首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CAD (caspase-activated DNase) that causes chromosomal DNA fragmentation during apoptosis exists as a complex with ICAD (inhibitor of CAD) in proliferating cells. Here, we report that denatured CAD is functionally refolded with Hsc70-Hsp40 and ICAD. Hsc70-Hsp40 suppresses the aggregation of the denatured CAD, but cannot restore its enzymatic activity. In contrast, ICAD could not suppress the aggregation of CAD, but supported the CAD's renaturation with Hsc70-Hsp40, indicating that ICAD recognizes the quasi-native folding state of CAD that is conferred by Hsc70-Hsp40. Using an in vitro translation system, we then showed that during CAD translation, Hsc70-Hsp40 as well as ICAD bind to the nascent CAD polypeptide, while on ribosomes. These results indicate that ICAD together with Hsc70-Hsp40 assists the folding of CAD during its synthesis, and that the CAD*ICAD heterodimer is formed co-translationally.  相似文献   

2.
Nuclear changes, including internucleosomal DNA fragmentation, are classical manifestations of apoptosis for which the biochemical mechanisms have not been fully elucidated, particularly in neuronal cells. We have cloned the rat DNA fragmentation factor 35/inhibitor of caspase-activated DNase (short form) (DFF35/ICAD(S)) and found it to be the predominant form of ICAD present in rodent brain cells as well as in many other types of cells. DFF35/ICAD(S) forms a functional complex with DFF40/caspase-activated DNase (CAD) in the nucleus, and when its caspase-resistant mutant is over-expressed, it inhibits the nuclease activity, internucleosomal DNA fragmentation, and nuclear fragmentation but not the shrinkage and condensation of the nucleus, in neuron-differentiated PC12 cells in response to apoptosis inducers. DFF40/CAD is found to be localized mainly in the nucleus, and during neuronal apoptosis, there is no evidence of further nuclear translocation of this molecule. It is further suggested that inactivation of DFF40/CAD-bound DFF35 and subsequent activation of DFF40/CAD during apoptosis of neuronal cells may not occur in the cytosol but rather in the nucleus through a novel mechanism that requires nuclear translocation of caspases. These results establish that DFF35/ICAD(S) is the endogenous inhibitor of DFF40/CAD and caspase-dependent apoptotic DNA fragmentation in neurons.  相似文献   

3.
4.
To investigate the signal transduction pathway of caspase-2, cell permeable Tat-reverse-caspase-2 was constructed, characterized and utilized for biochemical and cellular studies. It could induce the cell death as early as 2 h, and caspase-2-specific VDVADase activity but not other caspase activities including DEVDase and IETDase. Interestingly, nuclear DNA fragmentation occurred and consistently DNA fragmentation factor (DFF45)/Inhibitor of caspase-activated DNase (ICAD) was cleaved inside the cell as well as in vitro, suggesting a role of caspase-2 in nuclear DNA fragmentation.  相似文献   

5.
Large complex formation of the inhibitor of caspase-activated DNase   总被引:1,自引:0,他引:1  
Inhibitor of caspase-activated DNase (ICAD) is required for correctly folding of CAD and inhibits nuclease activity of CAD in non-apoptotic cells. From proteomic analysis of the ICAD binding proteins, we revealed that over-expressed flag-ICAD bound other ICAD molecules}. Purified recombinant ICAD protein showed three bands, 66 KDa, 132 KDa and 450 KDa, by native-PAGE. ICAD fused with glutathione-S-transferase (GST) was immunoprecipitated with anti-flag antibody from Jurkat cell lysates cotransfected with ICAD fused with either GST or flag expression vectors. When purified recombinant ICAD protein was separated by gel chromatography, the molecular weight of ICAD was detected at 440 and 45 K. ICAD in extracts of wild type Jurkat cells also existed at 440 and 45 K as measured by gel chromatography; so that fractions of CAD coincided with fractions of 440 K of ICAD. These results indicate that ICAD and/or CAD appeared to form large complexes in Jurkat cells.  相似文献   

