首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Procedures to isolate plasma membrane, Golgi apparatus, and endoplasmic reticulum from a single homogenate of mouse liver are described. Fractions contain low levels of contaminating membranes as determined from morphometry and analyses of marker enzymes. The method requires only 2–3 gm of liver as starting material and yields approximately 0.7, 0.7, and 0.5 mg protein/gm liver, respectively, for endoplasmic reticulum, Golgi apparatus, and plasma membrane. Golgi apparatus fractions show high levels of galactosyltransferase activity and consist of cisternal stacks and associated secretory vesicles and tubules. Endoplasmic reticulum fractions are enriched in both glucose-6-phosphatase and nicotinamide adenine dinucleotide phosphate (reduced) (NADPH)-cytochrome c reductase and contain membrane vesicles with attached ribosomes. K+-stimulated p-nitrophenyl phosphatase and (Na+ K+) adenosine triphosphatase activity are enriched in the plasma membrane fraction. This fraction consists of membrane sheets, many with junctional complexes, and bile canaliculi that are representative of the total hepatocyte plasma membrane. The fractionation procedure is designed to utilize small amounts of tissue (e.g., with liver slices), to reduce the total time required for fractionation, and to permit comparisons of constituents of plasma membrane, Golgi apparatus, and endoplasmic reticulum prepared from the same starting homogenates.  相似文献   

2.
Coated vesicles were isolated from rat liver in about 80% fraction purity as determined from electron microscopy and analyses of marker enzymes and compared with Golgi apparatus and other membrane fractions isolated in parallel. The fractions were enriched in NADH-monodehydroascorbate reductase, ascorbate oxidase and ascorbic acid. The NADH-monodehydroascorbate reductase and ascorbate oxidase of the Golgi apparatus and coated vesicles differed from that of the endoplasmic reticulum in being inhibited by the sodium selective ionophore, monensin, at physiological concentrations while these activities were stimulated by ethylenediaminetetraacetic acid in coated vesicles but not in Golgi apparatus. Activities of both coated vesicles and Golgi apparatus fractions depleted in the coat protein, clathrin, were activated by the addition of clathrin-rich supernatant fractions. The results are discussed in the context of monodehydroascorbate as an acceptor for electron transport-mediated transfer of electrons from NADH by coated vesicles as part of a possible mechanism to drive membrane translocations or to acidify the interiors of vesicles.  相似文献   

3.
Summary Membranes from etiolated maize seedlings were isolated using sucrose gradients for in vitro studies of polysaccharide synthesis. Following downward centrifugation, flotation centrifugation improved the purity of membrane fractions, in particular the Golgi apparatus. Based on naphthylphthalamic acid binding to plasma membrane and inosine-5-diphosphatase activity in Golgi apparatus, flotation centrifugation removed about 70% of the plasma membrane which cosedimented with the Golgi apparatus in downward centrifugation. The addition of chelators during flotation centrifugation allowed separation of the Golgi apparatus from endoplasmic reticulum, as indicated by NADH cytochromec reductase activity. Glucan and xylan synthase activities were measured as the radioactivity incorporated from either UDP-14C-glucose or UDP-14C-xylose into 80% ethanol insoluble materials. Glucan synthase activity at a substrate concentration of 1 mM UDP-glucose without CaCl2 was greatest in fractions enriched in Golgi apparatus, but in the presence of 3 mM CaCl2 the activity was greatest in fractions enriched in plasma membrane. Glucan synthase activity at a substrate concentration of 10M UDP-glucose in the presence of 3 mM MnCl2 was greatest in fractions enriched in plasma membrane, but was also high in fractions enriched in Golgi apparatus. Xylan synthase activity, at a substrate concentration of 1 M UDP-xylose in the presence of 3 mM MnCl2, was greatest in fractions enriched in Golgi apparatus. To further characterize these synthase reactions, the glycosyl linkages of the products formed were analyzed with a gas chromatograph coupled to a radiogas proportional counter. With the substrate, UDP-14C-glucose, and fractions enriched in Golgi apparatus, both (13)- and (14)-radioactive glucosyl linkages were formed, whereas the main linkage formed by fractions enriched in plasma membrane was (13)-glucosyl. With the substrate, UDP-14C-xylose, mostly (14)-xylosyl and some terminal-xylosyl linkages were formed by fractions enriched in Golgi apparatus. Only xylan synthase activity copurified with Golgi apparatus and, because plasma membrane lacked this activity, xylan synthase may be used as a reasonable indicator of Golgi apparatus.Abbreviations ATP adenosine-5-triphosphate - CR crude fraction from downward centrifugation - FL purified fraction from flotation centrifugation - GC gas chromatography - GC-RPC gas chromatography-radiogas proportional counting - IDP inosine-5-disphosphate - NPA naphthylphthalamic acid - UDP uridine-5-diphosphate - TEM transmission electron microscopy  相似文献   

