首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The results of electron microscope investigations on dermal melanophores of Rana temporaria L. during migration of pigment granules are presented. It was shown that in comparison to the previous observations dermal melanophores are flat cells without branches. Ultrastructural differences have been demonstrated in dermal melanophores during migration of pigment granules. During melanosome dispersion membrane vesicle bodies are seen in the cytoplasm to be inserted in the melanophore membrane.  相似文献   

2.
The integumental melanophores of Latimeria chalumnae were studied by light and electron microscopy. The epidermal melanophore located in the mid-epidermis consists of a round perikaryon with long slender dendrites extending into epidermal cells and intercellular spaces. The dermal melanophores occur in the loose dermal matrix underlying a relatively thick layer of collagen fibers. The dermal melanophores are usually flattened and their dendrites lie parallel to the collagen layer. Both epidermal and dermal melanophores contain oval, electron-opaque melanosomes, large mitochondria, agranular vacuoles of endoplasmic reticulum and microtubules. Microfilaments and RNP particles are less conspicuous. While the peripheral cytoplasm of both dermal and epidermal melanophores is filled with a large number of melanosomes, the perinuclear cytoplasm of many dermal melanophores is occupied by premelanosomes in various stages of differentiation, and that of the epidermal melanophore contains numerous large vacuoles. Despite the scarcity of epidermal melanophores, the epidermal melanin unit is present in the form of melanosome complexes. In addition, the melanophores of Latimeria possess the basic characteristics common to other vertebrates, but they more closely resemble those of lungfish and other aquatic vertebrates.  相似文献   

3.
The number of epidermal melanophores of the skin decreases dramatically during metamorphosis in the frog, Rana japonica. This decrease may represent an adaptation for rapid color change, a property which the animal acquires after metamorphosis. We concluded that the decrease was due to the migration of epidermal melanophores to the dermis. Epidermal melanophores and epidermal cells are tightly associated with each other in the young tadpole. The association becomes looser at the metamorphic stage and, occasionally, small breaks in the basement membrane are seen. These breaks may facilitate the migration. The migration was observed exclusively at the metamorphic stage, in spite of careful observation of other stages under the electron microscope. The migration of epidermal melanophores was induced by treatment with thyroxine of cultured skin from tadpoles at stage 15, and this hormone may act directly on epidermal melanophores. Until now, the increase in the number of dermal melanophores during metamorphosis has been explained by the differentiation of dermal melanophores from melanoblasts and by their mitotic division. Our results show that the migration of epidermal melanophores to the dermis may be a factor which accounts for the increase in the number of dermal melanophores.  相似文献   

4.
Winter flounder Pleuronectes americanus has a thick epidermis which was removed from scale slips by incubation in a medium including 1% ethylenediaminetetraacetic acid (EDTA) for up to 2 h. Neurally mediated responses of dermal melanophores to K+ and Na+, and to exogenous noradrenaline (10-5 M) were 1·5 to three times faster without the epidermis–mucus barrier; α-melanophore stimulating hormone (MSH) evoked extensive pigment dispersion only without the epidermis. Thus, cellular viability after epidermal removal is not restricted to melanophores, nerve terminals can provide an additional indicator. The sensitivity to α-MSH in vitro , is an important observation since in vivo reports have not indicated that this hormone has a role in the physiological responsiveness of these melanophores in flatfish.  相似文献   

5.
Functioning of the dermal melanophores was studied in the isolated skin of the Rana temporaria and R. esculenta tadpoles at stages 17-21 and 20-24 (after Kopsch). At all stages we studied melanophores exhibited reaction to light. From stage 18 on repeated alternation of pigment dispersion and aggregation was obtained using melanotropins and melatonin. When observing transition of the melanophores from interphase to mitosis, it was found that dividing dermal melanophores could be distinguished due to changes in their appearance shortly before the end of prophase.  相似文献   

