首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In growing cells of the yeast Saccharomyces cerevisiae, proaminopeptidase I reaches the vacuole via the selective cytoplasm-to-vacuole targeting (cvt) pathway. During nutrient limitation, autophagy is also responsible for the transport of proaminopeptidase I. These two nonclassical protein transport pathways to the vacuole are distinct in their characteristics but in large part use identical components. We expanded our initial screen for aut(-) mutants and isolated aut9-1 cells, which show a defect in both pathways, the vacuolar targeting of proaminopeptidase I and autophagy. By complementation of the sporulation defect of homocygous diploid aut9-1 mutant cells with a genomic library, in this study we identified and characterized the AUT9 gene, which is allelic with CVT7. aut9-deficient cells have no obvious defects in growth on rich media, vacuolar biogenesis, and acidification, but like other mutant cells with a defect in autophagy, they exhibit a reduced survival rate and reduced total protein turnover during starvation. Aut9p is the first putative integral membrane protein essential for autophagy. A biologically active green fluorescent protein-Aut9 fusion protein was visualized at punctate structures in the cytosol of growing cells.  相似文献   

2.
We here report the identification of AUT10 as a novel gene required for both the cytoplasm to vacuole targeting of proaminopeptidase I and starvation-induced autophagy. aut10Delta cells are impaired in maturation of proaminopeptidase I under starvation and non-starvation conditions. A lack of Aut10p causes a defect in autophagy prior to vacuolar uptake of autophagosomes. Homozygous aut10Delta diploids do not sporulate. Vacuolar acidification indicated by accumulation of quinacrine is normal in aut10Delta cells and mature vacuolar proteinases are present. A biologically active Ha-tagged Aut10p, chromosomally expressed from its endogenous promoter, localizes in indirect immunofluorescence microscopy in the cytosol and on granulated structures, which appear clustered around the vacuolar membrane. This localization differs from known autophagy proteins.  相似文献   

3.
Vps4p and Vps36p of Saccharomyces cerevisiae are involved in the transport of proteins to the vacuole via the carboxypeptidase Y pathway. We found that deletion of VPS4 and VPS36 caused impaired maturation of the vacuolar proaminopeptidase I (pAPI) via autophagy or the cytosol to vacuole targeting pathway. Supplementation with ethanolamine rescued this defect, leading to an increase of the cellular amount of phosphatidylethanolamine (PtdEtn), an enhanced level of the PtdEtn-binding autophagy protein Atg8p and a balanced rate of autophagy. We also discovered that maturation of pAPI was generally affected by PtdEtn depletion in a psd1Delta psd2Delta mutant due to reduced recruitment of Atg8p to the preautophagosomal structure. Ethanolamine supplementation provided the necessary amounts of PtdEtn for complete maturation of pAPI. Since the expression level of Atg8p was not compromised in the psd1Delta psd2Delta strain, we concluded that the amount of available PtdEtn was limiting. Thus, PtdEtn appears to be a limiting factor for the balance of the carboxypeptidase Y pathway and autophagy/the cytosol to vacuole targeting pathway in the yeast.  相似文献   

4.
In nutrient-rich, vegetative conditions, the yeast Saccharomyces cerevisiae transports a resident protease, aminopeptidase I (API), to the vacuole by the cytoplasm to vacuole targeting (Cvt) pathway, thus contributing to the degradative capacity of this organelle. When cells subsequently encounter starvation conditions, the machinery that recruited precursor API (prAPI) also sequesters bulk cytosol for delivery, breakdown, and recycling in the vacuole by the autophagy pathway. Each of these overlapping alternative transport pathways is specifically mobilized depending on environmental cues. The basic mechanism of cargo packaging and delivery involves the formation of a double-membrane transport vesicle around prAPI and/or bulk cytosol. Upon completion, these Cvt and autophagic vesicles are targeted to the vacuole to allow delivery of their lumenal contents. Key questions remain regarding the origin and formation of the transport vesicle. In this study, we have cloned the APG9/CVT7 gene and characterized the gene product. Apg9p/Cvt7p is the first characterized integral membrane protein required for Cvt and autophagy transport. Biochemical and morphological analyses indicate that Apg9p/Cvt7p is localized to large perivacuolar punctate structures, but does not colocalize with typical endomembrane marker proteins. Finally, we have isolated a temperature conditional allele of APG9/CVT7 and demonstrate the direct role of Apg9p/Cvt7p in the formation of the Cvt and autophagic vesicles. From these results, we propose that Apg9p/Cvt7p may serve as a marker for a specialized compartment essential for these vesicle-mediated alternative targeting pathways.  相似文献   

