首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the ancient organisms, methanogenic archaea, lacking the canonical cysteinyl-tRNA synthetase, Cys-tRNA(Cys) is produced by an indirect pathway, in which O-phosphoseryl-tRNA synthetase ligates O-phosphoserine (Sep) to tRNA(Cys) and Sep-tRNA:Cys-tRNA synthase (SepCysS) converts Sep-tRNA(Cys) to Cys-tRNA(Cys). In this study, the crystal structure of SepCysS from Archaeoglobus fulgidus has been determined at 2.4 A resolution. SepCysS forms a dimer, composed of monomers bearing large and small domains. The large domain harbors the seven-stranded beta-sheet, which is typical of the pyridoxal 5'-phosphate (PLP)-dependent enzymes. In the active site, which is located near the dimer interface, PLP is covalently bound to the side-chain of the conserved Lys209. In the proximity of PLP, a sulfate ion is bound by the side-chains of the conserved Arg79, His103, and Tyr104 residues. The active site is located deep within the large, basic cleft to accommodate Sep-tRNA(Cys). On the basis of the surface electrostatic potential, the amino acid residue conservation mapping, the position of the bound sulfate ion, and the substrate amino acid binding manner in other PLP-dependent enzymes, a binding model of Sep-tRNA(Cys) to SepCysS was constructed. One of the three strictly conserved Cys residues (Cys39, Cys42, or Cys247), of one subunit may play a crucial role in the catalysis in the active site of the other subunit.  相似文献   

2.
The bacterial YbaK protein is a Cys-tRNAPro and Cys-tRNA Cys deacylase   总被引:1,自引:0,他引:1  
Bacterial prolyl-tRNA synthetases and some smaller paralogs, YbaK and ProX, can hydrolyze misacylated Cys-tRNA Pro or Ala-tRNA Pro. To assess the significance of this quality control editing reaction in vivo, we tested Escherichia coli ybaK for its ability to suppress the E. coli thymidylate synthase thyA:146CCA missense mutant strain, which requires Cys-tRNA(Pro) for growth in the absence of thymine. Missense suppression was observed in a ybaK deletion background, suggesting that YbaK functions as a Cys-tRNA Pro deacylase in vivo. In vitro studies with the full set of 20 E. coli aminoacyl-tRNAs revealed that the Haemophilus influenzae and E. coli YbaK proteins are moderately general aminoacyl-tRNA deacylases that preferentially hydrolyze Cys-tRNA Pro and Cys-tRNA Cys and are also weak deacylases that cleave Gly-tRNA, Ala-tRNA, Ser-tRNA, Pro-tRNA, and Met-tRNA. The ProX protein acted as an aminoacyl-tRNA deacylase that cleaves preferentially Ala-tRNA and Gly-tRNA. The potential of H. influenzae YbaK to hydrolyze in vivo correctly charged Cys-tRNA Cys was tested in E. coli strain X2913 (ybaK+). Overexpression of H. influenzae ybaK decreased the in vivo ratio of Cys-tRNA Cys to tRNA Cys from 65 to 35% and reduced the growth rate of strain X2913 by 30% in LB medium. These data suggest that YbaK-mediated hydrolysis of aminoacyl-tRNA can influence cell growth.  相似文献   

3.
A cyclic sulfur compound, identified as cysteine thiolactone by several chemical and enzymatic tests, is formed from cysteine during in vitro tRNA(Cys) aminoacylation catalyzed by Escherichia coli cysteinyl-tRNA synthetase. The mechanism of cysteine thiolactone formation involves enzymatic deacylation of Cys-tRNA(Cys) (k = 0.017 s-1) in which nucleophilic sulfur of the side chain of cysteine in Cys-tRNA(Cys) attacks its carboxyl carbon to yield cysteine thiolactone. Nonenzymatic deacylation of Cys-tRNA(Cys) (k = 0.0006 s-1) yields cysteine, as expected. Inhibition of enzymatic deacylation of Cys-tRNA(Cys) by cysteine and Cys-AMP, but not by ATP, indicates that both synthesis of Cys-tRNA(Cys) and cyclization of cysteine to the thiolactone occur in a single active site of the enzyme. The cyclization of cysteine is mechanistically similar to the editing reactions of methionyl-tRNA synthetase. However, in contrast to methionyl-tRNA synthetase which needs the editing function to reject misactivated homocysteine, cysteinyl-tRNA synthetase is highly selective and is not faced with a problem in rejecting noncognate amino acids. Despite this, the present day cysteinyl-tRNA synthetase, like methionyl-tRNA synthetase, still retains an editing activity toward the cognate product, the charged tRNA. This function may be a remnant of a chemistry used by an ancestral cysteinyl-tRNA synthetase.  相似文献   

