells in organisms that lack a functional amdS gene, thus eliminating the need for induced mutations in recipient strains. Moreover, there is no background due to reversion of a counter-selected mutant allele.  相似文献   

7.
In translocation OY321 of Neurospora crassa, the nucleolus organizer is divided into two segments, a proximal portion located interstitially in one interchange chromosome, and a distal portion now located terminally on another chromosome, linkage group I. In crosses of Translocation X Translocation, exceptional progeny are recovered nonselectively in which the chromosome sequence has apparently reverted to Normal. Genetic, cytological, and molecular evidence indicates that reversion is the result of meiotic crossing over between homologous displaced rDNA repeats. Marker linkages are wild type in these exceptional progeny. They differ from wild type, however, in retaining an interstitial block of rRNA genes which can be demonstrated cytologically by the presence of a second, small interstitial nucleolus and genetically by linkage of an rDNA restriction site polymorphism to the mating-type locus in linkage group I. The interstitial rDNA is more highly methylated than the terminal rDNA. The mechanism by which methylation enzymes distinguish between interstitial rDNA and terminal rDNA is unknown. Some hypotheses are considered.  相似文献   

8.
To investigate the physical organization of ribosomal RNA genes of two bobbed (bb) loci carried by the Dp(1;f)122 free duplication, a wild type and a deleted one derived from it, genomic DNAs from XXNO-/Dp122bb+ and XXNO-/Dp122bb adult females were analyzed by restriction enzyme digestions. We found that in the bb mutant there was a loss of uninterrupted genes, while genes interrupted by type I and type II insertions remained apparently unchanged. This is an indication that at least in this wild type bb+ locus, carried by the 122 free duplication, the different repeating units are not distributed randomly. In fact, after digestion of the rDNA carried by the bb+ duplication with the enzyme BamHI that cuts only in type I insertions, we have obtained long uncleaved fragments of DNA containing uninterrupted genes.  相似文献   

9.
Summary Ribosomal DNA content has been determined in several adult and larval tissues of Drosophila melanogaster. Underreplication of rRNA genes was observed in polytenic salivary glands of larvae. On the contrary, polytenic/polyploid ovaries showed no decrease in rDNA. It is concluded that polyteny is not necessarily associated with underreplication of rDNA. No other tissue examined displayed any change in rDNa redundancy. Third-instar-larvae showed a decrease in rDNA amount which might be partly accounted for by underreplication of rDNA in salivary glands. No such decrease was seen in pupae. Bobbed genotypes were essentially similar to wild type in all tissues except salivary glands. In this case, it was found that the extent of underreplication is less in bobbed as compared to wild genotypes.Ribosomal DNA activity was examined in various tissues of Drosophila melanogaster. The rates of rRNA synthesis vary greatly between various tissues. It is concluded that a control at the level of gene activity operates as differences in the amount of precursor rRNA synthesized can be observed both in flies of varying rDNA contents as well as in various tissues of the same genotype.  相似文献   

10.
Summary We have examined the rDNA content of male and female adult flies having only one nucleolus organizer (NO), using X chromosomes carrying wild or partially deleted bobbed loci (Xbb +/O, Xbb +/XNO-and Xbb/O, Xbb/XNO -).The results show that in Xbb +/O and Xbb +/XNO -flies, where only somatic gene compensation is supposed to occur, the rDNA increase, although less pronounced than previously reported, is directly proportional to the number of rRNA genes initially present in the nucleolus organizer. In Xbb/O and in Xbb/XNO -flies the rDNA increase is relatively much higher than that observed in flies carrying bb + instead of bb. It is suggested that this may be due to rDNA premagnification and somatic gene compensation occurring simultaneously in the former flies.On leave of absence from International Institute of Genetics and Biophysics, Naples, Italy  相似文献   

11.
An experiment is described that provides evidence for an exchange mechanism to explain the increase in ribosomal gene number that occurs during bobbed magnification. We show that bobbed and bobbed-lethal alleles do not magnify in closed X chromosomes, but that a spontaneous ring opening restores normal magnification. The results provide strong evidence that the elementary magnifying event is unequal sister chromatid exchange, and can be interpreted in the framework of an inducible rDNA-specific recombination system as the basis of ribosomal gene magnification. Correspondence to: S.A. Endow at the above address  相似文献   

