首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the most frequent lesions formed in cellular DNA are abasic (apurinic/apyrimidinic, AP) sites that are both cytotoxic and mutagenic, and must be removed efficiently to maintain genetic stability. It is generally believed that the repair of AP sites is initiated by the AP endonucleases; however, an alternative pathway seems to prevail in Schizosaccharomyces pombe. A mutant lacking the DNA glycosylase/AP lyase Nth1 is very sensitive to the alkylating agent methyl methanesulfonate (MMS), suggesting a role for Nth1 in base excision repair (BER) of alkylation damage. Here, we have further evaluated the role of Nth1 and the second putative S.pombe AP endonuclease Apn2, in abasic site repair. The deletion of the apn2 open reading frame dramatically increased the sensitivity of the yeast cells to MMS, also demonstrating that the Apn2 has an important function in the BER pathway. The deletion of nth1 in the apn2 mutant strain partially relieves the MMS sensitivity of the apn2 single mutant, indicating that the Apn2 and Nth1 act in the same pathway for the repair of abasic sites. Analysis of the AP site cleavage in whole cell extracts of wild-type and mutant strains showed that the AP lyase activity of Nth1 represents the major AP site incision activity in vitro. Assays with DNA substrates containing base lesions removed by monofunctional DNA glycosylases Udg and MutY showed that Nth1 will also cleave the abasic sites formed by these enzymes and thus act downstream of these enzymes in the BER pathway. We suggest that the main function of Apn2 in BER is to remove the resulting 3′-blocking termini following AP lyase cleavage by Nth1.  相似文献   

2.
Despite the progress in understanding the base excision repair (BER) pathway it is still unclear why known mutants deficient in DNA glycosylases that remove oxidised bases are not sensitive to oxidising agents. One of the back-up repair pathways for oxidative DNA damage is the nucleotide incision repair (NIR) pathway initiated by two homologous AP endonucleases: the Nfo protein from Escherichia coli and Apn1 protein from Saccharomyces cerevisiae. These endonucleases nick oxidatively damaged DNA in a DNA glycosylase-independent manner, providing the correct ends for DNA synthesis coupled to repair of the remaining 5′-dangling nucleotide. NIR provides an advantage compared to DNA glycosylase-mediated BER, because AP sites, very toxic DNA glycosylase products, do not form. Here, for the first time, we have characterised the substrate specificity of the Apn1 protein towards 5,6-dihydropyrimidine, 5-hydroxy-2′-deoxyuridine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine deoxynucleotide. Detailed kinetic comparisons of Nfo, Apn1 and various DNA glycosylases using different DNA substrates were made. The apparent Km and kcat/Km values of the reactions suggest that in vitro DNA glycosylase/AP lyase is somewhat more efficient than the AP endonuclease. However, in vivo, using cell-free extracts from paraquat-induced E.coli and from S.cerevisiae, we show that NIR is one of the major pathways for repair of oxidative DNA base damage.  相似文献   

3.
Guillet M  Boiteux S 《The EMBO journal》2002,21(11):2833-2841
In Saccharomyces cerevisiae, mutations in APN1, APN2 and either RAD1 or RAD10 genes are synthetic lethal. In fact, apn1 apn2 rad1 triple mutants can form microcolonies of approximately 300 cells. Expression of Nfo, the bacterial homologue of Apn1, suppresses the lethality. Turning off the expression of Nfo induces G(2)/M cell cycle arrest in an apn1 apn2 rad1 triple mutant. The activation of this checkpoint is RAD9 dependent and allows residual DNA repair. The Mus81/Mms4 complex was identified as one of these back-up repair activities. Furthermore, inactivation of Ntg1, Ntg2 and Ogg1 DNA N-glycosylase/AP lyases in the apn1 apn2 rad1 background delayed lethality, allowing the formation of minicolonies of approximately 10(5) cells. These results demonstrate that, under physiological conditions, endogenous DNA damage causes death in cells deficient in Apn1, Apn2 and Rad1/Rad10 proteins. We propose a model in which endogenous DNA abasic sites are converted into 3'-blocked single-strand breaks (SSBs) by DNA N-glycosylases/AP lyases. Therefore, we suggest that the essential and overlapping function of Apn1, Apn2, Rad1/Rad10 and Mus81/Mms4 is to repair 3'-blocked SSBs using their 3'-phosphodiesterase activity or their 3'-flap endonuclease activity, respectively.  相似文献   

