首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four known and nine new ceftazidime-resistance β-lactamases were generated by a novel, contaminating codon-based mutagenesis approach. In this method, wild-type codons are spiked with a set of mutant codons during oligonucleotide synthesis, generating random combinatorial libraries of primers that contain few codon replacements per variant. Mutant codons are assembled by tandem addition of a diluted mixture of five Fmoc-dimer amidites to the growing oligo and a mixture of four DMTr-monomer amidites to generate 20 trinucleotides that encode a set of 18 amino acids. Wild-type codons are assembled with conventional chemistry and the whole process takes place in only one synthesis column, making its automation feasible. The random and binomial behavior of this approach was tested in the polylinker region of plasmid pUC19 by the synthesis of three oligonucleotide libraries mutagenized at different rates and cloned as mutagenic cassettes. Additionally, the method was biologically assessed by mutating six contiguous codons that encode amino acids 237–243 (ABL numbering) of the TEMpUC19 β-lactamase, which is functionally equivalent to the clinically important TEM-1 β-lactamase. The best ceftazidime-recognizing variant was a triple mutant, R164H:E240K: R241A, displaying a 333-fold higher resistance than the wild-type enzyme.  相似文献   

2.
Four known and nine new ceftazidime-resistance beta-lactamases were generated by a novel, contaminating codon-based mutagenesis approach. In this method, wild-type codons are spiked with a set of mutant codons during oligonucleotide synthesis, generating random combinatorial libraries of primers that contain few codon replacements per variant. Mutant codons are assembled by tandem addition of a diluted mixture of five Fmoc-dimer amidites to the growing oligo and a mixture of four DMTr-monomer amidites to generate 20 trinucleotides that encode a set of 18 amino acids. Wild-type codons are assembled with conventional chemistry and the whole process takes place in only one synthesis column, making its automation feasible. The random and binomial behavior of this approach was tested in the polylinker region of plasmid pUC19 by the synthesis of three oligonucleotide libraries mutagenized at different rates and cloned as mutagenic cassettes. Additionally, the method was biologically assessed by mutating six contiguous codons that encode amino acids 237-243 (ABL numbering) of the TEM(pUC19) beta-lactamase, which is functionally equivalent to the clinically important TEM-1 beta-lactamase. The best ceftazidime-recognizing variant was a triple mutant, R164H:E240K: R241A, displaying a 333-fold higher resistance than the wild-type enzyme.  相似文献   

3.
The 5′ end of the genomic RNA of rubella virus (RUB) contains a 14-nucleotide (nt) single-stranded leader (ss-leader) followed by a stem-and-loop structure [5′(+)SL] (nt 15 to 65), the complement of which at the 3′ end of the minus-strand RNA [3′(−)SL] has been proposed to function as a promoter for synthesis of genomic plus strands. A second intriguing feature of the 5′ end of the RUB genomic RNA is the presence of a short (17 codons) open reading frame (ORF) located between nt 3 and 54; the ORF encoding the viral nonstructural proteins (NSPs) initiates at nt 41 in an alternate translational frame. To address the functional significance of these features, we compared the 5′-terminal sequences of six different strains of RUB, with the result that the short ORF is preserved (although the coding sequence is not conserved) as is the stem part of both the 5′(+)SL and 3′(−)SL, while the upper loop part of both structures varies. Next, using Robo302, an infectious cDNA clone of RUB, we introduced 31 different mutations into the 5′-terminal noncoding region, and their effects on virus replication and macromolecular synthesis were examined. This mutagenesis revealed that the short ORF is not essential for virus replication. The AA dinucleotide at nt 2 and 3 is of critical importance since point mutations and deletions that altered or removed both of these nucleotides were lethal. None of the other mutations within either the ss-leader or the 5′(+)SL [and accordingly within the 3′(−)SL], including deletions of up to 15 nt from the 5′(+)SL and three different multiple-point mutations that lead to destabilization of the 5′(+)SL, were lethal. Some of the mutations within both ss-leader and the 5′(+)SL resulted in viruses that grew to lower titers than the wild-type virus and formed opaque and/or small plaques; in general mutations within the stem had a more profound effect on viral phenotype than did mutations in either the ss-leader or upper loop. Mutations in the 5′(+)SL, but not in the ss-leader, resulted in a significant reduction in NSP synthesis, indicating that this structure is important for efficient translation of the NSP ORF. In contrast, viral plus-strand RNA synthesis was unaffected by the 5′(+)SL mutations as well as the ss-leader mutations, which argues against the proposed function of the 3′(−)SL as a promoter for initiation of the genomic plus-strand RNA.  相似文献   