6.
To provide histological foundation for studying the genetic mechanisms of color‐pattern polymorphisms, we examined light reflectance profiles and cellular architectures of pigment cells that produced striped, nonstriped, and melanistic color patterns in the snake Elaphe quadrivirgata. Both, striped and nonstriped morphs, possessed the same set of epidermal melanophores and three types of dermal pigment cells (yellow xanthophores, iridescent iridophores, and black melanophores), but spatial variations in the densities of epidermal and dermal melanophores produced individual variations in stripe vividness. The densities of epidermal and dermal melanophores were two or three times higher in the dark‐brown‐stripe region than in the yellow background in the striped morph. However, the densities of epidermal and dermal melanophores between the striped and background regions were similar in the nonstriped morph. The melanistic morph had only epidermal and dermal melanophores and neither xanthophores nor iridophores were detected. Ghost stripes in the shed skin of some melanistic morphs suggested that stripe pattern formation and melanism were controlled independently. We proposed complete‐ and incomplete‐dominance heredity models for the stripe‐melanistic variation and striped, pale‐striped, and nonstriped polymorphisms, respectively, according to the differences in pigment‐cell composition and its spatial architecture. J. Morphol. 274:1353–1364, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
In the tadpole of the tree frog Hyla arborea, the color of the dorsal skin was dark brown. Dermal melanophores, xanthophores, and iridophores were scattered randomly under the subepidermal collagen layer (SCL). After metamorphosis, the dorsal color of the animal changed to green and the animal acquired the ability of dramatic color change, demonstrating that the dermal chromatophore unit (DCU) was formed at metamorphosis. Fibroblasts invaded the SCL and divided it into two parts: the stratum spongiosum (SS) and the stratum compactum (SC). The activity of collagenase increased at metamorphosis. The fibroblasts appeared to dissolve the collagen matrix as they invaded the SCL. Then, three types of chromatophores migrated through the SCL and the DCU was formed in the SS. The mechanism how the three types of chromatophores were organized into a DCU is uncertain, but different migration rates of the three chromatophore types may be a factor that determines the position of the chromatophores in the DCU. Almost an equal number of each chromatophore type is necessary to form the DCUs. However, the number of dermal melanophores in the tadpoles was less than the number of xanthophores and iridophores. It was suggested that epidermal melanophores migrated to the dermis at metamorphosis and developed into dermal melanophores. This change may account for smaller number of dermal melanophores available to form the DCUs.  相似文献   

8.
The integumental melanophores of two genera of lungfish, Lepidosiren paradoxa and Protopterus sp. were examined by light and electron microscopy. Both species possess both epidermal and dermal melanophores with fine structural characteristics basically similar to those of other vertebrates. The epidermal melanophores of both species are located in the intermediate epidermis, and possess thin perikarya containing round nuclei, and slender dendrites extending into the nearby intercellular spaces. The dermal melanophores occur immediately beneath the basement membrane, and possess flat perikarya and dendrites running horizontally between the collagen fibers of the dermis. The integument of both species does not possess an epidermal melanin unit or a dermal chromatophore unit. As in other vertebrates, each melanophore contains numerous oval, electron-opaque melanosomes, relatively large mitochondria, vacuolar endoplasmic reticula, and groups of RNP particles. Although micro filaments running randomly between other organelles occur regularly, microtubules were not demonstrated. Premelanosomes at various stages of differentiation were best illustrated in the dermal melanophores of Protopterus, and it is concluded from the observation of their fine structure that the morphological development of lungfish melanosomes closely parallels that of higher vertebrates. On the basis of melanophore morphology, Lepidosiren and Protopterus appear to be more closely related to each other than to Neoceratodus.  相似文献   

9.
The morphological characteristics of microtubule-organizing centers (MTOCs) in dermal interphase melanophores of Xenopus laevis larvae in vivo at 51-53 stages of development has been studied using immunostained semi-thick sections by fluorescent microscopy combined with computer image analysis. Computer image analysis of melanophores with aggregated and dispersed pigment granules, stained with the antibodies against the centrosome-specific component (CTR210) and tubulin, has revealed the presence of one main focus of microtubule convergence in the cell body, which coincides with the localization of the centrosome-specific antigen. An electron microscopy of those melanophores has shown that aggregation or dispersion of melanosomes is accompanied by changes in the morphological arrangement of the MTOC/centrosome. The centrosome in melanophores with dispersed pigment exhibits a conventional organization, and their melanosomes are situated in an immediate vicinity of the centrioles. In melanophores with aggregated pigment, MTOC is characterized by a three-zonal organization: the centrosome with centrioles, the centrosphere, and an outlying radial arrangement of microtubules and their associated inclusions. The centrosome in interphase melanophores is presumed to contain a pair of centrioles or numerous centrioles. Because of an inability of detecting additional MTOCs, it has been considered that an active MTOC in interphase melanophores of X. laevis is the centrosome. We assume that remaining intact microtubules in the cytoplasmic processes of mitotic melanophores (Rubina et al., 1999) derive either from the aster or the centrosome active at the interphase.  相似文献   