4.
Oxidative DNA damage is repaired primarily by the base excision repair (BER) pathway in a process initiated by removal of base lesions or mismatched bases by DNA glycosylases. MutY homolog (MYH, MUTYH, or Myh1) is a DNA glycosylase which excises adenine paired with the oxidative lesion 8-oxo-7,8-dihydroguanine (8-oxoG, or G°), thus reducing G:C to T:A mutations. The resulting apurinic/apyrimidinic (AP) site is processed by an AP-endonuclease or a bifunctional glycosylase/lyase. We show here that the major Schizosaccharomyces pombe AP endonuclease, Apn2, binds to the inter-domain connector located between the N- and C-terminal domains of Myh1. This Myh1 inter-domain connector also interacts with the Hus1 subunit of the Rad9–Rad1–Hus1 checkpoint clamp. Mutagenesis studies indicate that Apn2 and Hus1 bind overlapping but different sequence motifs on Myh1. Mutation on I261 of Myh1 reduces its interaction with Hus1, but only slightly attenuates its interaction with Apn2. However, E262 of Myh1 is a key determinant for both Apn2 and Hus1 interactions. Like human APE1, Apn2 has 3′-phosphodiesterase activity. However, unlike hAPE1, Apn2 has a weak AP endonuclease activity which cleaves the AP sites generated by Myh1 glycosylase. Functionally, Apn2 stimulates Myh1 glycosylase activity and Apn2 phosphodiesterase activity is stimulated by Myh1. The cross stimulation of Myh1 and Apn2 enzymatic activities is dependent on their physical interaction. Thus, Myh1 and Apn2 constitute an initial BER complex.  相似文献   

5.
Rps2/rpS2 is a well conserved protein of the eukaryotic ribosomal small subunit. Rps2 has previously been shown to contain asymmetric dimethylarginine residues, the addition of which is catalyzed by zinc-finger-containing arginine methyltransferase 3 (Rmt3) in the fission yeast Schizosaccharomyces pombe and protein arginine methyltransferase 3 (PRMT3) in mammalian cells. Here, we demonstrate that despite the lack of a zinc-finger-containing homolog of Rmt3/PRMT3 in the budding yeast Saccharomyces cerevisiae, Rps2 is partially modified to generate asymmetric dimethylarginine and monomethylarginine residues. We find that this modification of Rps2 is dependent upon the major arginine methyltransferase 1 (Rmt1) in S. cerevisiae. These results are suggestive of a role for Rmt1 in modifying the function of Rps2 in a manner distinct from that occurring in S. pombe and mammalian cells.  相似文献   

6.
AP endonuclease (APE), with dual activities as an endonuclease and a 3' exonuclease, is a central player in repair of oxidized and alkylated bases in the genome via the base excision repair (BER) pathway. APE acts as an endonuclease in repairing AP sites generated spontaneously or after base excision during BER. It also removes the 3' blocking groups in DNA generated directly by ROS or after AP lyase reaction. In contrast to E. coli and lower eukaryotes which express two distinct APEs of Xth and Nfo types, mammalian genomes encode only one APE, APE1, which is of the Xth type. However, while the APEs together are dispensable in the bacteria and simple eukaryotes, APE1 is essential for mammalian cells. We have shown that apoptosis of mouse embryo fibroblasts triggered by APE1 inactivation can be prevented by ectopic expression of repair competent but not repair-defective APE1. The mitochondrial APE (mtAPE) is an N-terminal truncation product of APE1. A significant fraction of APE1 is cytosolic, and oxidative stress induces its nuclear and mitochondrial translocation. Such age-dependent increase in APE activity in the nucleus and mitochondria is consistent with the hypothesis that aging is associated with chronic oxidative stress.  相似文献   