4.
Methanocaldococcus jannaschii prolyl-tRNA synthetase (ProRS) was previously reported to also catalyze the synthesis of cysteinyl-tRNA(Cys) (Cys-tRNA(Cys)) to make up for the absence of the canonical cysteinyl-tRNA synthetase in this organism (Stathopoulos, C., Li, T., Longman, R., Vothknecht, U. C., Becker, H., Ibba, M., and S?ll, D. (2000) Science 287, 479-482; Lipman, R. S., Sowers, K. R., and Hou, Y. M. (2000) Biochemistry 39, 7792-7798). Here we show by acid urea gel electrophoresis that pure heterologously expressed recombinant M. jannaschii ProRS misaminoacylates M. jannaschii tRNA(Pro) with cysteine. The enzyme is unable to aminoacylate purified mature M. jannaschii tRNA(Cys) with cysteine in contrast to facile aminoacylation of the same tRNA with cysteine by Methanococcus maripaludis cysteinyl-tRNA synthetase. Although M. jannaschii ProRS catalyzes the synthesis of Cys-tRNA(Pro) readily, the enzyme is unable to edit this misaminoacylated tRNA. We discuss the implications of these results on the in vivo activity of the M. jannaschii ProRS and on the nature of the enzyme involved in the synthesis of Cys-tRNA(Cys) in M. jannaschii.  相似文献   

5.
A subset of methanogenic archaea synthesize the cysteinyl-tRNA(Cys) (Cys-tRNA(Cys)) needed for protein synthesis using both a canonical cysteinyl-tRNA synthetase (CysRS) as well as a set of two enzymes that operate via a separate indirect pathway. In the indirect route, phosphoseryl-tRNA(Cys) (Sep-tRNA(Cys)) is first synthesized by phosphoseryl-tRNA synthetase (SepRS), and this misacylated intermediate is then converted to Cys-tRNA(Cys) by Sep-tRNA:Cys-tRNA synthase (SepCysS) via a pyridoxal phosphate-dependent mechanism. Here, we explore the function of all three enzymes in the mesophilic methanogen Methanosarcina mazei. The genome of M. mazei also features three distinct tRNA(Cys) isoacceptors, further indicating the unusual and complex nature of Cys-tRNA(Cys) synthesis in this organism. Comparative aminoacylation kinetics by M. mazei CysRS and SepRS reveals that each enzyme prefers a distinct tRNA(Cys) isoacceptor or pair of isoacceptors. Recognition determinants distinguishing the tRNAs are shown to reside in the globular core of the molecule. Both enzymes also require the S-adenosylmethione-dependent formation of (m1)G37 in the anticodon loop for efficient aminoacylation. We further report a new, highly sensitive assay to measure the activity of SepCysS under anaerobic conditions. With this approach, we demonstrate that SepCysS functions as a multiple-turnover catalyst with kinetic behavior similar to bacterial selenocysteine synthase and the archaeal/eukaryotic SepSecS enzyme. Together, these data suggest that both metabolic routes and all three tRNA(Cys) species in M. mazei play important roles in the cellular physiology of the organism.  相似文献   