4.
Tang L  Gao H  Zhu X  Wang X  Zhou M  Jiang R 《BioTechniques》2012,52(3):149-158
Site-saturation mutagenesis is a powerful tool for protein optimization due to its efficiency and simplicity. A degenerate codon NNN or NNS (K) is often used to encode the 20 standard amino acids, but this will produce redundant codons and cause uneven distribution of amino acids in the constructed library. Here we present a novel "small-intelligent" strategy to construct mutagenesis libraries that have a minimal gene library size without inherent amino acid biases, stop codons, or rare codons of Escherichia coli by coupling well-designed combinatorial degenerate primers with suitable PCR-based mutagenesis methods. The designed primer mixture contains exactly one codon per amino acid and thus allows the construction of small-intelligent mutagenesis libraries with one gene per protein. In addition, the software tool DC-Analyzer was developed to assist in primer design according to the user-defined randomization scheme for library construction. This small-intelligent strategy was successfully applied to the randomization of halohydrin dehalogenases with one or two randomized sites. With the help of DC-Analyzer, the strategy was proven to be as simple as NNS randomization and could serve as a general tool to efficiently randomize target genes at positions of interest.  相似文献   

5.
Pon RT  Yu S 《Nucleic acids research》2005,33(6):1940-1948
Multiple oligonucleotides of the same or different sequence, linked end-to-end in tandem can be synthesized in a single automated synthesis. A linker phosphoramidite [R. T. Pon and S. Yu (2004) Nucleic Acids Res., 32, 623–631] is added to the 5′-terminal OH end of a support-bound oligonucleotide to introduce a cleavable linkage (succinic acid plus sulfonyldiethanol) and the 3′-terminal base of the new sequence. Conventional phosphoramidites are then used for the rest of the sequence. After synthesis, treatment with ammonium hydroxide releases the oligonucleotides from the support and cleaves the linkages between each sequence. Mixtures of one oligonucleotide with both 5′- and 3′-terminal OH ends and other oligonucleotides with 5′-phosphorylated and 3′-OH ends are produced, which are deprotected and worked up as a single product. Tandem synthesis can be used to make pairs of PCR primers, sets of cooperative oligonucleotides or multiple copies of the same sequence. When tandem synthesis is used to make two self-complementary sequences, double-stranded structures spontaneously form after deprotection. Tandem synthesis of oligonucleotide chains containing up to six consecutive 20mer (120 bases total), various trinucleotide codons and primer pairs for PCR, or self-complementary strands for in situ formation of double-stranded DNA fragments has been demonstrated.  相似文献   

6.
9-fluorenylmethoxycarbonyl (Fmoc) and 4,4′-dimethoxytrityl (DMTr) are orthogonal hydroxyl protecting groups that have been used in conjunction to assemble oligonucleotide libraries whose variants contain wild-type and mutant codons randomly interspersed throughout a focused DNA region. Fmoc is labile to organic bases and stable to weak acids, whereas DMTr behaves oppositely. Based on these chemical characteristics, we have now devised TrimerDimer, a novel codon-based saturation mutagenesis approach that removes redundant and stop codons during the assembly of degenerate oligonucleotides. In this approach, five DMTr-protected trinucleotide phosphoramidites (dTGG, dATG, dTTT, dTAT and dTGC) and five Fmoc-protected dinucleotide phosphoramidites (dAA, dTT, dAT, dGC and dCG) react simultaneously with a starting oligonucleotide growing on a solid support. The Fmoc group is then removed and the incorporated dimers react with a mixture of three DMTr-protected monomer phosphoramidites (dC, dA and dG) to produce 15 trinucleotides: dCAA, dAAA, dGAA, dCTT, dATT, dGTT, dCAT, dAAT, dGAT, dCGC, dAGC, dGGC, dCCG, dACG and dGCG. After one mutagenic cycle, 20 codons are generated encoding the 20 natural amino acids. TrimerDimer was tested by randomizing the four contiguous codons that encode amino acids L64–G67 of an engineered, nonfluorescent GFP protein. Sequencing of 89 nonfluorescent mutant clones and isolation of two fluorescent mutants confirmed the principle.  相似文献   