7.
In Schizosaccharomyces pombe the repair of apurinic/apyrimidinic (AP) sites is mainly initiated by AP lyase activity of DNA glycosylase Nth1p. In contrast, the major AP endonuclease Apn2p functions by removing 3'-alpha,beta-unsaturated aldehyde ends induced by Nth1p, rather than by incising the AP sites. S. pombe possesses other minor AP endonuclease activities derived from Apn1p and Uve1p. In this study, we investigated the function of these two enzymes in base excision repair (BER) for methyl methanesulfonate (MMS) damage using the nth1 and apn2 mutants. Deletion of apn1 or uve1 from nth1Delta cells did not affect sensitivity to MMS. Exogenous expression of Apn1p failed to suppress the MMS sensitivity of nth1Delta cells. Although Apn1p and Uve1p incised the oligonucleotide containing an AP site analogue, these enzymes could not initiate repair of the AP sites in vivo. Despite this, expression of Apn1p partially restored the MMS sensitivity of apn2Delta cells, indicating that the enzyme functions as a 3'-phosphodiesterase to remove 3'-blocked ends. Localization of Apn1p in the nucleus and cytoplasm hints at an additional function of the enzyme other than nuclear DNA repair. Heterologous expression of Saccharomyces cerevisiae homologue of Apn1p completely restored the MMS resistance of the nth1Delta and apn2Delta cells. This result confirms a difference in the major pathway for processing the AP site between S. pombe and S. cerevisiae cells.  相似文献   

8.
Caenorhabditis elegans possesses two distinct DNA repair enzymes EXO-3 and APN-1 that have been identified by cross-specie complementation analysis of the Saccharomyces cerevisiae apn1Δ apn2Δ tpp1Δ triple mutant deficient in the ability to repair apurinic/apyrimidinc (AP) sites and DNA strand breaks with blocked 3′-ends. While purified EXO-3 directly incises AP sites and removes 3′-blocking groups, such characterization has not been previously reported for APN-1. We recently documented that C. elegans knockdown for apn-1 is unable to maintain integrity of the genome. Despite the presence of EXO-3, the apn-1 knockdown animals are also defective in the division of the P1 blastomere, an observation consistent with the accumulation of unrepaired DNA lesions suggesting a unique role for APN-1 DNA repair functions. Herein, we show that C. elegans APN-1 is stably expressed as GST-fusion protein in S. cerevisiae only when it carries a nuclear localization signal, and with this requirement rescued the DNA repair defects of the S. cerevisiae apn1Δ apn2Δ tpp1Δ triple mutant. We purified the APN-1 from the yeast expression system and established that it displays AP endonuclease and 3′-diesterase activities. In addition, we showed that APN-1 also possesses a 3′- to 5′-exonuclease and the nucleotide incision repair activity. This latter activity is capable of directly incising DNA at the 5′-side of various oxidatively damaged bases, as previously observed for Escherichia coli endonuclease IV and S. cerevisiae Apn1, underscoring the importance of this family of enzymes in removing these types of lesions. Glycine substitution of the conserved amino acid residue Glu261 of APN-1, corresponding to Glu145 involved in coordinating Zn2+ ions in the active site pocket of E. coli endonuclease IV, resulted in an inactive variant that lose the ability to rescue the DNA repair defects of S. cerevisiae apn1Δ apn2Δ tpp1Δ mutant. Interestingly, the Glu261Gly variant did not sustain purification and yielded a truncated polypeptide. These data suggest that the Glu261 residue of APN-1 may have a broader role in maintaining the structure of the protein.  相似文献   