10.
The physiological response and ultrastructure of the pigment cells of Trematomus bernacchii, an Antarctic teleost that lives under the sea ice north of the Ross Ice Shelf, were studied. In the integument, two types of epidermal chromatophores, melanophores and xanthophores, were found; in the dermis, typically three types of chromatophores--melanophores, xanthophores, and iridophores--were observed. The occurrence of epidermal xanthophore is reported for the first time in fish. Dermal melanophores and xanthophores have well-developed arrays of cytoplasmic microtubules. They responded rapidly to epinephrine and teleost melanin-concentrating hormone (MCH) with pigment aggregation and to theophylline with pigment dispersion. Total darkness elicited pigment aggregation in the majority of dermal xanthophores of isolated scales, whereas melanophores remained dispersed under both light and dark conditions. Pigment organelles of epidermal and dermal xanthophores that translocate during the pigmentary responses are carotenoid droplets of relatively large size. Dermal iridophores containing large reflecting platelets appeared to be immobile.  相似文献   

11.
The morphological characteristics of microtubule-organizing centers (MTOCs) in dermal interphase melanophores of Xenopus laevis larvae in vivo at 51-53 stages of development has been studied using immuno-stained semi-thick sections by fluorescent microscopy combined with computer image analysis. Computer image analysis of melanophores with aggregated and dispersed pigment granules, stained with the antibodies against the centrosome-specific component (CTR210) and tubulin, has revealed the presence of one main focus of microtubule convergence in the cell body, which coincides with the localization of the centrosome-specific antigen. An electron microscopy of those melanophores has shown that aggregation or dispersion of melanosomes is accompanied by changes in the morphological arrangement of the MTOC/centrosome. The centrosome in melanophores with dispersed pigment exhibits a conventional organization, and their melanosomes are situated in an immediate vicinity of the centrioles. In melanophores with aggregated pigment, MTOC is characterized by a three-zonal organization: the centrosome with centrioles, the centrosphere, and an outlying radial arrangement of microtubules and their associated inclusions. The centrosome in interphase melanophores is presumed to contain a pair of centrioles or numerous centrioles. Because of an inability of detecting additional MTOCs, it has been considered that an active MTOC in interphase melanophores of X. laevis is the centrosome. We assume that remaining intact microtubules in the cytoplasmic processes of mitotic melanophores (Rubina et al., 1999) derive either from the aster or the centrosome active at the interphase.  相似文献   

12.
Microscopic observation of the skin of Plestiodon lizards, which have body stripes and blue tail coloration, identified epidermal melanophores and three types of dermal chromatophores: xanthophores, iridophores, and melanophores. There was a vertical combination of these pigment cells, with xanthophores in the uppermost layer, iridophores in the intermediate layer, and melanophores in the basal layer, which varied according to the skin coloration. Skin with yellowish-white or brown coloration had an identical vertical order of xanthophores, iridophores, and melanophores, but yellowish-white skin had a thicker layer of iridophores and a thinner layer of melanophores than did brown skin. The thickness of the iridophore layer was proportional to the number of reflecting platelets within each iridophore. Skin showing green coloration also had three layers of dermal chromatophores, but the vertical order of xanthophores and iridophores was frequently reversed. Skin showing blue color had iridophores above the melanophores. In addition, the thickness of reflecting platelets in the blue tail was less than in yellowish-white or brown areas of the body. Skin with black coloration had only melanophores.  相似文献   

13.
The pigment pattern of the ventral skin of the frog Rana esculenta is compared in skin fragments grown for 24 hr with or without antiserum directed to fibronectin (anti-FN). Melanocyte-stimulating hormone (MSH) was added to the medium during the last hour in culture in order to enhance visibility of melanophores in the ventral region of the frog skin. Comparison of these two treatments provides information regarding the precise localization of melanophores in the dermal tracts and their involvement in the pigment pattern of the ventral frog skin. In this regard, the whitish pigment pattern of skin fragments is compared to the tiny black spots found on anti-FN treated skin fragments and the abundant blotchy spots found on skin cultured alone. The distribution of melanophores in the dermal tracts observed in vertical semithin sections is found to be related to the three different levels of the dermal tracts. This report demonstrates the importance of fibronectin as a substrate for the melanophore migration, the importance of the tract level for the melanophore localization both involved in the pigment pattern of the ventral skin.  相似文献   