6.
Caspase-activated DNase is responsible for the oligonucleosomal DNA degradation during apoptosis. DNA degradation is thought to be important for multicellular organisms to prevent oncogenic transformation or as a mechanism of viral defense. It has been reported that certain cells, including some neuroblastoma cell lines such as IMR-5, enter apoptosis without digesting DNA in such a way. We have analyzed the causes for the absence of DNA laddering in staurosporine-treated IMR-5 cells, and we have found that most of the molecular mechanisms controlling apoptosis are well preserved in this cell line. These include degradation of substrates for caspases, blockade of cell death by antiapoptotic genes such as Bcl-2 or Bcl-X(L), or normal levels and adequate activation of caspase-3. Moreover, these cells display normal levels of caspase-activated DNase and its inhibitory protein, inhibitor of caspase-activated DNase, and their cDNA sequences are identical to those reported previously. Nevertheless, IMR-5 cells lose caspase-activated DNase during apoptosis and recover their ability to degrade DNA when human recombinant caspase-activated DNase is overexpressed. Our results lead to the conclusion that caspase-activated DNase is processed during apoptosis of IMR-5 cells, making these cells a good model to study the relevance of this endonuclease in physiological or pathological conditions.  相似文献   

7.
8.
Granzyme (Gzm)M is constitutively highly expressed in NK cells that may play a critical role in NK cell-mediated cytolysis. However, the function of GzmM has been less defined. Just one report showed GzmM induces a caspase-independent death pathway. In this study, we demonstrate a protein transfection reagent Pro-Ject can efficiently transport GzmM into target cells. GzmM initiates caspase-dependent apoptosis with typical apoptotic nuclear morphology. GzmM induces DNA fragmentation, not DNA nicking. GzmM can directly degrade inhibitor of caspase-activated DNase to release the nuclease activity of caspase-activated DNase for damaging DNA. Furthermore, GzmM cleaves the DNA damage sensor enzyme poly(ADP-ribose) polymerase to prevent cellular DNA repair and force apoptosis.  相似文献   

9.
Homogeneous rate of degradation of nuclear DNA during apoptosis.   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

10.
11.
Apoptosis is a genetically determined cell suicidal program that plays critical roles in many physiological and pathological processes. In this study, we report the cloning and characterization of a novel human gene, nuclear apoptosis-inducing factor 1 (NAIF1), overexpression of which induces apoptosis in cells. Human NAIF1 is located on chromosome 9q34.11 and encodes 327 amino acids with a homeodomain-like region and two nuclear localization signals at its N-terminal region. NAIF1 is conserved across diverse species, including human, mouse, crab-eating macaque, dog, chicken and frog, and shares no obvious homology to any known genes or proteins. Northern blot analysis revealed wide expression of NAIF1 mRNA throughout human tissues. NAIF1 was predominantly localized in the nucleus. Overexpression of NAIF1 inhibited cell growth and induced apoptosis. Furthermore, NAIF1 transfection caused both decreases in mitochondrial membrane potential and caspase-3 activation. In summary, NAIF1 is a nuclear protein that induces apoptosis when overexpressed.  相似文献   

12.
X-ray repair cross-complementing group 4 (XRCC4), a repair protein for DNA double-strand breaks, is cleaved by caspases during apoptosis. In this study, we examined the role of XRCC4 in apoptosis. Cell lines, derived from XRCC4-deficient M10 mouse lymphoma cells and stably expressing wild-type XRCC4 or caspase-resistant XRCC4, were established and treated with staurosporine (STS) to induce apoptosis. In STS-induced apoptosis, expression of wild-type, but not caspase-resistant, XRCC4 in XRCC4-deficient cells enhanced oligonucleosomal DNA fragmentation and the appearance of TUNEL-positive cells by promoting nuclear translocation of caspase-activated DNase (CAD), a major nuclease for oligonucleosomal DNA fragmentation. CAD activity is reportedly regulated by the ratio of two inhibitor of CAD (ICAD) splice variants, ICAD-L and ICAD-S mRNA, which, respectively, produce proteins with and without the ability to transport CAD into the nucleus. The XRCC4-dependent promotion of nuclear import of CAD in STS-treated cells was associated with reduction of ICAD-S mRNA and protein, and enhancement of phosphorylation and nuclear import of serine/arginine-rich splicing factor (SRSF) 1. These XRCC4-dependent, apoptosis-enhancing effects were canceled by depletion of SRSF1 or SR protein kinase (SRPK) 1. In addition, overexpression of SRSF1 in XRCC4-deficient cells restored the normal level of apoptosis, suggesting that SRSF1 functions downstream of XRCC4 in activating CAD. This XRCC4-dependent, SRPK1/SRSF1-mediated regulatory mechanism was conserved in apoptosis in Jurkat human leukemia cells triggered by STS, and by two widely used anti-cancer agents, Paclitaxel and Vincristine. These data imply that the level of XRCC4 expression could be used to predict the effects of apoptosis-inducing drugs in cancer treatment.  相似文献   