12.
The genes encoding for 18S–5.8S–28S ribosomal RNA (rDNA) are both conserved and diversified. We used rDNA as probe in the fluorescent in situ hybridization (rDNA-FISH) to localized rDNAs on chromosomes of 15 accessions representing ten Oryza species. These included cultivated and wild species of rice, and four of them are tetraploids. Our results reveal polymorphism in the number of rDNA loci, in the number of rDNA repeats, and in their chromosomal positions among Oryza species. The numbers of rDNA loci varies from one to eight among Oryza species. The rDNA locus located at the end of the short arm of chromosome 9 is conserved among the genus Oryza. The rDNA locus at the end of the short arm of chromosome 10 was lost in some of the accessions. In this study, we report two genome specific rDNA loci in the genus Oryza. One is specific to the BB genome, which was localized at the end of the short arm of chromosome 4. Another may be specific to the CC genome, which was localized in the proximal region of the short arm of chromosome 5. A particular rDNA locus was detected as stretched chromatin with bright signals at the proximal region of the short arm of chromosome 4 in O. grandiglumis by rDNA-FISH. We suggest that chromosomal inversion and the amplification and transposition of rDNA might occur during Oryza species evolution. The possible mechanisms of cyto-evolution in tetraploid Oryza species are discussed.  相似文献   

13.
The rDNA magnification process consists of a rapid and inheritable rDNA increase occurring in bobbed males: in a few generations the bb loci acquire the wild-type rDNA value and reach a bb+ phenotype.—We have analyzed the rDNA magnification process in the repair-recombination-deficient mutant mei9a, both at the phenotypical and rDNA content levels. In mei9a bb double mutants the recovery of bb+ phenotype is strongly disturbed and the rDNA redundancy value fails to reach the wild-type level. The strong effect of this meiotic mutation on rDNA magnification suggests a close relationship between this phenomenon and the repair-recombination processes.  相似文献   

14.
Summary Unequal mitotic sister strand crossing over has been evoked to explain the occurrence of phenotypically bb - males in the progeny of phenotypically bobbed males during magnification. If this is the case, complementary bb 1 loci should be obtained together with the bb 1. To test this hypothesis we compared the frequency of bb lethal mutations in the sperms of bb males with the percentage of phenotypically bb + males obtained during magnification of these bb males. We then compared these values with those occurring in phenotypically bb + control males. We found that, while the number of bb + males obtained during magnification, though variable, is high, the bb lethal mutation occurs at a very low frequency in all the genetic conditions, whatever the phenotype of the parental male.  相似文献   

15.
Summary Unstable mutations were generated at the cut locus by the MR-h12 factor which induces male recombination. The unstable allele ct MR2, containing the MR-transposon in the cut locus is a very powerful mutator producing a number of different viable and lethal mutations both in the cut locus and outside it.I describe several types of mutations: stable reversion to wild type, which were sometimes associated with the appearance of unstable mutations in other loci; of stable deficiencies at the cut locus (lethals); new unstable mutations at different loci with the ct MR2 allele conserved; new unstable cut alleles with a phenotype other than that of ct MR2. The possible mechanisms of these mutational events are discussed. The genetic system constructed in the present work affords an opportunity for molecular studies of the cut locus and the MR-transposon, as a sequence from the cut locus has recently been cloned (Tchurikov et al. 1981).  相似文献   

16.
Check of Gene Number during the Process of rDNA Magnification   总被引:1,自引:0,他引:1  
THE multiple sequences of rDNA (DNA complementary to ribosomal RNA) of the Drosophila genome are localized at the bobbed locus, located in the X chromosome, position 66 and in the short arm of the Y chromosome1,2. Wild bobbed (bb+) is that locus which, without a partner, gives rise to a normal phenotype. That locus which in similar conditions is incapable of giving rise to a normal phenotype is called a bobbed mutation (bb) and contains fewer genes for rRNA. The number of genes for rRNA in different individuals can vary considerably. One mechanism for rDNA variation is unequal crossing over3. Another mechanism, described by Tartof4, becomes apparent when individual flies, carrying only one bobbed locus, are constructed and only if such a locus is on the X chromosome; that is, if one constructs Xbb+/O males (and also Xbb/O males) or Xbb+/XNO- females. Such individuals show a higher rDNA content than expected from the analysis of the same locus in Xbb+/Xbb+ females or in Xbb+/Ybb+ males. The increase of rDNA in this case is not inheritable4.  相似文献   

17.
18.
The evolution of genome size and ribosomal DNA (rDNA) locus organization was analysed in 23 diploid species of Chenopodium s.l., all of which share the same base chromosome number of x = 9. Phylogenetic relationships among these species were inferred from plastid and nuclear ribosomal internal transcribed spacer (nrITS) DNA sequences. The molecular phylogenetic analyses assigned all analysed species of Chenopodium s.l. to six evolutionary lineages, corresponding to the recent new generic taxonomic treatment of Chenopodium s.l. The distribution of rDNA loci for four species is presented here for the first time using fluorescence in situ hybridization (FISH) with 5S and 35S rDNA probes. Most of the 23 analysed diploid Chenopodium spp. possessed a single subterminally located 35S rDNA locus, except for three species which possessed two 35S rDNA loci. One or two 5S rDNA loci were typically localized subterminally on chromosomes, rarely interstitially. Analyses of rDNA locus numbers in a phylogenetic context resulted in the reconstruction of one locus each of 35S rDNA and 5S rDNA, both in subterminal positions, as the ancestral state. Genome sizes determined using flow cytometry were relatively small (2C value < 2.8 pg), ranging from 0.734 pg in C. schraderianum to 2.721 pg in C. californicum (nearly four‐fold difference), and were often conserved within major phylogenetic lineages, suggesting an adaptive value. The reconstructed ancestral genome size was small for all evolutionary lineages, and changes have probably coincided with the divergence of major lineages. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 218–235.  相似文献   