4.
Endogenous acceptors for N-acetylglucosamine (GlcNAc), galactose (Gal) or sialic acid (NeuAc) transfer were labeled to high activities when purified hepatic Golgi fractions were incubated with the corresponding radiolabeled nucleotide sugar in the absence of detergent. The in vitro conditions which were optimal for the endogenous glycosylation of GlcNAc and Gal acceptors (Mn2+, ATP) also promoted fusion within a subset of Golgi membranes. Electron microscope radioautography revealed that the majority of NeuAc acceptors were associated with unfused Golgi membranes, whereas the majority of Gal acceptors were localized to fused membranes. GlcNAc acceptors were approximately equally distributed between fused and unfused membranes. Under conditions in which Golgi membrane fusion was absent (− Mn2+), only NeuAc transfer was active. The majority of endogenous NeuAc acceptors were consequently assigned to the more trans regions of the hepatic Golgi apparatus as concluded from a combination of radioautography (NeuAc transfer) and acid NADPase cytochemistry (reactive medial and trans Golgi saccules). The distribution of NeuAc and Gal transferases was assessed after Percoll gradient centrifugation of disrupted Golgi fractions. The median density of NeuAc transferase was lower than that of Gal transferase. The studies are indicative of distinct Golgi components harboring the majority of acceptors and enzymes for terminal glycosylation.  相似文献   

5.
Yoshida S 《Plant physiology》1976,57(5):710-715
Upon dehardening of stem bark of black locust (Robinia pseudoacacia), a significant decrease in phospholipid content on a milligram protein basis was observed in various crude particulate cell fractions. To ascertain this with a defined membrane, microsomal preparations were separated into several membrane fractions on a discontinuous sucrose gradient. Based on the distribution of various enzymes on the gradient, Golgi apparatus membranes, tonoplast, and unidentified membranes containing acid protease were separated with less contamination by other membranes. The subfraction, with an apparent density of 1.10 g/cc, which was enriched in fragmented tonoplast, contained the most phospholipid per milligram protein. Dehardening resulted in a significant quantitative reduction in protein and phospholipid in the submicrosomal fractions. Significant decreases in phospholipid content per milligram protein were observed during dehardening in tonoplast, Golgi apparatus, and unidentified membranes containing acid protease as well as other membrane fractions. During dehardening, marked decreases in inosine diphosphatase and NADH cytochrome c reductase activities were observed, suggesting a marked degradation of the membranes containing those enzymes. The transition of cell membranes from a phospholipid-enriched state to a phospholipid depleted state is apparently involved in the dehardening process concomitant with a decrease in tissue hardiness.  相似文献   