13.
14.
Although compelling evidence supports the central role of caspase-activated DNase (CAD) in oligonucleosomal DNA fragmentation in apoptotic nuclei, the regulation of CAD activity remains elusive in vivo. We used fluorescence photobleaching and biochemical techniques to investigate the molecular dynamics of CAD. The CAD-GFP fusion protein complexed with its inhibitor (ICAD) was as mobile as nuclear GFP in the nucleosol of dividing cells. Upon induction of caspase-3-dependent apoptosis, activated CAD underwent progressive immobilization, paralleled by its attenuated extractability from the nucleus. CAD immobilization was mediated by its NH2 terminus independently of its DNA-binding activity and correlated with its association to the interchromosomal space. Preventing the nuclear attachment of CAD provoked its extracellular release from apoptotic cells. We propose a novel paradigm for the regulation of CAD in the nucleus, involving unrestricted accessibility of chromosomal DNA at the initial phase of apoptosis, followed by its nuclear immobilization that may prevent the release of the active nuclease into the extracellular environment.  相似文献   

15.
Caspase-3 initiates apoptotic DNA fragmentation by proteolytically inactivating DFF45 (DNA fragmentation factor-45)/ICAD (inhibitor of caspase-activated DNase), which releases active DFF40/CAD (caspase-activated DNase), the inhibitor's associated endonuclease. Here, we examined whether other apoptotic proteinases initiated DNA fragmentation via DFF45/ICAD inactivation. In a cell-free assay, caspases-3, -6, -7, -8, and granzyme B initiated benzoyloxycarbonyl-Asp-Glu-Val-Asp (DEVD) cleaving caspase activity, DFF45/ICAD inactivation, and DNA fragmentation, but calpain and cathepsin D failed to initiate these events. Strikingly, only the DEVD cleaving caspases, caspase-3 and caspase-7, inactivated DFF45/ICAD and promoted DNA fragmentation in an in vitro DFF40/CAD assay, suggesting that granzyme B, caspase-6, and caspase-8 promote DFF45/ICAD inactivation and DNA fragmentation indirectly by activating caspase-3 and/or caspase-7. In vitro, however, caspase-3 inactivated DFF45/ICAD and promoted DNA fragmentation more effectively than caspase-7 and endogenous levels of caspase-7 failed to inactivate DFF45/ICAD in caspase-3 null MCF7 cells and extracts. Together, these data suggest that caspase-3 is the primary inactivator of DFF45/ICAD and therefore the primary activator of apoptotic DNA fragmentation.  相似文献   

16.
Prostaglandin F(2alpha) (PGF(2alpha)) acting via a G protein-coupled receptor has been shown to induce apoptosis in the corpus luteum of many species. Studies were carried out to characterize changes in the apoptotic signaling cascade(s) culminating in luteal tissue apoptosis during PGF(2alpha)-induced luteolysis in the bovine species in which initiation of apoptosis was demonstrable at 18 h after exogenous PGF(2alpha) treatment. An analysis of intrinsic arm of apoptotic signaling cascade elements revealed that PGF(2alpha) injection triggered increased ratio of Bax to Bcl-2 in the luteal tissue as early as 4 h posttreatment that remained elevated until 18 h. This increase was associated with the elevation in the active caspase-9 and -3 protein levels and activity (p < 0.05) at 4-12 h, but a spurt in the activity was seen only at 18 h posttreatment that could not be accounted for by the changes in the Bax/Bcl-2 ratio or changes in translocation of Bax to mitochondria. Examination of luteal tissue for FasL/Fas death receptor cascade revealed increased expression of FasL and Fas at 18 h accompanied by a significant (p < 0.05) induction in the caspase-8 activity and truncated Bid levels. Furthermore, intrabursal administration of specific caspase inhibitors, downstream to the extrinsic and intrinsic apoptotic signaling cascades, in a pseudopregnant rat model revealed a greater importance of extrinsic apoptotic signaling cascade in mediating luteal tissue apoptosis during PGF(2alpha) treatment. The DNase responsible for PGF(2alpha)-induced apoptotic DNA fragmentation was found to be Ca(2+)/Mg(2+)-dependent, temperature-sensitive DNase, and optimally active at neutral pH conditions. This putative DNase was inhibited by the recombinant inhibitor of caspase-activated DNase, and immunodepletion of caspase-activated DNase from luteal lysates abolished the observed DNA fragmentation activity. Together, these data demonstrate for the first time temporal and spatial changes in the apoptotic signaling cascades during PGF(2alpha)-in-duced apoptosis in the corpus luteum.  相似文献   