14.
Chromatophores show significant changes during healing of skin wounds in Labeo rohita (Common Name - Rohu). Wound area can be divided into regions I, II and III. After infliction of wound, skin colour becomes significantly dark by 2 h that is gradually restored by 2 d. In regions II and III at 5 min, epidermal melanophores appear with beaded dendrites. In these regions at 2 h and in region I at 6 h, epidermal melanophores appear small, rounded or irregular shaped having dendritic processes with aggregated melanosomes. Subsequently, melanophores appear having elongated dendrites with dispersed or aggregated melanosomes. At 24 h, clusters of pigmented bodies appear in regions I and II. These bodies increase up to 2 d, and then diminish gradually and disappear by 8 d. Changes in dermal melanophores in region II at 5 min indicate the onset of degeneration. Degenerating melanophores increase up to 12 h, then gradually decline, and disappear by 4 d. Simultaneously, stellate melanophore reappear, gradually increase and appear like control by 8 d. Dermal melanophores in region III at different intervals appear stellate. In region I stellate dermal melanophores appear at 4 d. Stellate melanophores in all regions show different distribution of dispersed or aggregated melanosomes. With the appearance of dermal melanophores, highly refractive, crystalline structures, possibly the refractive platelets of the iridophores, are visualized around them. At subsequent intervals, these are frequently observed. This study provides interesting insights in injury induced changes in chromatophores in fish. The findings could be considered useful in perception of intriguing features in the development of pigment research in future.  相似文献   

15.
In a natural pond among usual black larvae of the common toad (Bufo bufo L.), a few unusual individuals of red-olive coloring were found out. In both morphs we investigated the melanophores of skin using different methods. The ESR-spectrometric analysis has shown the absence of distinctions between morphs by the amount of melanin. Analysis of total preparations of skin has shown the presence of various kinds of melanophore cells both in the derma and in the epidermis. Among typical melanophores, essentially differing cells appeared (atypical cells). In black morph tadpoles, the number of all kinds of melanophores is significantly greater than in red-olive morphs. It is shown that dark coloring is connected with a considerable number of atypical cells in the epidermis imposed on a dense layer of typical dermal melanophores with dispersed melanin.  相似文献   

16.
McCord and Allen (1917) found that extracts of mammalian pinealglands contain a potent contracting agent of larval amphibianmelanophores. Lerner and his co-workers determined the chemicalstructure of this principle and named it melatonin. This agentcontracts dermal melanophores at a concentration as low as 10–10g/ml. Both intact and eyeless larval amphibians blanch whenplaced in the dark, and the melanophore contraction which causesthis lightening response is abolished by pinealectomy. The amphibianpineal contains photoreceptive elements similar to those foundin the vertebrate lateral eyes, and these elements are inhibitedby light but are stimulated in its absence. There is evidencefor the presence of both HIOMT and melatonin the amphibian pineal.It has been proposed that the body-blanching response resultsfrom a direct stimulation of the pineal under conditions ofdarkness leading to a release of melatonin into the generalcirculation which is then responsible for a direct contractingeffect on dermal melanophores. The cytophysiological effectsof melatonin mimic those that take place in the body-blanchingresponse. Since no other hormone or pharmacological agent duplicatesthis response, this is strong evidence that melatonin is a hormonethat normally regulates body blanching. Other evidence for thesupport of this hypothesis is presented. Cytological features of both normal and melatonin-induced lighteningindicate that the effects of melatonin are at the effector celllevel rather than at either the hypothalamus or the pituitary.An inhibition of MSH-release by melatonin is not involved. Melatoninplays a normal role in young larvae to regulate the lighteningresponse that takes place in darkness (the primary chromaticresponse). Neither melatonin nor the pineal play a role in thelater (secondary stage) adaptive background responses of amphibians.As McCord and Allen first noted, the pineal may contain othersubstances which may have other physiological roles in amphibiansas well as other vertebrates. These have been little studied.  相似文献   