6.
Most organisms form Cys-tRNA(Cys), an essential component for protein synthesis, through the action of cysteinyl-tRNA synthetase (CysRS). However, the genomes of Methanocaldococcus jannaschii, Methanothermobacter thermautotrophicus, and Methanopyrus kandleri do not contain a recognizable cysS gene encoding CysRS. It was reported that M. jannaschii prolyl-tRNA synthetase (C. Stathopoulos, T. Li, R. Longman, U. C. Vothknecht, H. D. Becker, M. Ibba, and D. S?ll, Science 287:479-482, 2000; R. S. Lipman, K. R. Sowers, and Y. M. Hou, Biochemistry 39:7792-7798, 2000) or the M. jannaschii MJ1477 protein (C. Fabrega, M. A. Farrow, B. Mukhopadhyay, V. de Crécy-Lagard, A. R. Ortiz, and P. Schimmel, Nature 411:110-114, 2001) provides the "missing" CysRS activity for in vivo Cys-tRNA(Cys) formation. These conclusions were supported by complementation of temperature-sensitive Escherichia coli cysS(Ts) strain UQ818 with archaeal proS genes (encoding prolyl-tRNA synthetase) or with the Deinococcus radiodurans DR0705 gene, the ortholog of the MJ1477 gene. Here we show that E. coli UQ818 harbors a mutation (V27E) in CysRS; the largest differences compared to the wild-type enzyme are a fourfold increase in the K(m) for cysteine and a ninefold reduction in the k(cat) for ATP. While transformants of E. coli UQ818 with archaeal and bacterial cysS genes grew at a nonpermissive temperature, growth was also supported by elevated intracellular cysteine levels, e.g., by transformation with an E. coli cysE allele (encoding serine acetyltransferase) or by the addition of cysteine to the culture medium. An E. coli cysS deletion strain permitted a stringent complementation test; growth could be supported only by archaeal or bacterial cysS genes and not by archaeal proS genes or the D. radiodurans DR0705 gene. Construction of a D. radiodurans DR0705 deletion strain showed this gene to be dispensable. However, attempts to delete D. radiodurans cysS failed, suggesting that this is an essential Deinococcus gene. These results imply that it is not established that proS or MJ1477 gene products catalyze Cys-tRNA(Cys) synthesis in M. jannaschii. Thus, the mechanism of Cys-tRNA(Cys) formation in M. jannaschii still remains to be discovered.  相似文献   

7.
From one amino acid to another: tRNA-dependent amino acid biosynthesis   总被引:2,自引:0,他引:2  
Aminoacyl-tRNAs (aa-tRNAs) are the essential substrates for translation. Most aa-tRNAs are formed by direct aminoacylation of tRNA catalyzed by aminoacyl-tRNA synthetases. However, a smaller number of aa-tRNAs (Asn-tRNA, Gln-tRNA, Cys-tRNA and Sec-tRNA) are made by synthesizing the amino acid on the tRNA by first attaching a non-cognate amino acid to the tRNA, which is then converted to the cognate one catalyzed by tRNA-dependent modifying enzymes. Asn-tRNA or Gln-tRNA formation in most prokaryotes requires amidation of Asp-tRNA or Glu-tRNA by amidotransferases that couple an amidase or an asparaginase to liberate ammonia with a tRNA-dependent kinase. Both archaeal and eukaryotic Sec-tRNA biosynthesis and Cys-tRNA synthesis in methanogens require O-phosophoseryl-tRNA formation. For tRNA-dependent Cys biosynthesis, O-phosphoseryl-tRNA synthetase directly attaches the amino acid to the tRNA which is then converted to Cys by Sep-tRNA: Cys-tRNA synthase. In Sec-tRNA synthesis, O-phosphoseryl-tRNA kinase phosphorylates Ser-tRNA to form the intermediate which is then modified to Sec-tRNA by Sep-tRNA:Sec-tRNA synthase. Complex formation between enzymes in the same pathway may protect the fidelity of protein synthesis. How these tRNA-dependent amino acid biosynthetic routes are integrated into overall metabolism may explain why they are still retained in so many organisms.  相似文献   

8.
Lee Johnson  Dieter Sll 《Biopolymers》1971,10(11):2209-2221
Valine specific transfer RNA (tRNAVal) was isolated from Bacillus stearothermophilus and Escherichia coli by chromatography on benzoylated DEAE–cellulose (BD–cellulose). Likewise isoleucine specific transfer RNA (tRNAIle) was isolated from B. stearothermophilus and from Mycoplasma sp. Kid. The thermal denaturation profiles (melting curves) of the two tRNAVal species in the presence of Mg+ + were nearly identical. However, the Tm for the Kid tRNAIle was about 10°C lower than that for the B. stearothermophilus tRNAIle. A nuclease and tRNA-free aminoacyl-tRNA synthetase (AA-tRNA synthetase) preparation from B. stearothermophilus was able to function efficiently at temperatures up to 80°C in the aminoacylation of all four tRNA species. Determination of the amino acid-acceptor activity of each tRNA species as a function of temperature of the aminoacylation reaction showed in each case a strong correlation between the loss of acceptor activity and the thermal denaturation profile of the tRNA. Evidence is presented that the loss in acceptor activity is most likely due to a change in structure of the tRNA as opposed to denaturation of the enzyme. These results further support the idea that correct secondary and/or tertiary structure must be maintained for tRNA to be active as a substrate for the AA-tRNA synthetase.  相似文献   