6.
We report a method for the isolation of enriched fractions of intact Golgi apparatus from neurons of 10- to 12-day-old rat brains. Neurons were prepared according to a modified method of Farooq and Norton [J. Neurochem. 31, 887-894 (1978)]. Golgi-enriched fractions were obtained after centrifugation of postmitochondrial supernatants in a discontinuous sucrose gradient. Golgi fractions 1 and 2, recovered at the interfaces of 28-34% and 34-36% sucrose densities, respectively, were examined with morphometric and enzymatic methods. Morphometric analyses showed that 21-34% of fraction 1 and 11-29% of fraction 2 consisted of intact Golgi apparatus. Lysosomes, mitochondria, ribosomes, and rough endoplasmic reticulum contaminated fraction 1 (6-10%) and fraction 2 (14-26%). Golgi fraction 1 showed a 25- to 65-fold enrichment over neurons of UDP Gal:GlcNAc galactosyltransferase, CMP-sialic acid:lactosylceramide sialyltransferase, and PAPS:cerebroside sulfotransferase activities. Golgi fraction 2 showed a 8- to 23-fold enrichment over neurons of the activities of the above glycolipid- and glycoprotein-synthesizing enzymes. The activities of the possible marker enzymes rotenone-insensitive NADH-cytochrome c reductase, succinate-cytochrome c reductase, and arylsulfatase were low or minimally elevated in the Golgi fractions. A sevenfold enrichment of Na+, K+-ATPase activities was found in the Golgi fractions. This is consistent either with significant plasma membrane contamination or with the presence of this enzyme in the neuronal Golgi apparatus.  相似文献   

7.
Human granulocytes were disrupted by nitrogen cavitation and the lysates fractionated by sucrose density gradient centrifugation at 83 000 × g for 20 min (rate zonal) or 3.5 h (isopycnic). The distribution of marker enzymes allowed the identification of the following subcellular components: plasma membrane, Golgi, endoplasmic reticulum, azurophil granules, specific granules, mitochondria and cytosol. Examination of the gradient fractions by electron microscopy confirmed the biochemical marker analysis. The protocol permitted isolation of vesicles highly enriched in either plasma membrane or Golgi (galactosyl transferase) activities. Absolute plasma membrane yields of 40–60% were achieved with a 20–70-fold increase in specific activity of surface marker over the cells. Plasma membrane sedimented to an average density of 1.14 g·cm−3. Galactosyl transferase activity was bimodal in distribution. The denser peak cosedimanted with specific granules (g9 = 1.19). The lighter peak sedimented to unique position at an average density of 1.11, was enriched 18-fold over the low speed supernatant, and contained structures resembling Golgi. N-Formyl-Met-Leu-Phe binding and Mg2+ -ATPase activities cosedimented with the plasma membrane as well as specific granule and/or high density galactosyl transferase fractions. These findings suggest that Mg2+ -ATPase and N-formyl chemotactic peptide receptor activities may be localized in an internal pool of membranes as well as in the plasma membrane and that Golgi may have been a contaminant of previous granulocyte plasma membrane or specific granule preparations.  相似文献   

8.
Human granulocytes were disrupted by nitrogen cavitation and the lysates fractionated by sucrose density gradient centrifugation at 83 000 × g for 20 min (rate zonal) or 3.5 h (isopycnic). The distribution of marker enzymes allowed the identification of the following subcellular components: plasma membrane, Golgi, endoplasmic reticulum, azurophil granules, specific granules, mitochondria and cytosol. Examination of the gradient fractions by electron microscopy confirmed the biochemical marker analysis. The protocol permitted isolation of vesicles highly enriched in either plasma membrane or Golgi (galactosyl transferase) activities. Absolute plasma membrane yields of 40–60% were achieved with a 20–70-fold increase in specific activity of surface marker over the cells. Plasma membrane sedimented to an average density of 1.14 g·cm?3. Galactosyl transferase activity was bimodal in distribution. The denser peak cosedimanted with specific granules (g9 = 1.19). The lighter peak sedimented to unique position at an average density of 1.11, was enriched 18-fold over the low speed supernatant, and contained structures resembling Golgi. N-Formyl-Met-Leu-Phe binding and Mg2+ -ATPase activities cosedimented with the plasma membrane as well as specific granule and/or high density galactosyl transferase fractions. These findings suggest that Mg2+ -ATPase and N-formyl chemotactic peptide receptor activities may be localized in an internal pool of membranes as well as in the plasma membrane and that Golgi may have been a contaminant of previous granulocyte plasma membrane or specific granule preparations.  相似文献   

