首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The de novo synthesis of fatty acids occurs in two distinct cellular compartments. Palmitate (16:0) is synthesized from acetyl-CoA and malonyl-CoA in the cytoplasm by the enzymes acetyl-CoA carboxylase 1 and fatty acid synthase. The synthesis of fatty acids longer than 16 carbons takes place in microsomes and utilizes malonyl-CoA as the carbon source. Each two-carbon addition requires four sequential reactions: condensation, reduction, dehydration, and a final reduction to form the elongated fatty acyl-CoA. The initial condensation reaction is the regulated and rate-controlling step in microsomal fatty acyl elongation. We previously reported the cDNA cloning and characterization of a murine long chain fatty acyl elongase (LCE) . Overexpression of LCE in cells resulted in the enhanced addition of two-carbon units to C12-C16 fatty acids, and evidence was provided that LCE catalyzed the initial condensation reaction of long chain fatty acid elongation. The remaining three enzymes in the elongation reaction have not been identified in mammals. Here, we report the identification and characterization of two mammalian enzymes that catalyze the 3-ketoacyl-CoA and trans-2,3-enoyl-CoA reduction reactions in long and very long chain fatty acid elongation, respectively.  相似文献   

2.
3.
4.
5.
It has been shown that lipogenic enzymes, such as fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), are highly expressed in the rodent brain during the early neonatal period and decline thereafter. However, cellular localization of these enzymes is unknown. Presently, we examined developmental changes in the levels and cellular localization of FAS and ACC, and their putative regulators, sterol-regulatory element-binding protein (SREBP)-1 and AMP-activated protein kinase (AMPK) in the mouse brain. Levels of these proteins including phosphorylated forms of ACC and AMPK decreased between postnatal day 4 (P4) and P19. Immunohistochemical studies indicated that FAS, ACC, AMPK, and SREBP-1 were expressed in neurons at P7, while FAS was found mostly in cells of oligodendrocyte lineage at P19. These studies suggest that neurons in the early neonatal brain are involved in do novo fatty acid synthesis.  相似文献   

6.
Glial cells play a pivotal role in brain fatty acid metabolism and membrane biogenesis. However, the potential regulation of lipogenesis and cholesterologenesis by fatty acids in glial cells has been barely investigated. Here, we show that physiologically relevant concentrations of various saturated, monounsaturated, and polyunsaturated fatty acids significantly reduce [1-(14)C]acetate incorporation into fatty acids and cholesterol in C6 cells. Oleic acid was the most effective at depressing lipogenesis and cholesterologenesis; a decreased label incorporation into cellular palmitic, stearic, and oleic acids was detected, suggesting that an enzymatic step(s) of de novo fatty acid biosynthesis was affected. To clarify this issue, the activities of acetyl-coenzyme A carboxylase (ACC) and FAS were determined with an in situ digitonin-permeabilized cell assay after incubation of C6 cells with fatty acids. ACC activity was strongly reduced ( approximately 80%) by oleic acid, whereas no significant change in FAS activity was observed. Oleic acid also reduced the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR). The inhibition of ACC and HMGCR activities is corroborated by the decreases in ACC and HMGCR mRNA abundance and protein levels. The downregulation of ACC and HMGCR activities and expression by oleic acid could contribute to the reduced lipogenesis and cholesterologenesis.  相似文献   

7.
8.
When individual enzyme activities of the fatty acid synthetase (FAS) system were assayed in extracts from five different plant tissues, acetyl-CoA:acyl carrier protein (ACP) transacylase and beta-ketoacyl-ACP synthetases I and II had consistently low specific activities in comparison with the other enzymes of the system. However, two of these extracts synthesized significant levels of medium chain fatty acids (rather than C16 and C18 acid) from [14C]malonyl-CoA; these extracts had elevated levels of acetyl-CoA:ACP transacylase. To explore the role of the acetyl transacylase more carefully, this enzyme was purified some 180-fold from spinach leaf extracts. Varying concentrations of the transacylase were then added either to spinach leaf extracts or to a completely reconstituted FAS system consisting of highly purified enzymes. The results suggested that: (a) acetyl-CoA:ACP transacylase was the enzyme catalyzing the rate-limiting step in the plant FAS system; (b) increasing concentration of this enzyme markedly increased the levels of the medium chain fatty acids, whereas increase of the other enzymes of the FAS system led to increased levels of stearic acid synthesis; and (c) beta-ketoacyl-ACP synthetase I was not involved in the rate-limiting step. It is suggested that modulation of the activity of acetyl-CoA:ACP transacylase may have important implications in the type of fatty acid synthesized, as well as the amount of fatty acids formed.  相似文献   