9.
Mutagenic and cytotoxic apurinic/apyrimidinic (AP) sites are among the most frequent lesions in DNA. Repair of AP sites is initiated by AP endonucleases and most organisms possess two or more of these enzymes. Saccharomyces cerevisiae has AP endonuclease 1 (Apn1) as the major enzymatic activity with AP endonuclease 2 (Apn2) being an important backup. Schizosaccharomyces pombe also encodes two potential AP endonucleases, and Apn2 has been found to be the main repair activity, while Apn1 has no, or only a limited role in AP site repair. Here we have identified a new 5' exon (exon 1) in the apn1 gene and show that the inactivity of S. pombe Apn1 is due to a nonsense mutation in the fifth codon of this new exon. Reversion of this mutation restored the AP endonuclease activity of S. pombe Apn1. Interestingly, the apn1 nonsense mutation was only found in laboratory strains derived from L972 h(-) and not in unrelated isolates of S. pombe. Since all S. pombe laboratory strains originate from L972 h(-), it appears that all experiments involving S. pombe have been conducted in an apn1(-) mutant strain with a corresponding DNA repair deficiency. These observations have implications both for future research in S. pombe and for the interpretation of previously conducted epistatis analysis.  相似文献   

10.
Collura A  Kemp PA  Boiteux S 《DNA Repair》2012,11(3):294-303
In Saccharomyces cerevisiae, inactivation of base excision repair (BER) AP endonucleases (Apn1p and Apn2p) results in constitutive phosphorylation of Rad53p and delay in cell cycle progression at the G2/M transition. These data led us to investigate genetic interactions between Apn1p, Apn2p and DNA damage checkpoint proteins. The results show that mec1 sml1, rad53 sml1 and rad9 is synthetic lethal with apn1 apn2. In contrast, apn1 apn2 rad17, apn1 apn2 ddc1 and apn1 apn2 rad24 triple mutants are viable, although they exhibit a strong Can(R) spontaneous mutator phenotype. In these strains, high Can(R) mutation rate is dependent upon functional uracil DNA N-glycosylase (Ung1p) and mutation spectra are dominated by AT to CG events. The results point to a role for Rad17-Mec3-Ddc1 (9-1-1) checkpoint clamp in the prevention of mutations caused by abasic (AP) sites linked to incorporation of dUTP into DNA followed by the excision of uracil by Ung1p. The antimutator role of the (9-1-1) clamp can either rely on its essential function in the induction of the DNA damage checkpoint or to another function that specifically impacts DNA repair and/or mutagenesis at AP sites. Here, we show that the abrogation of the DNA damage checkpoint is not sufficient to enhance spontaneous mutagenesis in the apn1 apn2 rad9 sml1 quadruple mutant. Spontaneous mutagenesis was also explored in strains deficient in the two major DNA N-glycosylases/AP-lyases (Ntg1p and Ntg2p). Indeed, apn1 apn2 ntg1 ntg2 exhibits a strong Ung1p-dependent Can(R) mutator phenotype with a spectrum enriched in AT to CG, like apn1 apn2 rad17. However, genetic analysis reveals that ntg1 ntg2 and rad17 are not epistatic for spontaneous mutagenesis in apn1 apn2. We conclude that under normal growth conditions, dUTP incorporation into DNA is a major source of AP sites that cause high genetic instability in the absence of BER factors (Apn1p, Apn2p, Ntg1p and Ntg2p) and Rad17-Mec3-Ddc1 (9-1-1) checkpoint clamp in yeast.  相似文献   