5.
We here identify Mai1p, a homologue of the autophagy protein Aut10p, as a novel component essential for proaminopeptidase I (proAPI) maturation under non-starvation conditions. In mai1Delta cells mature vacuolar proteinases are detectable and vacuolar acidification is normal. In mai1Delta cells autophagy occurs, though at a somewhat reduced level. This is indicated by proAPI maturation during starvation and accumulation of autophagic bodies during starvation with phenylmethylsulfonyl fluoride. Homozygous diploid mai1Delta cells sporulate, but with a slightly reduced frequency. Biologically active Ha-tagged Mai1p, chromosomally expressed under its native promoter, is at least in part peripherally membrane-associated. In indirect immunofluorescence it localizes to the vacuolar membrane or structures nearby. In some cells Ha-tagged Mai1p appears concentrated at regions adjacent to the nucleus.  相似文献   

6.
In rich media proaminopeptidase I is targeted to the vacuole via the Cvt pathway and during starvation via autophagy. We here identify Atg23 (Ylr431c), a protein of so far unknown function, as a novel component essential for proaminopeptidase I maturation under non-starvation conditions. Maturation of proaminopeptidase I takes place in starved atg23Delta cells. Selective vacuolar targeting of the autophagosomal marker GFP-Aut7 and the accumulation of autophagic bodies during starvation in the presence of phenylmethylsulfonyl fluoride suggest that autophagy occurs in atg23Delta cells but at a reduced rate. In atg23Delta cells mature vacuolar carboxypeptidase Y is present and accumulation of quinacrine suggests no significant defect in vacuolar acidification. Furthermore, growth of atg23Delta cells on nitrocellulose detects no significant secretion of carboxypeptidase Y.  相似文献   

7.
Autophagy is a degradative pathway by which cells sequester nonessential, bulk cytosol into double-membrane vesicles (autophagosomes) and deliver them to the vacuole for recycling. Using this strategy, eukaryotic cells survive periods of nutritional starvation. Under nutrient-rich conditions, autophagy machinery is required for the delivery of a resident vacuolar hydrolase, aminopeptidase I, by the cytoplasm to vacuole targeting (Cvt) pathway. In both pathways, the vesicle formation process requires the function of the starvation-induced Aut7 protein, which is recruited from the cytosol to the forming Cvt vesicles and autophagosomes. The membrane binding of Aut7p represents an early step in vesicle formation. In this study, we identify several requirements for Aut7p membrane association. After synthesis in the cytosol, Aut7p is proteolytically cleaved in an Aut2p-dependent manner. While this novel processing event is essential for Aut7p membrane binding, Aut7p must undergo additional physical interactions with Aut1p and the autophagy (Apg) conjugation complex before recruitment to the membrane. Lack of these interactions results in a cytosolic distribution of Aut7p rather than localization to forming Cvt vesicles and autophagosomes. This study assigns a functional role for the Apg conjugation system as a mediator of Aut7p membrane recruitment. Further, we demonstrate that Aut1p, which physically interacts with components of the Apg conjugation complex and Aut7p, constitutes an additional factor required for Aut7p membrane recruitment. These findings define a series of steps that results in the modification of Aut7p and its subsequent binding to the sequestering transport vesicles of the autophagy and cytoplasm to vacuole targeting pathways.  相似文献   

8.
H Barth  M Thumm 《Gene》2001,274(1-2):151-156
Autophagy is a starvation-induced transport pathway delivering parts of the cytosol into the lysosome (vacuole) for degradation. Autophagy significantly differs from other transport pathways by using double membrane layered transport intermediates. Based on the identification of autophagy genes in Saccharomyces cerevisiae, which served as a pacemaker for higher cells, our mechanistic knowledge of autophagy notably increased over the past few years. We here identify AUT8 as a novel gene essential for autophagy by screening a collection of approximately 5000 yeast deletion strains, each containing a defined deletion in an individual gene. This collection is a result of the world-wide Saccharomyces deletion project and covers the non-essential genes of the whole yeast genome. Homozygous aut8 Delta cells are impaired in maturation of proaminopeptidase I, and they fail to undergo the cell differentiation process of sporulation. The essential function of AUT8 for autophagy is further demonstrated by the lack of accumulation of autophagic vesicles in the vacuoles of aut8 Delta cells starved of nitrogen in the presence of the proteinase B inhibitor phenylmethylsulfonyl fluoride.  相似文献   