9.
The accurate formation of cognate aminoacyl-transfer RNAs (aa-tRNAs) is essential for the fidelity of translation. Most amino acids are esterified onto their cognate tRNA isoacceptors directly by aa-tRNA synthetases. However, in the case of four amino acids (Gln, Asn, Cys and Sec), aminoacyl-tRNAs are made through indirect pathways in many organisms across all three domains of life. The process begins with the charging of noncognate amino acids to tRNAs by a specialized synthetase in the case of Cys-tRNA(Cys) formation or by synthetases with relaxed specificity, such as the non-discriminating glutamyl-tRNA, non-discriminating aspartyl-tRNA and seryl-tRNA synthetases. The resulting misacylated tRNAs are then converted to cognate pairs through transformation of the amino acids on the tRNA, which is catalyzed by a group of tRNA-dependent modifying enzymes, such as tRNA-dependent amidotransferases, Sep-tRNA:Cys-tRNA synthase, O-phosphoseryl-tRNA kinase and Sep-tRNA:Sec-tRNA synthase. The majority of these indirect pathways are widely spread in all domains of life and thought to be part of the evolutionary process.  相似文献   

10.
11.
Sep-tRNA:Cys-tRNA synthase (SepCysS) catalyzes the sulfhydrylation of tRNA-bound O-phosphoserine (Sep) to form cysteinyl-tRNA(Cys) (Cys-tRNA(Cys)) in methanogens that lack the canonical cysteinyl-tRNA synthetase (CysRS). A crystal structure of the Archaeoglobus fulgidus SepCysS apoenzyme provides information on the binding of the pyridoxal phosphate cofactor as well as on amino acid residues that may be involved in substrate binding. However, the mechanism of sulfur transfer to form cysteine was not known. Using an in vivo Escherichia coli complementation assay, we showed that all three highly conserved Cys residues in SepCysS (Cys(64), Cys(67), and Cys(272) in the Methanocaldococcus jannaschii enzyme) are essential for the sulfhydrylation reaction in vivo. Biochemical and mass spectrometric analysis demonstrated that Cys(64) and Cys(67) form a disulfide linkage and carry a sulfane sulfur in a portion of the enzyme. These results suggest that a persulfide group (containing a sulfane sulfur) is the proximal sulfur donor for cysteine biosynthesis. The presence of Cys(272) increased the amount of sulfane sulfur in SepCysS by 3-fold, suggesting that this Cys residue facilitates the generation of the persulfide group. Based upon these findings, we propose for SepCysS a sulfur relay mechanism that recruits both disulfide and persulfide intermediates.  相似文献   

12.
Two enzymes involved in the biosynthesis of the trypanosomatid-specific dithiol trypanothione-glutathionylspermidine (Gsp) synthetase and trypanothione (TSH) synthetase--have been identified and purified individually from Crithidia fasciculata. The Gsp synthetase has been purified 93-fold and the TSH synthetase 52-fold to apparent homogeneity from a single DEAE fraction that contained both activities. This constitutes the first indication that the enzymatic conversion of two glutathione molecules and one spermidine to the N1,N8-bis(glutathionyl)spermidine (TSH) occurs in two discrete enzymatic steps. Gsp synthetase, which has a kcat of 600/min, shows no detectable TSH synthetase activity, whereas TSH synthetase does not make any detectable Gsp and has a kcat of 75/min. The 90-kDa Gsp synthetase and 82-kDa TSH synthetase are separable on phenyl Superose and remain separated on gel filtration columns in high salt (0.8 M NaCl). Active complexes can be formed under low to moderate salt conditions (0.0-0.15 M NaCl), consistent with a functional complex in vivo.  相似文献   