9.
The procedure for immunochemical adsorption of vesicles with specific antigen on their outer surfaces was improved. When microsomal vesicles were mixed with Staphylococcus aureus cells coated with the antibody against NADPH-cytochrome c reductase, more than 90% of the enzyme activity was adsorbed on the cell, whereas, only about 10% of the activity was adsorbed on cells coated with the same amount of anti-ovalbumin antibody. NADH-cytochrome c reductase and aldehyde dehydrogenase activities were adsorbed on the cell to the same extent as was NADPH-cytochrome c reductase activity. Under this condition, there was no adsorption of the activities of the marker enzymes of lysosomes and Golgi apparatus, whereas large amounts of the activities of the plasma membrane enzymes were adsorbed. The specific activity of NADPH-cytochrome c reductase in the adsorbed vesicles from the microsomal fractions increased considerably. In contrast, marker enzymes of the Golgi or of the plasma membranes could be enriched in unadsorbed vesicles from the Golgi fractions.  相似文献   

10.
Golgi apparatus rich fractions from lactating bovine mammary gland had an Mg2+-dependent, Ca2+-stimulated adenosine triphosphatase. These Golgi apparatus fractions also accumulated Ca2+ in vitro. Accumulation of Ca2+ required ATP and could be abolished by treatment either with low concentrations of deoxycholate followed by ultrasound, or by heating at 100 °C for 10 min. The adenosine triphosphatase activity of Golgi apparatus was strongly stimulated by low concentrations of Ca2+ and moderately stimulated by high concentrations of K+. This activity was unaffected by Na+ and was not inhibited by ouabain. The pH optimum for the Mg2+-dependent hydrolysis of ATP was 7.5, the Km was 5 × 10−5 M and the activation energy was 6 000 calories/mole. This Mg2+-dependent adenosine triphosphatase activity was also found in rough endoplasmic reticulum, smooth microsomes and milk fat globule membrane, the latter membrane being derived directly from the apical plasma membrane. All of these membrane fractions had the ability to specifically accumulate Ca2+. Specific accumulation was highest with smooth microsomes and lowest with milk fat globule membrane with Golgi apparatus and rough endoplasmic reticulum being intermediate. These observations provide one plausible explanation for intracellular Ca2+ accumulation and secretion into milk. Further, these results help explain the ultrastructural observations of casein micelle formation in secretory vesicles elaborated by Golgi apparatus.  相似文献   

11.
Endogenous acceptors for N-acetylglucosamine (GlcNAc), galactose (Gal) or sialic acid (NeuAc) transfer were labeled to high activities when purified hepatic Golgi fractions were incubated with the corresponding radiolabeled nucleotide sugar in the absence of detergent. The in vitro conditions which were optimal for the endogenous glycosylation of GlcNAc and Gal acceptors (Mn2+, ATP) also promoted fusion within a subset of Golgi membranes. Electron microscope radioautography revealed that the majority of NeuAc acceptors were associated with unfused Golgi membranes, whereas the majority of Gal acceptors were localized to fused membranes. GlcNAc acceptors were approximately equally distributed between fused and unfused membranes. Under conditions in which Golgi membrane fusion was absent (-Mn2+), only NeuAc transfer was active. The majority of endogenous NeuAc acceptors were consequently assigned to the more trans regions of the hepatic Golgi apparatus as concluded from a combination of radioautography (NeuAc transfer) and acid NADPase cytochemistry (reactive medial and trans Golgi saccules). The distribution of NeuAc and Gal transferases was assessed after Percoll gradient centrifugation of disrupted Golgi fractions. The median density of NeuAc transferase was lower than that of Gal transferase. The studies are indicative of distinct Golgi components harboring the majority of acceptors and enzymes for terminal glycosylation.  相似文献   

