首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Bulge loops used to measure the helical twist of RNA in solution.   总被引:1,自引:0,他引:1  
R S Tang  D E Draper 《Biochemistry》1990,29(22):5232-5237
Bulge loops are commonly found in helical segments of cellular RNAs. When incorporated into long double-stranded RNAs, they may introduce points of flexibility or permanent bend that can be detected by the altered electrophoretic gel mobility of the RNA. We find that a single An or Un bulge loop near the middle of a long RNA helix significantly retards the RNA during polyacrylamide gel electrophoresis if n greater than or equal to 2. The mobility of an RNA containing two A2 bulges various periodically with the number of base pairs between the bulges. We interpret this to mean that A2 bulges varies periodically with the number of base pairs between the bulges. We interpret this to mean that Z2 bulges form torsionally stiff bends in the helix; the gel mobility reaches a minimum when the total helical twist between the bulges rotates the arms of the molecule into a cis conformation. The gel mobilities are proportional to the predicted end-to-end distance of the RNA if the average RNA helical repeat is 11.8 +/- 0.2 bp/turn and there is no helical twist (3 +/- 9 degrees) associated with the bulge (data obtained in 0.15 M Na+). Other sizes and sequences of bulges have very different effects on RNA helix conformation and flexibility. U2 bulges bend the helix to a much smaller degree than A2 bulges, while longer A or U bulge sequences probably allow bends of 90 degrees or more; all of these may be fairly flexible joints.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Cleavage of phosphodiester bonds by small ribonuclease mimics within different bulge-loops of RNA was investigated. Bulge-loops of different size (1–7 nt) and sequence composition were formed in a 3′ terminal fragment of influenza virus M2 RNA (96 nt) by hybridization of complementary oligodeoxynucleotides. Small bulges (up to 4 nt) were readily formed upon oligonucleotide hybridization, whereas hybridization of the RNA to the oligonucleotides designed to produce larger bulges resulted in formation of several alternative structures. A synthetic ribonuclease mimic displaying Pyr–Pu cleavage specificity cleaved CpA motifs located within bulges faster than similar motifs within the rest of the RNA. In the presence of 10 mM MgCl2, 75% of the cleavage products resulted from the attack of this motif. Thus, selective RNA cleavage at a single target phosphodiester bond was achieved by using bulge forming oligonucleotides and a small ribonuclease A mimic.  相似文献   

3.
S A White  D E Draper 《Biochemistry》1989,28(4):1892-1897
The way in which a single-base bulge might affect the structure of an RNA helix has been examined by preparing a series of six RNA hairpins, all with seven base pairs and a four-nucleotide loop. Five of the hairpins have single-base bulges at different positions. The intercalating cleavage reagent (methidiumpropyl)-EDTA-Fe(II) [MPE-Fe(II)] binds preferentially at a CpG sequence in the helix lacking a bulge and in four of the five hairpins with bulges. Hairpins with a bulge one or two bases to the 3' side of the CpG sequence bind ethidium 4-5-fold more strongly than the others. V1 RNase, which is sensitive to RNA backbone conformation in helices, detects a conformational change in all of the helices when ethidium binds; the most dramatic changes, involving the entire hairpin stem, are in one of the two hairpins with enhanced ethidium affinity. Only a slight conformational change is detected in the hairpin lacking a bulge. A bulge adjacent to a CpG sequence in a 100-nucleotide ribosomal RNA fragment enhances MPE-Fe(II) binding by an order of magnitude. These results extend our previous observations of bulges at a single position in an RNA hairpin [White, S. A., & Draper, D.E. (1987) Nucleic Acids Res. 15, 4049] and show that (1) a structural change in an RNA helix may be propagated for several base pairs, (2) bulges tend to increase the number of conformations available to a helix, and (3) the effects observed in small RNA hairpins are relevant to larger RNAs with more extensive structure. A bulge in a DNA hairpin identical in sequence with the RNA hairpins does not enhance MPE-Fe(II) binding affinity, relative to a control DNA hairpin. The effects of bulges on ethidium intercalation are evidently modulated by helix structure.  相似文献   