9.
10.
1. The biosynthesis of lipids and their distribution in several tissues were investigated by injection of 1-14C acetate in females and 5th instar nymphs of the hematophagous hemiptera T. infestans. 2. Biosynthesis of palmitic, palmitoleic, stearic, oleic and very long chain fatty acids up to 26 carbons and hydrocarbons, was shown. They were found in haemolymph, fat body, integument, epicuticle and oocytes with special distribution. 3. Epicuticular hydrocarbon labelling was shown to precede that of haemolymph hydrocarbons. 4. Radioactivity incorporation into each lipid class depends on the developmental stage and the time after injection. 5. "In vitro" incubation of integument tissue with 1-14C acetate demonstrated the biosynthesis of palmitic and stearic acids, a low desaturation to oleic and palmitoleic and an elongation to acids of up to 34 carbons. Hydrocarbons were also synthesized. 6. Haemolymph in the incubation medium has a positive effect on the release of newly-synthesized fatty acid and unsaponifiable material from the integument.  相似文献   

11.
1. Mitochondrial and microsomal fractions of rat epididymal adipose tissue incorporated [1-(14)C]acetyl-CoA equally well into various fatty acids by a chain-elongation mechanism. C(18) and C(20) fatty acids were the two major products, and comprised about 80% of the total fatty acids synthesized in both particles. 2. When incubated in air, mitochondria synthesized stearic acid, octadecenoic acid and eicosamonoenoic acid in almost equal amounts (about 20% each), whereas in microsomal fractions, the synthesis of octadecenoic acid was more than fivefold the stearic acid formation. In both fractions, major components of synthesized monoenoic fatty acids were the Delta(11:12) isomers. Hexadecenoic acid and octadecenoic acid from whole adipose tissue contained approx. 11 and 14% of the Delta(11:12) isomer respectively. 3. When mitochondria or microsomal fractions were incubated in nitrogen, there was increased synthesis of stearic acid and palmitic acid and less of C(16) and C(18) monoenoic acids; synthesis of C(20) acids remained predominantly of the monoenoic acids. Determination of the position of the double bond in the monoenoic acids supported the view that the synthesis of hexadecenoic acid and octadecenoic acid involves a desaturase activity, whereas eicosamonoenoic acid and eicosadienoic acid are formed only by elongation of endogenous fatty acids. 4. Most of the radioactivity was found in free fatty acids (63%) and the phospholipid (26%) fraction. In phospholipids, phosphatidylcholine and phosphatidylethanolamine were the two major components. 5. Most of the fatty acids synthesized, including those not normally found in particle lipids (arachidic acid, eicosamonoenoic acid and eicosadienoic acid) were distributed fairly evenly in the phospholipid and free fatty acid fractions. However, stearic acid was found predominantly in the phospholipid fraction.  相似文献   

12.
13.
In mouse brain mitochondira, palmityl-CoA is elongated by acetyl-CoA in the presence of NADH and NADPH providing hydroxy and non hydroxy fatty acids mainly saturated stearic acid. Using NADH alone increases the production of hydroxy acyl-CoA. Similar patterns of enzymatic activity and cofactor and substrate requirements are found for stearyl-CoA elongation presuming that the same enzyme system elongates both acyl-CoA (unlike in microsomes).  相似文献   

14.
The mammalian enzyme involved in the final elongation of de novo fatty acid biosynthesis following the building of fatty acids to 16 carbons by fatty acid synthase has yet to be identified. In the process of searching for genes activated by sterol regulatory element-binding protein 1 (SREBP-1) by using DNA microarray, we identified and characterized a murine cDNA clone that is highly similar to a fatty acyl-CoA elongase gene family such as Cig30, Sscs, and yeast ELOs. Studies on the cells overexpressing the full-length cDNA indicate that the encoded protein, designated fatty acyl-CoA elongase (FACE), has a FACE activity specific for long-chains; C12-C16 saturated- and monosaturated-fatty acids. Hepatic expression of this identified gene was consistently activated in the livers of transgenic mice overexpressing nuclear SREBP-1a, -1c, or -2. FACE mRNA levels are markedly induced in a refed state after fasting in the liver and adipose tissue. This refeeding response is significantly reduced in SREBP-1 deficient mice. Dietary PUFAs caused a profound suppression of this gene expression, which could be restored by SREBP-1c overexpression. Hepatic FACE expression was also highly up-regulated in leptin-deficient ob/ob mice. Hepatic FACE mRNA was markedly increased by administration of a pharmacological agonist of liver X-activated receptor (LXR), a dominant activator for SREBP-1c expression. These data indicated that this elongase is a new member of mammalian lipogenic enzymes regulated by SREBP-1, playing an important role in de novo synthesis of long-chain saturated and monosaturated fatty acids in conjunction with fatty acid synthase and stearoyl-CoA desaturase.  相似文献   