12.
Fractions enriched in secretory vesicles were obtained from lactating bovine mammary tissue by a straightforward procedure involving gentle homogenization and centrifugation in isotonic milk salt solution containing Ficoll. Secretory vesicle-rich fractions could also be obtained from lactating rat mammary gland by this procedure. With rats, yields of vesicles were substantially increased by administration of colchicine or thioglucose to animals several hours before sacrifice. Isolated fractions were enriched in lactose and consisted predominantly of 0.2–1.2 μm diameter vesicles, many of which contained casein micelles. Enzymatic, compositional and morphological examination revealed vesicle preparations to be largely free of contamination by rough endoplasmic reticulum, mitochondria, nuclei, peroxisomes and lysosomes. Specific activity of several marker enzymes of the secretory vesicle fraction were similar to, or intermediate between, Golgi apparatus and milk lipid globule membranes. Amounts of cholesterol and gangliosides in vesicle fractions approached levels found in plasma membranes. In distribution of major phospholipids, secretory vesicles were intermediate between Golgi apparatus and milk lipid globule membranes. The pattern of polypeptides of secretory vesicle membrane was qualitatively similar to that of Golgi apparatus membranes. While there were similarities between these polypeptide patterns and that of lipid globule membranes, the latter contained relatively more of certain polypeptides, particularly the internal coat-associated polypeptides of the globule membrane. These observations are discussed in relation to the endomembrane hypothesis and the origin of the membrane of milk lipid globules.  相似文献   

13.
Enzymatic activities associated with Golgi apparatus-, endoplasmic reticulum-, plasma membrane-, mitochondria-, and microbody-rich cell fractions isolated from rat liver were determined and used as a basis for estimating fraction purity. Succinic dehydrogenase and cytochrome oxidase (mitochondria) activities were low in the Golgi apparatus-rich fraction. On the basis of glucose-6-phosphatase (endoplasmic reticulum) and 5'-nucleotidase (plasma membrane) activities, the Golgi apparatus-rich fraction obtained directly from sucrose gradients was estimated to contain no more than 10% endoplasmic reticulum- and 11% plasma membrane-derived material. Total protein contribution of endoplasmic reticulum, mitochondria, plasma membrane, microbodies (uric acid oxidase), and lysosomes (acid phosphatase) to the Golgi apparatus-rich fraction was estimated to be no more than 20–30% and decreased to less than 10% with further washing. The results show that purified Golgi apparatus fractions isolated routinely may exceed 80% Golgi apparatus-derived material. Nucleoside di- and triphosphatase activities were enriched 2–3-fold in the Golgi apparatus fraction relative to the total homogenate, and of a total of more than 25 enzyme-substrate combinations reported, only thiamine pyrophosphatase showed a significantly greater enrichment.  相似文献   

14.
Detailed investigations by quantitative centrifugal fractionation were conducted to determine the subcellular distribution of protein-bound sialic acid in rat liver. Homogenates obtained from perfused livers were fractionated by differential centrifugation into nuclear fraction, large granules, microsomes, and final supernate fraction, or were used to isolate membrane preparations enriched in either plasma membranes or Golgi complex elements. Large granule fractions, microsome fractions, and plasma membrane preparations were subfractionated by density equilibration in linear gradients of sucrose. In some experiments, microsomes or plasma membrane preparations were treated with digitonin before isopycnic centrifugation to better distinguish subcellular elements related to the plasma membrane or the Golgi complex from the other cell components; in other experiments, large granule fractions were obtained from Triton WR-1339-loaded livers, which effectively resolve lysosomes from mitochondria and peroxisomes in density gradient analysis. Protein-bound sialic acid and marker enzymes were assayed in the various subcellular fractions. The distributions obtained show that sialoglycoprotein is restricted to some particular domains of the cell, which include the plasma membrane, phagolysosomes, and possibly the Golgi complex. Although sialoglycoprotein is largely recovered in the microsome fraction, it has not been detected in the endoplasmic reticulum-derived elements of this subcellular fraction. In addition, it has not been detected either in mitochondria or in peroxisomes. Because the sialyltransferase activities are associated with the Golgi complex, the cytoplasm appears compartmentalized into components which biogenetically involve the Golgi apparatus and components which do not.  相似文献   