4.
Bulged-out nucleotides or internal loops are present in the stem-loop structures of several antisense RNAs. We have used the antisense/target RNA system (CopA/CopT) that controls the copy number of plasmid R1 to examine the possible biological function of bulged-out nucleotides. Two regions within the major stem-loop of the antisense RNA, CopA, carry bulged-out nucleotides. Base pairing in either one or both of these regions of the stem was restored by site-specific mutagenesis and in one case a new internal loop was introduced. The set of mutant and wild-type CopA variants was characterized structurally in vitro. The results reported here indicate a possible function of the bulges: their presence protects CopA RNA from being a substrate for the double-strand-specific enzyme RNase III. In vitro cleavage rates were drastically increased when either the lower or both bulges were absent. This is paralleled by a similar, but not identical, effect of the bulges on metabolic stability of the CopA RNAs in vivo. The degradation pathways of wild-type and mutant CopA in various strain backgrounds are discussed. In the accompanying paper, we address the significance of bulges in CopA for binding to the target RNA in vitro and for its inhibitory efficiency in vivo.  相似文献   

5.
RNA replication and systemic trafficking play significant roles in developmental regulation and host-pathogen interactions. Viroids are the simplest noncoding eukaryotic RNA pathogens and genetic units that are capable of autonomous replication and systemic trafficking and offer excellent models to investigate the role of RNA structures in these processes. Like other RNAs, the predicted secondary structure of a viroid RNA contains many loops and bulges flanked by double-stranded helices, the biological functions of which are mostly unknown. Using Potato spindle tuber viroid infection of Nicotiana benthamiana as the experimental system, we tested the hypothesis that these loops/bulges are functional motifs that regulate replication in single cells or trafficking in a plant. Through a genome-wide mutational analysis, we identified multiple loops/bulges essential or important for each of these biological processes. Our results led to a genomic map of viroid RNA motifs that mediate single-cell replication and systemic trafficking, respectively. This map provides a framework to enable high-throughput studies on the tertiary structures and functional mechanisms of RNA motifs that regulate viroid replication and trafficking. Our model and approach should also be valuable for comprehensive investigations of the replication and trafficking motifs in other RNAs.  相似文献   

6.
A designed molecule with capacity to alkylate DNA bulges has been prepared from readily available starting materials. The spirocyclic template utilized was designed on the basis of established architectures, and equipped with a mustard alkylating group. Preliminary studies confirm alkylation of specific bulged sequences, paving the way for second generation substrates with higher affinity.  相似文献   

7.
Asymmetric bulge loop motifs are widely dispersed in all types of functional RNAs. They are frequently occurring structural motifs in folded RNA structures and appear commonly in pre-microRNA and ribosomes, where they are involved in specific RNA–RNA and RNA–protein interactions. It is therefore necessary to understand such motifs from a structural point of view. We analyzed all available RNA structures and identified quite a few fragments of double helices that contain bulges. We found that these discontinuities often introduce kinks into the double helices, which also affects the stacking overlap between the base pairs across the irregularity. In order to understand the influence of these bulges on stability and flexibility, we carried out molecular dynamics simulations of three different single-residue bulge-containing RNA helices using the CHARMM36 force field. The structural variability at the junctions of RNA bulges is expected to differ from that in continuous double-helical stretches. The structural features of the junction region were observed to vary noticeably depending on the orientation of the bulge residue. When the base of the bulge residue is looped out, the RNA stretch behaves like a standard long A-form RNA double helix, whereas the entire RNA behaves differently when the base of the bulge residue is intercalated between base pairs inside the RNA stem. Such single-base intercalation was found to introduce a permanent kink into the composite double helix, which could be a recognition element for Dicer during the maturation of miRNA.  相似文献   