11.
The APN1 gene of Saccharomyces cerevisiae encodes the major apurinic/apyrimidinic endonuclease and 3'-repair DNA diesterase in yeast cell extracts. The Apn1 protein is a homolog of Escherichia coli endonuclease IV, which functions in the repair of some oxidative and alkylation damages in that organism. We show here that yeast strains lacking Apn1 (generated by targeted gene disruption or deletion-replacement) are hypersensitive to both oxidative (hydrogen peroxide and t-butylhydroperoxide) and alkylating (methyl- and ethylmethane sulfonate) agents that damage DNA. These cellular hypersensitivities are correlated with the accumulation of unrepaired damages in the chromosomal DNA of apn1 mutant yeast cells. Hydrogen peroxide-treated APN1+ but not apn1 mutant cells regenerate high-molecular-weight DNA efficiently after the treatment. The DNA strand breaks that accumulate in the Apn1-deficient mutant contain lesions that block the action of DNA polymerase but can be removed in vitro by purified Apn1. An analogous result with DNA from methylmethane sulfonate-treated cells corresponded to the accumulation of unrepaired DNA apurinic sites in the apn1 mutant cells. The rate of spontaneous mutation in apn1 mutant S. cerevisiae was 6- to 12-fold higher than that measured for wild-type yeast cells. This increase indicates that under normal growth conditions, the production of DNA damages that are targets for Apn1 is substantial and that such lesions can be mutagenic when left unrepaired.  相似文献   

12.
Lung cancer is primarily caused by exposure to tobacco smoke. Tobacco smoke contains numerous carcinogens, including polycyclic aromatic hydrocarbons (PAH). The most common PAH studied is benzo[a]pyrene (B[a]P). B[a]P is metabolically activated through multiple routes, one of which is catalyzed by aldo-keto reductase (AKR) to B[a]P-7,8-dione (BPQ). BPQ undergoes a futile redox cycle in the presence of NADPH to generate reactive oxygen species (ROS). ROS, in turn, damages DNA. Studies with a yeast p53 mutagenesis system found that the generation of ROS by PAH o-quinones may contribute to lung carcinogenesis because of similarities between the patterns (types of mutations) and spectra (location of mutations) and those seen in lung cancer. The patterns were dominated by G to T transversions, and the spectra in the experimental system have mutations at lung cancer hotspots. To address repair mechanisms that are responsible for BPQ induced damage we observed the effect of mutating two DNA repair genes OGG1 and APE1 (APN1 in yeast) and tested them in a yeast reporter system for p53 mutagenesis. There was an increase in both the mutant frequency and the number of G:C/T:A transversions in p53 treated with BPQ in ogg1 yeast but not in apn1 yeast. Knocking out APN2 increased mutagenesis in the apn1 cells. In addition, we did not find a strand bias on p53 treated with BPQ in ogg1 yeast. These studies suggest that Ogg1 is involved in repairing the oxidative damage caused by BPQ, Apn1 and Apn2 have redundant functions and that the stand bias seen in lung cancer may not be due to impaired repair of oxidative lesions.  相似文献   

13.
In the budding yeast,S. cerevisiae, two-dimensional (2D) gel electrophoresis techniques permit mapping of DNA replication origins to short stretches of DNA (±300 bp). In contrast, in mammalian cells andDrosophila, 2D gel techniques do not permit precise origin localization; the results have been interpreted to suggest that replication initiates in broad zones (several kbp or more). However, alternative techniques (replication timing, nascent strand polarity analysis, nascent strand size analysis) suggest that mammalian origins can be mapped to short DNA stretches, just likeS. cerevisiae origins. Because the fission yeast,Schizosaccharomyces pombe, resembles higher organisms in several ways to a greater extent than doesS. cerevisiae, we thought thatS. pombe replication origins might prove to resemble — and thus be helpful models for — animal cell origins. An attempt to test this possibility using 2D gel techiques resulted in identification of a replication origin near theura4 gene on chromosome III ofS. pombe. The 2D gel patterns produced by thisS. pombe origin indeed resemble the patterns produced by animal cell origins and show that theS. pombe origin cannot be precisely located. The data suggest an initiation zone of 3–5 kbp. Some aspects of the 2D gel patterns detected at theS. pombe origin cannot be explained by the rationale of initiation in broad zones, suggesting that future biochemical and genetic studies of this complex origin are likely to provide information useful in helping to understand the apparent conflict between the 2D gel mapping techniques and other mapping techniques at animal cell origins.  相似文献   