17.
Caspase-activated DNase (CAD), which causes a genome fragmentation at the final stage of apoptosis, is a protein of about 40 kDa and exists as a complex form with the inhibitor ICAD in living cells. There is sequence homology of about 80 amino acid residues at the N termini of CAD and ICAD (called the CAD domain). Here, we report the three-dimensional structure of the CAD domain of CAD determined by multi-dimensional NMR spectroscopy and the property of CAD domains investigated by a surface plasmon resonance experiment. The CAD domain of CAD is an independently folded domain composed of one alpha-helix and five beta-strands forming a single sheet. The overall structure is categorized in the ubiquitin superfold. This domain can bind strongly to the isolated CAD domain of ICAD (dissociation constant: 5.48(+/-0.003)x10(-8) M). It suggests the function of the CAD domains in the CAD-ICAD system, that the protein-protein interaction through the CAD domains plays an important role in the inhibition of CAD DNase activity and in the correct folding of CAD. On the basis of structural comparison with other protein complexes containing the ubiquitin superfold, the interaction mode of the CAD domains is proposed.  相似文献   

18.
DNA fragmentation, a hallmark of apoptosis, is regulated by a specific nuclease called caspase-activated DNase (CAD) and its inhibitor (ICAD). When cell lysates from Drosophila S2 cells were chemically denatured and the denatured proteins were removed after dialysis, the supernatant inhibited Drosophila CAD (dCAD). To identify the inhibitor, we tested recombinant DREP-1, which was previously identified using the Drosophila EST data base and found it also inhibited dCAD DNase. An antibody against DREP-1 inhibited the ICAD activity in the S2 cell extracts, confirming the identification of DREP-1 as a Drosophila homolog of ICAD (dICAD). The recombinant DREP-1/dICAD was cleaved at a specific site by human caspase 3 as well as by extracts prepared from S2 cells undergoing apoptosis. Biochemical fractionation and immunoprecipitation of dICAD from S2 cell extracts indicated that dICAD is complexed with dCAD in proliferating cells. The expression of the caspase-resistant form of dICAD/DREP-1 in a Drosophila neuronal cell line prevented the apoptotic DNA fragmentation. Northern hybridization and the immunohistochemical analyses revealed that the expression of the dICAD gene is developmentally regulated.  相似文献   

19.
Caspase-activated DNase (CAD) is a deoxyribonuclease that causes DNA fragmentation during apoptosis. In proliferating cells, CAD is complexed with ICAD (inhibitor of CAD) and its DNase activity is suppressed. Here, we established a quantitative assay for CAD DNase that measures the number of 3' hydroxyl groups on the CAD-generated DNA fragments. Chemical modification of histidine residues and substrate protection experiments demonstrated the presence of reactive histidine residues within the active site of the enzyme. Analysis by site-directed mutagenesis suggested that at least four histidine residues in the C-terminal part of the molecule are essential for the catalytic activity of CAD DNase. ICAD did not protect CAD from the chemical modification of the histidine residues, indicating that it does not mask the active site of CAD. In contrast, ICAD blocked the ability of CAD to bind DNA, suggesting that ICAD causes steric or electrostatic hindrance in CAD for substrate DNA. This molecular mechanism for the inhibition of CAD DNase by ICAD is similar to that proposed for colicin endonuclease and its inhibitor, immunity protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号