19.
The extent of 5S and 45S ribosomal DNA (rDNA) variation was investigated in wild and domesticated common beans (Phaseolus vulgaris) chosen to represent the known genetic diversity of the species. 5S and 45S rDNA probes were localized on mitotic chromosomes of 37 accessions by fluorescent in situ hybridization (FISH). The two 5S rDNA loci were largely conserved within the species, whereas a high variation in the number of 45S rDNA loci and changes in position of loci and number of repeats per locus were observed. Domesticated accessions from the Mesoamerican gene pool frequently had three 45S rDNA loci per haploid genome, and rarely four. Domesticated accessions from Andean gene pool, particularly from the race Peru, showed six, seven, eight or nine loci, but seven loci were found in all three races of this gene pool. Between three and eight loci were observed in accessions resulting from crosses between Andean and Mesoamerican genotypes. The presence of two to eight 45S rDNA loci in wild common beans from different geographic locations indicates that the 45S rDNA amplification observed in the Andean lineage took place before domestication. Our data suggest that ectopic recombination between terminal chromosomal regions might be the mechanism responsible for this variation.  相似文献   

20.
We examined the structure, intranuclear distribution and activity of ribosomal DNA (rDNA) in Nico-tiana sylvestris (2n=2x=24) and N. tomentosiformis (2n=2x=24) and compared these with patterns in N. tabacum (tobacco, 2n=4x=48). We also examined a long-established N. tabacum culture, TBY-2. Nicotiana tabacum is an allotetraploid thought to be derived from ancestors of N. sylvestris (S-genome donor) and N. tomentosiformis (T-genome donor). Nicotiana sylvestris has three rDNA loci, one locus each on chromosomes 10, 11, and 12. In root-tip meristematic interphase cells, the site on chromosome 12 remains condensed and inactive, while the sites on chromosomes 10 and 11 show activity at the proximal end of the locus only. Nicotiana tomentosiformis has one major locus on chromosome 3 showing activity and a minor, inactive locus on chromosome 11. In N. tabacum cv. 095-55, there are four rDNA loci on T3, S10, S11/t and S12 (S11/t carries a small T-genome translocation). The locus on S12 remains condensed and inactive in root-tip meristematic cells while the others show activity, including decondensation at interphase and secondary constrictions at metaphase. Nicotiana tabacum DNA digested with methylcytosine-sensitive enzymes revealed a hybridisation pattern for rDNA that resembled that of N. tomentosiformis and not N. sylvestris. The data indicate that active, undermethylated genes are of the N. tomentosiformis type. Since S-genome chromosomes of N. tabacum show rDNA expression, the result indicates rDNA gene conversion of the active rDNA units on these chromosomes. Gene conversion in N. tabacum is consistent with the results of previous work. However, using primers specific for the S-genome rDNA intergenic sequences (IGS) in the polymerase chain reaction (PCR) show that rDNA gene conversion has not gone to completion in N. tabacum. Furthermore, using methylation-insensitive restriction enzymes we demonstrate that about 8% of the rDNA units remain of the N. sylvestris type (from ca. 75% based on the sum of the rDNA copy numbers in the parents). Since the active genes are likely to be of an N. tomentosiformis type, the N. sylvestris type units are presumably contained within inactive loci (i.e. on chromosome S12). Nicotiana sylvestris has approximately three times as much rDNA as the other two species, resulting in much condensed rDNA at interphase. This species also has three classes of IGS, indicating gene conversion has not homogenised repeat length in this species. The results suggest that methylation and/or DNA condensation has reduced or prevented gene conversion from occurring at inactive genes at rDNA loci. Alternatively, active undermethylated units may be vulnerable to gene conversion, perhaps because they are decondensed and located in close proximity within the nucleolus at interphase. In TBY-2, restriction enzymes showed hybridisation patterns that were similar to, but different from, those of N. tabacum. In addition, TBY-2 has elevated rDNA copy number and variable numbers of rDNA loci, all indicating rDNA evolution in culture. Received: 17 November 1999; in revised form: 3 February 2000 / Accepted: 3 February 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号