14.
Thymidine depletion is toxic to virtually all actively growing cells. The fundamental mechanism responsible for thymidineless death remains unknown. One event thought to be critical in causing the toxicity of thymidine depletion is a sharp rise in the ratio of dUTP to dTTP and subsequent incorporation of dUTP into DNA. Maneuvers to alter dUTP levels appear to alter the toxicity of thymidine depletion. However, loss of uracil-DNA-N-glycosylase activity does not appear to change the toxicity of thymidine deprivation significantly. This study proposes to define the role of uracil base excision repair (BER) in mediating thymidineless death. The toxicity of thymidine deprivation induced by the antifolate aminopterin was measured in a series of mutant Saccharomyces cerevisiae strains deficient in various steps in uracil-BER. Most mutants displayed modest changes in their sensitivity to aminopterin, with the exception of cells lacking the abasic endonuclease Apn1. apn1 mutants displayed a profound sensitivity to aminopterin that was relieved in an apn1 ung1 double mutant. Wild-type and apn1 mutants displayed similar levels of DNA damage and S-phase arrest during aminopterin treatment. A significant portion of cell killing occurred after removal of aminopterin in both wild-type and apn1 mutant cells. apn1 mutants showed a complete inability to re-initiate DNA replication following removal of aminopterin. These findings suggest recovery from arrest is a crucial step in determining the response to thymidine deprivation and that interruptions in uracil-BER increase the toxicity of thymidine deprivation by blocking re-initiation of replication rather than inciting global DNA damage. Inhibition of apurinic/apyrimidinic endonuclease may therefore be a reasonable approach to increase the efficacy of anticancer chemotherapies based on thymidine depletion.  相似文献   

15.
Schizosaccharomyces pombe Nthpl, an ortholog of the endonuclease III family, is the sole bifunctional DNA glycosylase encoded in its genome. The enzyme removes oxidative pyrimidine and incises 3' to the apurinic/apyrimidinic (AP) site, leaving 3'-alpha,beta-unsaturated aldehyde. Analysis of nth1 cDNA revealed an intronless structure including 5'- and 3'-untranslated regions. An Nth1p-green fluorescent fusion protein was predominantly localized in the nuclei of yeast cells, indicating a nuclear function. Deletion of nth1 confirmed that Nth1p is responsible for the majority of activity for thymine glycol and AP site incision in the absence of metal ions, while nth1 mutants exhibit hypersensitivity to methylmethanesulfonate (MMS). Complementation of sensitivity by heterologous expression of various DNA glycosylases showed that the methyl-formamidopyrimidine (me-fapy) and/or AP sites are plausible substrates for Nth1p in repairing MMS damage. Apn2p, the major AP endonuclease in S. pombe, also greatly contributes to the repair of MMS damage. Deletion of nth1 from an apn2 mutant resulted in tolerance to MMS damage, indicating that Nth1p-induced 3'-blocks are responsible for MMS sensitivity in apn2 mutants. Overexpression of Apn2p in nth1 mutants failed to suppress MMS sensitivity. These results indicate that Nth1p, not Apn2p, primarily incises AP sites and that the resultant 3'-blocks are removed by the 3'-phosphodiesterase activity of Apn2p. Nth1p is dispensable for cell survival against low levels of oxidative stress, but wild-type yeast became more sensitive than the nth1 mutant at high levels. Overexpression of Nth1p in heavily damaged cells probably induced cell death via the formation of 3'-blocked single-strand breaks.  相似文献   

16.
TheSaccharomyces cerevisiae geneABC1 is required for the correct functioning of thebc 1 complex of the mitochondrial respiratory chain. By functional complementation of aS. cerevisiae abc1 ? mutant, we have cloned aSchizosaccharomyces pombe cDNA, whose predicted product is 50% identical to the Abc1 protein. Significant homology is also observed with bacterial, nematode, and even human amino acid sequences of unknown function, suggesting that the Abc1 protein is conserved through evolution. The cloned cDNA corresponds to a singleS. pombe geneabc1Sp, located on chromosome II, expression of which is not regulated by the carbon source. Inactivation of theabc1Sp gene by homologous gene replacement causes a respiratory deficiency which is efficiently rescued by the expression of theS. cerevisiae ABC1 gene. The inactivated strain shows a drastic decrease in thebc 1 complex activity, a decrease in cytochromeaa3 and a slow growth phenotype. To our knowledge, this is the first example of the inactivation of a respiratory gene inS. pombe. Our results highlight the fact thatS. pombe growth is highly dependent upon respiration, and thatS. pombe could represent a valuable model for studying nucleo-mitochondrial interactions in higher eukaryotes.  相似文献   