7.
The cytosine base in DNA undergoes hydrolytic deamination at a considerable rate when UV radiation induces formation of a cyclobutane pyrimidine dimer (CPD) with an adjacent pyrimidine base. We have synthesized a phosphoramidite building block of a cissyn cyclobutane thymine–uracil dimer (T[]U), which is the deaminated form of the CPD at a TC site, and incorporated it into oligodeoxyribonucleotides. The previously reported method for synthesis of the thymine dimer (T[]T) was applied, using partially protected thymidylyl-(3′–5′)-2′-deoxyuridine as the starting material, and after triplet- sensitized irradiation, the configuration of the base moiety in the major product was determined by NMR spectroscopy. Presence of the cissyn cyclobutane dimer in the obtained oligonucleotides was confirmed by UV photoreversal and reaction with T4 endonuclease V. Using a 30mer containing T[]U, translesion synthesis by human DNA polymerase η was analyzed. There was no difference in the results between the templates containing T[]T and T[]U and pol η bypassed both lesions with the same efficiency, incorporating two adenylates. This enzyme showed fidelity to base pair formation, but this replication causes a C→T transition because the original sequence is TC.  相似文献   

8.
By its functional interaction with a RecA polymer, the mutagenic UmuD′C complex possesses an antirecombination activity. We show here that MucA′B, a functional homolog of the UmuD′C complex, inhibits homologous recombination as well. In F recipients expressing MucA′B from a Ptac promoter, Hfr × F recombination decreased with increasing MucA′B concentrations down to 50-fold. In damage-induced pKM101-containing cells expressing MucA′B from the native promoter, recombination between a UV-damaged F lac plasmid and homologous chromosomal DNA decreased 10-fold. Overexpression of MucA′B together with UmuD′C resulted in a synergistic inhibition of recombination. RecA[UmuR] proteins, which are resistant to UmuD′C inhibition of recombination, are inhibited by MucA′B while promoting MucA′B-promoted mutagenesis efficiently. The data suggest that MucA′B and UmuD′C contact a RecA polymer at distinct sites. The MucA′B complex was more active than UmuD′C in promoting UV mutagenesis, yet it did not inhibit recombination more than UmuD′C does. The enhanced mutagenic potential of MucA′B may result from its inherent superior capacity to assist DNA polymerase in trans-lesion synthesis. In the course of this work, we found that the natural plasmid pKM101 expresses around 45,000 MucA and 13,000 MucB molecules per lexA(Def) cell devoid of LexA. These molecular Muc concentrations are far above those of the chromosomally encoded Umu counterparts. Plasmid pKM101 belongs to a family of broad-host-range conjugative plasmids. The elevated levels of the Muc proteins might be required for successful installation of pKM101-like plasmids into a variety of host cells.  相似文献   

9.
Protein engineering uses oligonucleotide-directed mutagenesis to modify DNA sequences through a two-step process of hybridization and enzymatic synthesis. Inefficient reactions confound attempts to introduce mutations, especially for the construction of vast combinatorial protein libraries. This paper applied computational approaches to the problem of inefficient mutagenesis. Several results implicated oligonucleotide annealing to non-target sites, termed ‘cross-hybridization’, as a significant contributor to mutagenesis reaction failures. Test oligonucleotides demonstrated control over reaction outcomes. A novel cross-hybridization score, quickly computable for any plasmid and oligonucleotide mixture, directly correlated with yields of deleterious mutagenesis side products. Cross-hybridization was confirmed conclusively by partial incorporation of an oligonucleotide at a predicted cross-hybridization site, and by modification of putative template secondary structure to control cross-hybridization. Even in low concentrations, cross-hybridizing species in mixtures poisoned reactions. These results provide a basis for improved mutagenesis efficiencies and increased diversities of cognate protein libraries.  相似文献   

10.
Site-directed mutagenesis is an invaluable tool for functional studies and genetic engineering. However, most current protocols require the target DNA to be cloned into a plasmid vector before mutagenesis can be performed, and none of them are effective for multiple-site mutagenesis. We now describe a method that allows mutagenesis on any DNA template (eg. cDNA, genomic DNA and plasmid DNA), and is highly efficient for multiple-site mutagenesis (up to 100%). The technology takes advantage of the requirement that, in order for DNA polymerases to elongate, it is crucial that the 3′ sequences of the primers match the template perfectly. When two outer mutagenic oligos are incorporated together with the desired mutagenic oligos into the newly synthesised mutant strand, they serve as anchors for PCR primers which have 3′ sequences matching the mutated nucleotides, thus amplifying the mutant strand only. The same principle can also be used for mutant screening.  相似文献   