8.
As a part of our interest in recognition and cleavage of RNA we carried out thermal melting studies with the aim of screening a number of simple oligonucleotide modifications for their potential as modifying elements for RNA bulge stabilizing oligonucleotides. A specific model system from our studies on oligonucleotide-based artificial nuclease (OBAN) systems was chosen and the bulge size was varied from one to five nucleotides. Introduction of single 2'-modified nucleoside moieties (2'-O-methyl, 2'-deoxy and 2'-deoxy-2'-amino) with different conformational preferences adjacent to the bulge revealed that a higher preference for the north conformers gave more stable bulges across the whole range of bulge sizes. Changing a bulge closing a G-U wobble base pair to a G-C pair resulted in the interesting observation that, although the fully complementary complex and small bulges were highly stabilized, there was little difference in the stability of the larger bulges. The wobble base pair even gave a slight stabilization of the 5 nt bulge system. Introduction of a uridine C-5 linker with a single ammonium group was clearly bulge stabilizing (DeltaT(m) + 4.6 to + 5.4 degrees C for the three most stabilized bulges), although with limited selectivity for different bulge sizes since the fully complementary duplex was also stabilized. Introduction of a naphthoyl group on a 2'-aminolinker mostly gave a destabilizing effect, while introduction of a 5-aminoneocuproine moiety on the same linker resulted in stabilization of all bulges, in particular those with two or four unpaired nucleotides (DeltaT(m) + 3.6 and + 2.9 degrees C respectively). The aromatic groups destabilize the fully complementary duplex, resulting in higher selectivity towards stabilization of bulges. A combination of the studied partial element should be suitable for future designs of modified oligonucleotides that, apart from standard base pairing, can also provide additional non-Watson-Crick recognition of RNA.  相似文献   

9.
Zhu J  Wartell RM 《Biochemistry》1999,38(48):15986-15993
Forty-eight RNA duplexes were constructed that contained all common single base bulges at six different locations. The stabilities of the RNAs were determined by temperature gradient gel electrophoresis (TGGE). The relative stability of a single base bulge was dependent on both base identity and the nearest neighbor context. The single base bulges were placed into two categories. A bulged base with no identical neighboring base was defined as a Group I base bulge. Group II-bulged bases had at least one neighboring base identical to it. Group II bulges were generally more stable than Group I bulges in the same nearest neighbor environments. This indicates that position degeneracy of an unpaired base enhances stability. Differences in the mobility transition temperatures between the RNA fragments with bulges and the completely base-paired reference RNAs were related to free energy differences. Simple models for estimating the free energy contribution of single base bulges were evaluated from the free energy difference data. The contribution of a Group I bulge 5'-(XNZ)-3'.5'-(Z'-X')-3' where N is the unpaired base and X.X' and Z.Z' the neighboring base pairs, could be well-represented (+/-0.34 kcal/mol) by the equation, DeltaG((X)(N)()(Z))(.)((Z)(')(-)(X)(')()) = 3.11 + 0. 40DeltaG(s)()((XZ))(.)((Z)(')(X)(')()). DeltaG(s)()((XZ))(. )((Z)(')(X)(')()) is the stacking energy of the closing base pair doublet. By adding a constant term, delta = -0.3 kcal/mol, to the right side of the above equation, free energies of Group II bulges could also be predicted with the same accuracy. The term delta represents the stabilizing effect due to position degeneracy. A similar equation/model was applied to previous data from 32 DNA fragments with single base bulges. It predicted the free energy differences with a similar standard deviation.  相似文献   

10.
The protein kinase, PKR, is activated by long stretches of double-stranded (ds) RNA. Viruses often make long dsRNA elements with imperfections that still activate PKR. However, due to the complexity of the RNA structure, prediction of whether a given RNA is an activator of PKR is difficult. Herein, we systematically investigated how various RNA secondary structure defects contained within model dsRNA affect PKR activation. We find that bulges increasingly disfavor activation as they are moved toward the center of a duplex and as they are increased in size. Model RNAs designed to conform to cis, trans, or bent global geometries through strategic positioning of one or more bulges decreased activation of PKR relative to perfect dsRNA, although cis-bulged RNAs activated PKR much more potently than trans-bulged RNAs. Activation studies on bulge-containing chimeric duplexes support a model wherein PKR monomers interact adjacently, rather than through-space, for activation on bulged substrates. Last, unusually low ionic strength induced substantial increases in PKR activation in the presence of bulged RNAs suggesting that discrimination against bulges is higher under biological ionic strength conditions. Overall, this study provides a set of rules for understanding how secondary structural defects affect PKR activity.  相似文献   