17.
Kim JW  Kim HC  Kim GM  Yang JM  Boeke JD  Nam K 《Nucleic acids research》2000,28(18):3666-3673
The cDNA encoding the human RNA lariat debranching enzyme (hDBR1) was identified and cloned by searching the Expressed Sequence Tag (EST) database and screening a HeLa cDNA library, based on predicted amino acid sequence homologies with the Saccharomyces cerevisiae, Schizosaccharomyces pombe and Caenorhabditis elegans debranching enzymes. The hDBR1 cDNA expressed in Escherichia coli showed debranching activity in vitro and was also shown to be functional in an interspecies specific complementation experiment. hDBR1 cDNA in a S.cerevisiae expression vector complemented the intron accumulation phenotype of a S.cerevisiae dbr1 null mutant. Integration of the cDNA for hDBR1 into the ura4 locus of S.pombe also complemented both the intron accumulation and slow growth phenotypes of a S.pombe dbr1 null mutant strain. Comparison of the amino acid sequence of hDBR1 with the other DBR protein sequences showed several conserved regions, with 40, 44 and 43% identity to the S.cerevisiae, S.pombe and C.elegans debranching enzymes, respectively.  相似文献   

18.
Characterization of spliceosomal complexes in the fission yeast Schizosaccharomyces pombe revealed particles sedimenting in the range of 30–60S, exclusively containing U1 snRNA. Here, we report the tandem affinity purification (TAP) of U1-specific protein complexes. The components of the complexes were identified using (LC-MS/MS) mass spectrometry. The fission yeast U1 snRNP contains 16 proteins, including the 7 Sm snRNP core proteins. In both fission and budding yeast, the U1 snRNP contains 9 and 10 U1 specific proteins, respectively, whereas the U1 particle found in mammalian cells contains only 3. Among the U1-specific proteins in S. pombe, three are homolog to the mammalian and six to the budding yeast Saccharomyces cerevisiae U1-specific proteins, whereas three, called U1H, U1J and U1L, are proteins specific to S. pombe. Furthermore, we demonstrate that the homolog of U1-70K and the three proteins specific to S. pombe are essential for growth. We will discuss the differences between the U1 snRNPs with respect to the organism-specific proteins found in the two yeasts and the resulting effect it has on pre-mRNA splicing.  相似文献   

19.
The apurinic/apyrimidinic endonuclease from Saccharomyces cerevisiae Apn1 is one of the key enzymes involved in base excision repair of DNA lesions. A major function of the enzyme is to cleave the upstream phosphodiester bond of an apurinic/apyrimidinic site (AP-site), leading to the formation of a single-strand break with 3′-hydroxyl (OH) and 5′-deoxyribose phosphate (dRP) termini. In this study, the pre-steady-state kinetics and conformational dynamics of DNA substrates during their interaction with Apn1 were investigated. A stopped-flow method with detection of the fluorescence intensity of 2-aminopurine and pyrrolocytosine located adjacent or opposite to the damage was used. It was found that upon interaction with Apn1, both DNA strands undergo a number of rapid changes. The location of fluorescent analogs of heterocyclic bases in DNA does not influence the catalytic step of the reaction. Comparison of data obtained for yeast Apn1 and reported data (Kanazhevskaya, L. Yu., Koval, V. V., Vorobjev, Yu. N., and Fedorova, O. S. (2012) Biochemistry, 51, 1306–1321) for human Ape1 revealed some differences in their interaction with DNA substrates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号