11.
We have developed a new primer design method based on the QuickChange™ site-directed mutagenesis protocol, which significantly improves the PCR amplification efficiency. This design method minimizes primer dimerization and ensures the priority of primer-template annealing over primer self-pairing during the PCR. Several different multiple mutations (up to 7 bases) were successfully performed with this partial overlapping primer design in a variety of vectors ranging from 4 to 12 kb in length. In comparison, all attempts failed when using complete-overlapping primer pairs as recommended in the standard QuickChange™ protocol. Our protocol was further extended to site-saturation mutagenesis by introducing randomized codons. Our data indicated no specific sequence selection during library construction, with the randomized positions resulting in average occurrence of each base in each position. This method should be useful to facilitate the preparation of high-quality site saturation libraries.  相似文献   

12.
Sequence saturation mutagenesis (SeSaM) is a conceptually novel and practically simple method that truly randomizes a target sequence at every single nucleotide position. A SeSaM experiment can be accomplished within 2–3 days and comprises four steps: generating a pool of DNA fragments with random length, ‘tailing’ the DNA fragments with universal base using terminal transferase at 3′-termini, elongating DNA fragments in a PCR to the full-length genes using a single-stranded template and replacing the universal bases by standard nucleotides. Random mutations are created at universal sites due to the promiscuous base-pairing property of universal bases. Using enhanced green fluorescence protein as the model system and deoxyinosine as the universal base, we proved by sequencing 100 genes the concept of the SeSaM method and achieved a random distribution of mutations with the mutational bias expected for deoxyinosine.  相似文献   

13.
Trinucleotide phosphoramidites representing codons for all 20 amino acids have been prepared and used in automated, solid-phase DNA synthesis. In contrast to an earlier report, we show that these substances can be used to introduce entire codons into oligonucleotides in excess of 98% yield, and are ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis.  相似文献   

14.
A computer program for the generation and analysis of in silico random point mutagenesis libraries is described. The program operates by mutagenizing an input nucleic acid sequence according to mutation parameters specified by the user for each sequence position and type of point mutation. The program can mimic almost any type of random mutagenesis library, including those produced via error-prone PCR (ep-PCR), mutator Escherichia coli strains, chemical mutagenesis, and doped or random oligonucleotide synthesis. The program analyzes the generated nucleic acid sequences and/or the associated protein library to produce several estimates of library diversity (number of unique sequences, point mutations, and single point mutants) and the rate of saturation of these diversities during experimental screening or selection of clones. This information allows one to select the optimal screen size for a given mutagenesis library, necessary to efficiently obtain a certain coverage of the sequence-space. The program also reports the abundance of each specific protein mutation at each sequence position, which is useful as a measure of the level and type of mutation bias in the library. Alternatively, one can use the program to evaluate the relative merits of preexisting libraries, or to examine various hypothetical mutation schemes to determine the optimal method for creating a library that serves the screen/selection of interest. Simulated libraries of at least 109 sequences are accessible by the numerical algorithm with currently available personal computers; an analytical algorithm is also available which can rapidly calculate a subset of the numerical statistics in libraries of arbitrarily large size. A multi-type double-strand stochastic model of ep-PCR is developed in an appendix to demonstrate the applicability of the algorithm to amplifying mutagenesis procedures. Estimators of DNA polymerase mutation-type-specific error rates are derived using the model. Analyses of an alpha-synuclein ep-PCR library and NNS synthetic oligonucleotide libraries are given as examples.  相似文献   

15.
Polymerase chain reaction (PCR) is a powerful method to produce linear DNA fragments. Here we describe the Tma thermostable DNA ligase-mediated PCR production of circular plasmid (PPCP) and its application in directed evolution via in situ error-prone PCR. In this thermostable DNA ligase-mediated whole-plasmid amplification method, the resultant DNA nick between the 5′ end of the PCR primer and the extended newly synthesized DNA 3′ end of each PCR cycle is ligated by Tma DNA ligase, resulting in circular plasmid DNA product that can be directly transformed. The template plasmid DNA is eliminated by ‘selection marker swapping’ upon transformation. When performed under an error-prone condition with Taq DNA polymerase, PPCP allows one-step construction of mutagenesis libraries based on in situ error-prone PCR so that random mutations are introduced into the target gene without altering the expression vector plasmid. A significant difference between PPCP and previously published methods is that PPCP allows exponential amplification of circular DNA. We used this method to create random mutagenesis libraries of a xylanase gene and two cellulase genes. Screening of these libraries resulted in mutant proteins with desired properties, demonstrating the usefulness of in situ error-prone PPCP for creating random mutagenesis libraries for directed evolution.  相似文献   