11.
RNA editing by adenosine deaminases acting on RNAs (ADARs) can be both specific and non-specific, depending on the substrate. Specific editing of particular adenosines may depend on the overall sequence and structural context. However, the detailed mechanisms underlying these preferences are not fully understood. Here, we show that duplex structures mimicking an editing site in the Gabra3 pre-mRNA unexpectedly fail to support RNA editing at the Gabra3 I/M site, although phylogenetic analysis suggest an evolutionarily conserved duplex structure essential for efficient RNA editing. These unusual results led us to revisit the structural requirement for this editing by mutagenesis analysis. In vivo nuclear injection experiments of mutated editing substrates demonstrate that a non-conserved structure is a determinant for editing. This structure contains bulges either on the same or the strand opposing the edited adenosine. The position of these bulges and the distance to the edited base regulate editing. Moreover, elevated folding temperature can lead to a switch in RNA editing suggesting an RNA structural change. Our results indicate the importance of RNA tertiary structure in determining RNA editing.  相似文献   

12.
Crystal structure of an RNA duplex r(gugucgcac)(2) with uridine bulges.   总被引:1,自引:0,他引:1  
The crystal structure of a nonamer RNA duplex with a uridine bulge in each strand, r(gugucgcac)(2), was determined at 1.4 A resolution. The structure was solved by multiple anomalous diffraction phasing method using a three-wavelength data set collected at the Advanced Protein Source and refined to a final R(work)/R(free) of 21.2 %/23.4 % with 33,271 independent reflections (Friedel pairs unmerged). The RNA duplex crystallized in the tetragonal space group P4(1)22 with two independent molecules in the asymmetric unit. The unit cell dimensions are a=b=47.18 A and c=80.04 A. The helical region of the nonamer adopts the A-form conformation. The uridine bulges assume similar conformations, with uracils flipping out and protruding into the minor groove. The presence of the bulge induces very large twist angles (approximately +50 degrees) between the base-pairs flanking the bulges while causing profound kinks in the helix axis at the bulges. This severe twist and the large kink in turn produces a very narrow major groove at the middle of the molecule. The ribose sugars of the guanosines before the bulges adopt the C2'-endo conformation while the rest, including the bulges, are in the C3'-endo conformation. The intrastrand phosphate-phosphate (P-P) distance of the phosphate groups flanking the bulges (approximately 4.4 A) are significantly shorter than the average P-P distance in the duplex (6.0 A). This short distance between the two phosphate groups brings the non-bridging oxygen atoms close to each other where a calcium ion is bound to each strand. The calcium ions in molecule 1 are well defined while the calcium ions in molecule 2 are disordered.  相似文献   

13.
A novel nucleoside analogue, 2'-naphthylmethyl-2'-deoxytubercidine, is synthesized and incorporated in oligonucleotides that stabilize bulges in partially complementary RNA.  相似文献   