15.
Biosynthesis of polyunsaturated fatty acids in C. elegans is initiated by the introduction of a double bond at the delta9 position of a saturated fatty acid. We identified three C. elegans fatty acid desaturase genes related to the yeast delta9 desaturase OLE1 and the rat stearoyl-CoA desaturase SCD1. Heterologous expression of all three genes rescues the fatty acid auxotrophy of the yeast delta9 desaturase mutant ole1. Examination of the fatty acid composition of the transgenic yeast reveals striking differences in the substrate specificities of these desaturases. Two desaturases, FAT-6 and FAT-7, readily desaturate stearic acid (18:0) and show less activity on palmitic acid (16:0). In contrast, the other desaturase, FAT-5, readily desaturates palmitic acid (16:0), but shows nearly undetectable activity on the common delta9 substrate stearic acid. This is the first report of a palmitoyl-CoA-specific membrane fatty acid desaturase.  相似文献   

16.
17.
桐油脂肪酸组成分析和甘三酯结构判定   总被引:1,自引:0,他引:1  
采用2-氨基-2-甲基丙醇(2-amino-2-methylpropanol,AMP)衍生化、GC/MS法分析桐油的脂肪酸组成:软脂酸3.41%,硬脂酸3.71%,油酸7.07%,亚油酸7.51%,亚麻酸1.31%,十八碳共轭三烯酸73.19%,未定出成分3.80%;采用RP—HPLC/APCI—MS法分离桐油中的甘三酯组分,并根据特定甘三酯断裂生成的特征甘二酯离子的丰度比初步判定主要甘三酯的结构。  相似文献   

18.
Studies on the composition of total fatty acids of Alcaligenes faecalis harvested at different growth phases have been carried out. Ability of the organism to desaturate palmitic and stearic acid has also been tested. The organism contained palmitic (16:0), stearic (18:0), palmitoleic (16:1), cis-vaccenic (18:1), cyclopropane (17: big dn tri, open and 19: big dn tri, open), and three hydroxy acids. Increase in cyclopropane acids and corresponding decrease in monounsaturated acids in direct proportion to the age of the culture were observed, whereas other fatty acids remained relatively unaltered. A growing culture of the organism was found to desaturate [1-(14)C]palmitic acid supplied in the medium to hexadecanoic acid. Resting cells desaturated [1-(14)C]palmitic and [1-(14)C]stearic acid giving rise to about 50% of (14)C in the COOH group of corresponding monounsaturated fatty acids.  相似文献   

19.
20.
Palmitic acid (C16:0) already makes up approximately 25% of the total fatty acids in the conventional cotton seed oil. However, further enhancements in palmitic acid content at the expense of the predominant unsaturated fatty acids would provide increased oxidative stability of cotton seed oil and also impart the high melting point required for making margarine, shortening and confectionary products free of trans fatty acids. Seed‐specific RNAi‐mediated down‐regulation of β‐ketoacyl‐ACP synthase II (KASII) catalysing the elongation of palmitoyl‐ACP to stearoyl‐ACP has succeeded in dramatically increasing the C16 fatty acid content of cotton seed oil to well beyond its natural limits, reaching up to 65% of total fatty acids. The elevated C16 levels were comprised of predominantly palmitic acid (C16:0, 51%) and to a lesser extent palmitoleic acid (C16:1, 11%) and hexadecadienoic acid (C16:2, 3%), and were stably inherited. Despite of the dramatic alteration of fatty acid composition and a slight yet significant reduction in oil content in these high‐palmitic (HP) lines, seed germination remained unaffected. Regiochemical analysis of triacylglycerols (TAG) showed that the increased levels of palmitic acid mainly occurred at the outer positions, while C16:1 and C16:2 were predominantly found in the sn‐2 position in both TAG and phosphatidylcholine. Crossing the HP line with previously created high‐oleic (HO) and high‐stearic (HS) genotypes demonstrated that HP and HO traits could be achieved simultaneously; however, elevation of stearic acid was hindered in the presence of high level of palmitic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号