15.
G. Kakefuda  S. H. Duke  M. S. Hostak 《Planta》1986,167(2):175-182
The organelles of soybean (Glycine max (L.) Merr.) protoplasts were separated using a recently developed procedure which allows rapid (3-h) recovery of a fraction enriched for coated vesicles (CVs). As determined by marker-enzyme enrichment and ultrastructural analysis of isolated membrane fractions, endoplasmic reticulum, Golgi membranes, glucan-synthase-II (EC 2.4.1.34)-containing membranes (putative plasma membrane), mitochondria, and CVs were enriched in separate fractions in a sucrose density gradient. Glucan synthase I (EC 2.4.1.12) had the highest specific activity in the Golgi-enriched and CV-enriched fractions and was found to comigrate with CVs upon rate-zonal centrifugation of a CV-enriched fraction. For further elucidation of the role of these latter organelles in cell-wall regeneration, freshly isolated protoplasts were pulsed with [3H]glucose for 20 min, and the disappearance of label from the organelles was followed for the ensuing 1 h. Although a CV-enriched fraction contained glucan synthase I, it contained very small amounts of labelled polysaccharide during the period of study. Pulse-chase experiments with [3H]glucose helped to confirm the role of the Golgi apparatus in secretion of matrix polysaccharides by protoplasts.Abbreviations CV(s) coated vesicle(s) - Da dalton - ER endoplasmic reticulum - GSI,II glucan synthase I and II, respecitively Two whom correspondence should be directed. Address after February 1986:Department of Biology, Texas A&M University. College Station, TX 77843-3258, USA  相似文献   

16.
Glycosyltransferase activities of highly purified fractions of Golgi apparatus, plasma membrane and endoplasmic reticulum, all from the same homogenates, were analyzed and compared. Additionally, Golgi apparatus were unstacked and the individual cisternae separated into fractions enriched in cis, median and trans elements using the technique of preparative free-flow electrophoresis. Golgi apparatus from both liver and hepatomas were enriched in all glycosyltransferases compared to endoplasmic reticulum and plasma membranes. However, Golgi apparatus from hepatomas showed both elevated fucosyltransferase and galactosyltransferase activities but reduced sialyltransferase and dipeptidyl peptidase IV (DPP IV) activities compared to liver. Activity of N-acetylglucosaminyltransferase was approximately the same in both liver and hepatoma Golgi apparatus. With normal liver, sialyl- and galactosyltransferase activities and DPP IV showed a marked cis-to-trans gradient of activity. Fucosyltransferase was concentrated in two regions of the electrophoretic separations, one corresponding to cis cisternae and one corresponding to trans cisternae. N-Acetylglucosaminyltransferase activity was more widely distributed but the endogenous acceptor activity was predominantly cis. With hepatoma Golgi apparatus, the pattern for DPP IV was similar to that for liver but those of sialyl- and galactosyltransferases differed markedly from liver. Instead of activity increasing cis to trans, the activities for sialyl- and galactosyltransferases decreased. For fucosyltransferases, activity dependent on exogenous acceptor was medial whereas with endogenous acceptor, two activity peaks, cis and trans, still were observed. For N-acetylglucosaminyltransferase the pattern for hepatoma was similar to that for liver. The results indicate alterations in the distribution of glycosyltransferase activities within the Golgi apparatus in hepatotumorigenesis that may reflect altered cell surface glycosylation patterns.  相似文献   