17.
The pigmentary system of skin from adult specimens of the amphibian urodele Salamandra atra aurorae was investigated by light microscope, electron microscope, and biochemical studies. Yellow (dorsum and head) and black (flank and belly) skin was tested. Three chromatophore types are present in yellow skin: xanthophores, iridophores, and melanophores. Xanthophores are located in the epidermis whereas iridophores and melanophores are found in the dermis. Xanthophores contain types I, II, and III pterinosomes. Some pterinosomes are very electron-dense. Black skin has a single type of chromatophore: the melanophores. Some melanophores are located in the epidermis. In contrast to the dermal melanophores, these present, in addition to typical melanosomes, organelles with different morphology and vesicles having a limiting membrane and containing little amorphous material. Both skin types present some pteridines and flavins, though they are qualitatively and quantitatively more abundant in yellow skin extracts.  相似文献   

18.
The integumental melanophores of Australina lungfish, Neoceratodus forsteri, were examined by light and electron microscopy and found to possess essentially the same structural characteristics observed in other vertebrates. The epidermal melanophores are located in the intermediate epidermis and possess round perikarya and slender dendrites extending into nearby intercellular spaces. The dermal melanophores are found immediately below the basement membrane as well as in the deeper dermis. These cells possess flattened nuclei and dendrites running parallel to the basement membrane. Each melanophore contains numerous oval or elliptical, intensely electron-dense melanosomes, relatively large mitochondria, systems of vacuolar endoplasmic reticulum, groups of free RNP particles, and some microfilaments. Only a few, short microtubules could be demonstrated in the perinuclear cytoplasm of the dermal melanophore, while a relatively large number of late premelanosomes are found both in perikarya and dendritic processes of epidermal melanophores. These premelanosomes exhibit a particulate internal structure in cross section. Both melanosomes and premelanosomes occur singly in the cytoplasm of epidermal cells, thereby confirming the existence of the epidermal melanin unit in the lowest vertebrates thus far examined electron microscopically.  相似文献   

19.
Alibardi, L. 2011. Observations on the ultrastructure and distribution of chromatophores in the skin of chelonians. —Acta Zoologica (Stockholm) 00 :1–11. The cytology and distribution of chromatophores responsible for skin pigmentation in chelonians is analyzed. Epidermal melanocytes are involved in the formation of dark spots or stripes in growing shelled and non‐shelled skin. Melanocytes rest in the basal layer of the epidermis and transfer melanosomes into keratinocytes during epidermal growth. Dermal melanophores and other chromatophores instead remain in the dermis and form the gray background of the skin. When dermal melanophores condense, they give origin to the dense spots or stripes in areas where no epidermal melanocytes are present. In the latter case, the epidermis and the corneous layer are transparent and reveal the dermal distribution of melanophores and other chromatophores underneath. As a result of this basic process of distribution of pigment cells, the dark areas visible in scales can have a double origin (epidermal and dermal) or a single origin (epidermal or dermal). Xanthophores, lipophores, and a cell containing both pterinosomes and lipid droplets are sparse in the loose dermis while iridophores are rarely seen in the skin of chelonians analyzed in the present study. Xanthophores and lipophores contribute to form the pale, yellow or oranges hues present among the dark areas of the skin in turtles.  相似文献   

20.
The pigmentation pattern of ventral skin of the frog Rana esculenta consists mainly of melanophores and iridophores, rather than the three pigment cells (xanthophores, iridophores, and melanophores) which form typical dermal chromatophore units in dorsal skin. The present study deals with the precise localization and identification of the types of pigment cells in relation to their position in the dermal tracts of uncultured or cultured frog skins. Iridophores were observed by dark-field microscopy; both melanophores and iridophores were observed by transmission electron microscopy. In uncultured skins, three levels were distinguished in the dermal tracts connecting the subcutaneous tissue to the upper dermis. Melanophores and iridophores were localized in the upper openings of the tracts directed towards the superficial dermis (level 1). The tracts themselves formed level 2 and contained melanophores and a few iridophores. The inner openings of the tracts made up level 3 in which mainly iridophores were present. These latter openings faced the subcutaneous tissue In cultured skins, such pigment-cell distribution remained unchanged, except at level 2 of the tracts, where pigment cells were statistically more numerous; among these, mosaic pigment cells were sometimes observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号