16.
One-step random mutagenesis by error-prone rolling circle amplification   总被引:1,自引:0,他引:1  
In vitro random mutagenesis is a powerful tool for altering properties of enzymes. We describe here a novel random mutagenesis method using rolling circle amplification, named error-prone RCA. This method consists of only one DNA amplification step followed by transformation of the host strain, without treatment with any restriction enzymes or DNA ligases, and results in a randomly mutated plasmid library with 3–4 mutations per kilobase. Specific primers or special equipment, such as a thermal-cycler, are not required. This method permits rapid preparation of randomly mutated plasmid libraries, enabling random mutagenesis to become a more commonly used technique.  相似文献   

17.
The QuikChangeTM site-directed mutagenesis method is popular but imperfect. An improvement by using partially overlapping primers has been reported several times; however, it is incompatible with the proposed mechanism. The QuikChangeTM method using complementary primers is proposed to linearly amplify a target plasmid with the products annealing to produce double-stranded DNA molecules with 5′-overhangs. The overhang annealing is supposed to form circular plasmids with staggered breaks, which can be repaired in Escherichia coli after transformation. Here, we demonstrated that the PCR enzyme fills the 5′-overhangs in the early cycles, and the product is then used as the template for exponential amplification. The linear DNA molecules with homologous ends are joined to generate the plasmid with the desired mutations through homologous recombination in E. coli. The correct understanding is important to method improvements, guiding us to use partially overlapping primers and Phusion DNA polymerase for site-directed mutagenesis. Phusion did not amplify a plasmid with complementary primers but used partially overlapping primers to amplify the plasmid, producing linear DNA molecules with homologous ends for site-directed mutagenesis.  相似文献   

18.
Kim SJ  Kim BH 《Nucleic acids research》2003,31(11):2725-2734
We have synthesized three types of calix[4]arene– nucleoside hybrid efficiently by amide bond formation between the amine functional groups of 1,3-diaminocalix[4]arene and the carboxyl groups of thymidine nucleoside derivatives. X-ray crystallography of a homocoupled calix[4]arene–nucleoside hybrid revealed an interesting hydrogen bonding pattern between thymine bases and the amide linkages. We designed the calix[4]arene–oligonucleotide hybrids (5′-AAAAGATATCAAXTTGATATCTTTT-3′, 5′-T12-X-T12-3′, and 5′-A12-X-T12-3′) to be V-shaped oligodeoxyribonucleotides and synthesized them by using a calix[4]arene–nucleoside hybrid (X) as a key building block. Thermal denaturation experiments, monitored by UV spectroscopy at 260 and 284 nm, and circular dichroism spectra of the calix[4]arene–oligonucleotide hybrids suggest that the modified oligonucleotides indeed adopt V-shaped conformations, making them suitable for use as building blocks in the construction of programmed oligonucleotide nanostructures.  相似文献   

19.
Protein engineering by combinatorial site-directed mutagenesis evaluates a portion of the sequence space near a target protein, seeking variants with improved properties (e.g., stability, activity, immunogenicity). In order to improve the hit-rate of beneficial variants in such mutagenesis libraries, we develop methods to select optimal positions and corresponding sets of the mutations that will be used, in all combinations, in constructing a library for experimental evaluation. Our approach, OCoM (Optimization of Combinatorial Mutagenesis), encompasses both degenerate oligonucleotides and specified point mutations, and can be directed accordingly by requirements of experimental cost and library size. It evaluates the quality of the resulting library by one- and two-body sequence potentials, averaged over the variants. To ensure that it is not simply recapitulating extant sequences, it balances the quality of a library with an explicit evaluation of the novelty of its members. We show that, despite dealing with a combinatorial set of variants, in our approach the resulting library optimization problem is actually isomorphic to single-variant optimization. By the same token, this means that the two-body sequence potential results in an NP-hard optimization problem. We present an efficient dynamic programming algorithm for the one-body case and a practically-efficient integer programming approach for the general two-body case. We demonstrate the effectiveness of our approach in designing libraries for three different case study proteins targeted by previous combinatorial libraries--a green fluorescent protein, a cytochrome P450, and a beta lactamase. We found that OCoM worked quite efficiently in practice, requiring only 1 hour even for the massive design problem of selecting 18 mutations to generate 10? variants of a 443-residue P450. We demonstrate the general ability of OCoM in enabling the protein engineer to explore and evaluate trade-offs between quality and novelty as well as library construction technique, and identify optimal libraries for experimental evaluation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号