17.
Lipoprotein particles of the size range of very low density lipoproteins in smooth endoplasmic reticulum, peripheral elements of the Golgi apparatus, and secretory vesicles of the immature Golgi apparatus face are 55 to 80 nm in diameter. Particles in mature secretory vesicles are smaller (45 nm). Concomitant with the change in particle size, the lumina of mature vesicles increase in electron density. A technique to fractionate immature and mature secretory vesicles was based on precipitation of a cupric-ferrocyanide complex (Hatchett's brown) through the action of a NADH-ferricyanide oxido-reductase resistant to glutaraldehyde which is characteristic of the membranes of mature secretory vesicles and of the plasma membrane of liver. Mature secretory vesicle fractions so isolated were enriched in cholesterol and depleted in triglycerides relative to immature vesicles on a phospholipid basis. Lipase activity was present in secretory vesicle fractions of the Golgi apparatus as shown by biochemical analysis and by cytochemistry. Cytochemical studies showed lipase to be present in both mature and immature vesicles but most evident in immature vesicles. The findings suggest that some very low density lipoprotein particles are converted to particles of smaller diameter during transit through Golgi apparatus. A lipase-mediated hydrolysis of triglycerides may relate to the transformation.  相似文献   

18.
The binding of asialo-glycoprotein to isolated Golgi apparatus   总被引:1,自引:0,他引:1  
Membranes of the Golgi apparatus isolated from rat liver were capable of binding 125I-asialo-fetuin in a manner similar to the binding to liver plasma membranes. Although the binding capacity of the Golgi membranes was less than that of plasma membranes, binding was dependent on Ca++ ions and inhibited by α-lactalbumin in both cases. Specific activities of galactosyl and sialyl transferases were about 20 times greater in Golgi than in plasma membranes isolated from the same livers. This dramatic reciprocal relationship between enzyme levels and binding capacities of the two membranous fractions argues against either of these enzymes being the actual binding site.  相似文献   

19.
Treatment with neuronal growth factor (NGF) results in the growth of neuronal processes by PC12 cells and a concomitant 70% increase in the area of the Golgi apparatus. To define the observed morphologic changes in biochemical terms, we investigated the effect of NGF treatment on some Golgi and lysosomal enzyme activities of PC12 cells. Enzyme activities characteristic of the Golgi apparatus, lysosomes, plasma membranes, mitochondria, and endoplasmic reticulum were measured in cell homogenates, in post-mitochrondrial supernatants, and in Golgi-enriched fractions from control and from NGF-stimulated PC12 cells. Treatment of PC12 cells with NGF did not change the level of the Golgi activity of UDPGal:GlcNAc galactosyltransferase while that of CMP-sialic acid:lactosylceramide sialyltransferase was increased three- to fivefold in all fractions studied. For lysosomal enzymes, NGF treatment resulted in a two- to threefold higher level of arylsulfatase activity compared to either acid phosphatase or acid alpha-mannosidase activities. These results indicate that there is a selective increase of at least one Golgi and one lysosomal activity as a result of NGF stimulation of PC12 cells. Both of these enzymes are involved in glycolipid metabolism. It is possible that the dramatic morphologic changes observed during NGF-induced differentiation of PC12 cells are associated not only with increased synthesis in the Golgi apparatus of plasma membrane components such as gangliosides, but also with increased degradation in lysosomes of other plasma membrane components such as sulfatide.  相似文献   

20.
Specific binding of insulin to highly purified preparations of rough endoplasmic reticulum, Golgi apparatus, and plasma membrane of mouse liver was determined. 125I-labeled insulin bound maximally to the plasma membrane in radio-receptor assays. Golgi apparatus fractions exhibited binding 10–20% that of plasma membrane and rough endoplasmic reticulum exhibited only 1–2% of plasma membrane binding. Binding was proportional to membrane concentration and dose vs. response curves were very similar for the different fractions. Scatchard analysis of the insulin binding data for the plasma membrane and Golgi apparatus fractions showed curvilinear plots yielding similar apparent binding affinities (0.9 and 3.0 · 108 M?1, respectively). Purity of the isolated endomembranes was analyzed by morphometry and (Na+ + K+ + Mg2+)-ATPase and these preparations displayed less than 1% contamination by plasma membrane. These findings provide important confirmation of the presence of insulin receptors in Golgi apparatus membranes comparable to those located on the plasma membrane. Finally, the present study did not allow us to verify the existence of insulin receptors in the endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号