14.
Thirty-four RNA duplexes containing single nucleotide bulges were optically melted, and the thermodynamic parameters deltaH degrees, deltaS degrees, deltaG degrees (37), and T(M) for each sequence were determined. Data from this study were combined with data from previous thermodynamic data [Longfellow, C. E., Kierzek, R., and Turner, D. H. (1990) Biochemistry 29, 278-85] to develop a model that will more accurately predict the free energy of an RNA duplex containing a single nucleotide bulge. Differences between purine and pyrimidine bulges as well as differences between Group I duplexes, those in which the bulge is not identical to either neighboring nucleotide, and Group II duplexes, those in which the bulge is identical to at least one neighboring nucleotide, were considered. The length of the duplex, non-nearest-neighbor effects, and bulge location were also examined. A model was developed which divides sequences into two groups: those with pyrimidine bulges and those with purine bulges. The proposed model for pyrimidine bulges predicts deltaG degrees (37,bulge) = 3.9 kcal/mol + 0.10deltaG degrees (37,nn) + beta, while the model for purine bulges predicts deltaG degrees (37,bulge) = 3.3 kcal/mol - 0.30deltaG degrees (37,nn) + beta, where beta has a value of 0.0 and -0.8 kcal/mol for Group I and Group II sequences, respectively, and deltaG degrees (37,nn) is the nearest-neighbor free energy of the base pairs surrounding the bulge. The conformation of bulge loops present in rRNA was examined. Three distinct families of structures were identified. The bulge loop was either extrahelical, intercalated, or in a "side-step" conformation.  相似文献   

15.
Abstract

A novel nucleoside analogue, 2′-naphthylmethyl-2′-deoxytubercidine, is synthesized and incorporated in oligonucleotides that stabilize bulges in partially complementary RNA.  相似文献   

16.
17.
The RNA/DNA 14-mer, (gguauuucgguaCc)2 with consecutive uridine bulges (underlined) on each strand has been determined in two crystal forms, spermine bound (Sp-form) and spermine free (Sp-free). The former was solved by the MAD method with three-wavelength data collected at Brookhaven National Laboratory (BNL); the later isomorphous structure was solved by the molecular replacement method using data collected on our Raxis IIc imaging plate system. The two crystal forms belong to the space group C2 with one molecule of double-stranded 14 mer in the asymmetric unit. The Sp-form has cell constants, a = 60.06, b = 29.10, c = 52.57 A, beta = 120.79 degrees and was refined to 1.7 A resolution with a final Rwork/Rfree of 19.8%/22.7% using 8,549 independent reflections. The Sp-free structure has cell constants, a = 60.06, b = 29.58, c = 52.50 A, beta = 120.85 degrees and was refined to 1.8 A with a final Rwork/ Rfree of 20.8%/23.2% using 6,285 unique reflections. The two structures are identical, except that the Sp-form has a spermine bound in the major groove, parallel to the RNA helical axis. One of the uridine bulges forms a novel intramolecular U*(A x U) base triple. The helices are in the C3'-endo conformation (A-form), but the bulges adopt the C2'-endo sugar pucker. Furthermore, the bulges induce a kink (30 degrees) in the helix axis and a very large twist (55 degrees) between the base pairs flanking the bulges. The Sp-form has one Mg2+ ion whereas the Sp-free form has two Mg2+ ions.  相似文献   

18.
Analysis of available RNA crystal structures has allowed us to identify a new family of RNA arrangements that we call double twist-joints, or DTJs. Each DTJ is composed of a double helix that contains two bulges incorporated into different strands and separated from each other by 2 or 3 bp. At each bulge, the double helix is over-twisted, while the unpaired nucleotides of both bulges form a complex network of stacking and hydrogen-bonding with nucleotides of helical regions. In total, we identified 14 DTJ cases, which can be combined in three groups based on common structural characteristics. One DTJ is found in a functional center of the ribosome, another DTJ mediates binding of the pre-tRNA to the RNase P, and two more DTJs form the sensing domains in the glycine riboswitch.  相似文献   

19.
20.
We report on the formation of novel RNA molecules in a recombination-like, nonenzymatic reaction proceeding in the complex of partially complementary RNA-oligonucleotides under very simple conditions. Analysis of the isolated products demonstrated that at least 5% of the formed linkages are of the (natural) 3',5'-phosphodiester type. We suggest that similar reactions could contribute to the development of the 'RNA world', but could also proceed in vivo within variously structured RNA or RNA complexes containing loops, bulges, or dangling ends, providing an emergence of novel RNA sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号