13.
氨基酰-tRNA合成酶催化tRNA的氨基酰化反应为生物体内的蛋白质合成提供原料.这类古老且保守的蛋白质分子在高等生物复杂的细胞分子网络中分化出的新功能是目前人们关注的焦点.近期在对一些患有神经退行性疾病的病人和小鼠模型的研究中发现,位于酪氨酰-tRNA合成酶、甘氨酰-tRNA合成酶和丙氨酰-tRNA合成酶上的突变,可分别导致DI腓骨肌萎缩症(Charcot-Marie-Toothdisease,CMT)C型,腓骨肌萎缩症2D型及小脑浦肯雅(Purkinje)细胞丢失.初步的致病机理研究表明,致病突变对这3种酶的影响各不相同:酪氨酰-tRNA合成酶的氨基酰化催化能力受到影响,甘氨酰-tRNA合成酶受影响的可能是一种未知的新功能,而丙氨酰-tRNA合成酶受影响的则是它的编校功能.这些研究结果揭示了氨基酰-tRNA合成酶涉及神经退行性疾病的广泛性和其机制的复杂性,并将促进对神经退行性疾病这一类常见疾病的病理和治疗方法的研究.  相似文献   

14.
D Ringer  S Chládek 《Biochemistry》1976,15(13):2759-2765
The mechanism of enzymatic binding of AAtRNA to the acceptor site Escherichia coli ribosomes has been studied using the following aminoacyl oligonucleotides as models of the 3' terminus of AA-tRNA: C-A-Phe, C-A-(2'-Phe)H, and C-A(2'H)Phe. T-psi-C-Gp was used as a model of loop IV of tRNA. The EF-T dependent binding of Phe-tRNA to ribosomes (in the presence of either GTP or GMPPCP) and the GTPase activity associated with EF-T dependent binding of the Phe-tRNA were inhibited by C-A-Phe,C-A(2'Phe)H, and C-A(2'H)Phe. These aminoacyl oligonucleotides inhibit both the formation of ternary complex EF-Tu-GTP-AA-tRNA and the interaction of this complex with the ribosomal A site. The uncoupled EF-Tu dependent GTPase (in the absence of AA-tRNA) was also inhibited by C-A-Phe, C-A(2'Phe)H, and C-A(2'H)Phe, while nonenzymatic binding of Phe-tRNA to the ribosomal A site was inhibited by C-A-Phe and C-A(2'-Phe)H, but not by C-A(2'H)Phe. The tetranucleotide T-psi-C-Gp inhibited both enzyme binding of Phe-tRNA and EF-T dependent GTP hydrolysis. However, inhibition of the latter reaction occured at a lower concentration of T-psi-C-Gp suggesting a specific role of T-psi-C-Gp loop of AA-tRNA in the GTPase reaction. The role of the 2' and 3' isomers of AA-tRNA during enzymatic binding to ribosomes is discussed and it is suggested that 2' leads to 3' transacylation in AA-tRNA is a step which follows GTP hydrolysis but precedes peptide bond formation.  相似文献   

15.
腺苷甲硫氨酸合成酶的基因及结构研究进展   总被引:3,自引:0,他引:3  
腺苷甲硫氨酸合成酶催化ATP和L-甲硫氨酸合成腺苷甲硫氨酸,在不同生物体和不同组织中腺苷甲硫氨酸合成酶的存在形式和编码酶的基因都有差别,本文综述了不同生物的腺苷甲硫氨酸合成酶的基因、酶结构、酶反应动力学及应用前景。  相似文献   

16.
The stimulatory effect of peptide elongation factor 3 (EF-3), which is uniquely required for the yeast elongation cycle, on the step of binding of aminoacyl-tRNA (AA-tRNA) to ribosomes has been investigated in detail. Yeast EF-1 alpha apparently functions in a stoichiometric manner in the binding reaction of AA-tRNA to the ribosomes. The addition of EF-3 and ATP to this binding system strikingly stimulated the binding reaction, and the stimulated reaction proceeded catalytically with respect to both EF-1 alpha and EF-3, accompanied by ATP hydrolysis, indicating that EF-3 stimulated the AA-tRNA binding reaction by releasing EF-1 alpha from the ribosomal complex, thus recycling it. This binding stimulation by EF-3 was in many respects distinct from that by EF-1 beta gamma. The idea that EF-3 may participate in the regeneration of GTP from ATP and the formed GDP, as indicated by the findings that the addition of EF-3 along with ATP allowed the AA-tRNA binding and Phe polymerization reactions to proceed even in the presence of GDP in place of GTP, was not verified by the results of direct measurement of [32P]GTP formation from [gamma-32P]ATP and GDP under various conditions. Examination of the stability of the bound AA-tRNA disclosed the different binding states of AA-tRNA on ribosomes between in the cases of the complexes formed with EF-1 alpha alone, or factor-independently, and with EF-1 alpha and EF-3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Pyrrolysyl-tRNA synthetase (PylRS) is a class IIc aminoacyl-tRNA synthetase that is related to phenylalanyl-tRNA synthetase (PheRS). Genetic selection provided PylRS variants with a broad range of specificity for diverse non-canonical amino acids (ncAAs). One variant is a specific phenylalanine-incorporating enzyme. Structural models of the PylRSamino acid complex show that the small pocket size and π-interaction play an important role in specific recognition of Phe and the engineered PylRS active site resembles that of Escherichia coli PheRS.  相似文献   

18.
Asparagine synthetase A (AsnA) catalyzes asparagine synthesis using aspartate, ATP, and ammonia as substrates. Asparagine is formed in two steps: the β-carboxylate group of aspartate is first activated by ATP to form an aminoacyl-AMP before its amidation by a nucleophilic attack with an ammonium ion. Interestingly, this mechanism of amino acid activation resembles that used by aminoacyl-tRNA synthetases, which first activate the α-carboxylate group of the amino acid to form also an aminoacyl-AMP before they transfer the activated amino acid onto the cognate tRNA. In a previous investigation, we have shown that the open reading frame of Pyrococcus abyssi annotated as asparaginyl-tRNA synthetase (AsnRS) 2 is, in fact, an archaeal asparagine synthetase A (AS-AR) that evolved from an ancestral aspartyl-tRNA synthetase (AspRS). We present here the crystal structure of this AS-AR. The fold of this protein is similar to that of bacterial AsnA and resembles the catalytic cores of AspRS and AsnRS. The high-resolution structures of AS-AR associated with its substrates and end-products help to understand the reaction mechanism of asparagine formation and release. A comparison of the catalytic core of AS-AR with those of archaeal AspRS and AsnRS and with that of bacterial AsnA reveals a strong conservation. This study uncovers how the active site of the ancestral AspRS rearranged throughout evolution to transform an enzyme activating the α-carboxylate group into an enzyme that is able to activate the β-carboxylate group of aspartate, which can react with ammonia instead of tRNA.  相似文献   

19.
An enzyme system from Claviceps purpurea (Fr.) Tul. catalyzing the incorporation of l-phenylalanine into ergotamine - ergotamine synthetase - was purified 172-fold. This was done by a combination of ammonium sulfate precipitation, gel filtration, ion-exchange chromatography on DEAE-Sepharose CL-6B, and hydroxyapatite chromatography. The activation of ergotamine specific amino acids as well as d-lysergic acid and dihydrolysergic acid via adenylates, as determined by the ATP-32PPi exchange, was investigated. Phenylalanyl-tRNA synthetase, catalyzing the same type of activation reaction, could not be separated from ergotamine synthetase by the purification procedure applied. Therefore, at the present stage of enzyme purification, phenylalanine-dependent ATP-32PPi exchange cannot be used to measure ergotamine synthetase activity specifically.Phenylalanyl-tRNA synthetase and leucyl-tRNA synthetase were separated into mitochondrial and cytoplasmic isoenzymes by hydroxyapatite chromatography. Their charging activities of procaryotic versus eucaryotic tRNA and their molecular masses were determined.  相似文献   

20.
Based on the available experimental data, we developed a kinetic model of the catalytic cycle of imidazologlycerol-phosphate synthetase from Escherichia coli accounting for the synthetase and glutaminase activities of the enzyme. The rate equations describing synthetase and glutaminase activities of imidazologlycerol-phosphate synthetase were derived from this catalytic cycle. Using the literature data, we evaluated all kinetic parameters of the rate equations characterizing individually synthetase and glutaminase activities as well as the contribution of each activity depending on concentration of the substrates, products, and effectors. As shown, in the presence of 5 -phosphoribosylformimino-5-aminoimidazolo-4-carboxamideribonucleotide (ProFAR) and imidazologlycerol phosphate (IGP) glutaminase activity dominates over synthetase activity at sufficiently low concentrations of 5 -phosphoribulosylformimino-5-aminoimidazolo-4-carboxamideribonucleotide (PRFAR). Increased PRFAR concentrations resulted in decreased contribution of glutaminase activity and, consequently, increased the contribution of synthetase activity in the enzyme functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号