9.
Aminopeptidase I (API) is delivered to the yeast vacuole by one of two alternative pathways, cytoplasm to vacuole targeting (Cvt) or autophagy, depending on nutrient conditions. Genetic, morphological, and biochemical studies indicate that the two pathways share many of the same molecular components. The Cvt pathway functions during vegetative growth, while autophagy is induced during starvation. Both pathways involve the formation of cytosolic vesicles that fuse with the vacuole. In either case, the mechanism of vesicle formation is not known. Autophagic uptake displays a greater capacity for cytosolic protein sequestration. This suggests the involvement of an inducible protein(s) that allows the vesicle-forming machinery to adapt to the increased degradative needs of the cell. We have analyzed the biosynthesis of Aut7p, a protein required for both pathways. We find Aut7p expression is induced by nitrogen starvation. Aut7p is degraded by a process dependent on both proteinase A and Cvt/autophagy components. Protease accessibility assays demonstrate that Aut7p is located within vesicles in strains defective in vesicle delivery or breakdown. Finally, the aut7/cvt5 mutant accumulates precursor API at a stage prior to vesicle completion. These data suggest that Aut7p is induced during autophagy and delivered to the vacuole together with precursor API by Cvt/autophagic vesicles.  相似文献   

10.
Autophagy is a degradative process in which cytoplasmic components are non-selectively sequestered by double-membrane structures, termed autophagosomes, and transported to the vacuole. We have identified and characterized a novel protein Apg2p essential for autophagy in yeast. Biochemical and fluorescence microscopic analyses indicate that Apg2p functions at the step of autophagosome formation. Apg2p localizes to some membranous structure distinct from any known organelle. Using fluorescent protein-tagged Apg2p, we showed that Apg2p localizes to a dot structure close to the vacuole, where Apg8p also exists, but not on autophagosomes unlike Apg8p. This punctate localization of Apg2p depends on the function of Apg1p kinase, phosphatidylinositol 3-kinase complex and Apg9p. Apg2p(G83E), encoded by an apg2-2 allele, shows a severely reduced activity of autophagy and a dispersed localization in the cytoplasm. Overexpression of the mutant Apg2p lessens the defect in autophagy. These results suggest that the dot structure is physiologically important. Apg2p and Apg8p are independently recruited to the structure but coordinately function there to form the autophagosome.  相似文献   

11.
12.
Autophagy is a degradative cellular pathway that protects eukaryotic cells from starvation/stress. Phosphatidylinositol 4-kinases, Pik1p and Stt4p, are indispensable for autophagy in budding yeast, but participation of PtdIns-4 kinases and their product, phosphatidylinositol 4-phosphate [PtdIns(4)P], is not understood. Nanoscale membrane lipid distribution analysis showed PtdIns(4)P is more abundant in yeast autophagosomes in the luminal leaflet than the cytoplasmic leaflet. PtdIns(4)P is confined to the cytoplasmic leaflet of autophagosomal inner and outer membranes in mammalian cells. Using temperature-conditional single PIK1 or STT4 PtdIns 4-kinase mutants, autophagic bodies in the vacuole of PIK1 and STT4 mutant cells dramatically decreased at restrictive temperatures, and the number of autophagosomes in the cytosol of PIK1 mutants cells was also decreased, whereas autophagosome levels of STT4 mutant cells were comparable to that of wild-type and STT4 mutant cells at permissive temperatures. Localization of PtdIns(4)P in the luminal leaflet in the biological membrane is a novel finding, and differences in PtdIns(4)P distribution suggest substantial differences between yeast and mammals. We also demonstrate in this study that Pik1p and Stt4p play essential roles in autophagosome formation and autophagosome–vacuole fusion in yeast cells, respectively.  相似文献   

13.
SNAREs are membrane-associated proteins that play a central role in vesicle targeting and intra-cellular membrane fusion reactions in eukaryotic cells. Here we describe the identification of AtBS14a and AtBS14b, putative SNAREs from Arabidopsis thaliana that share 60% amino acid sequence identity. Both AtBS14a and BS14b are dosage suppressors of the temperature-sensitive growth defect in sft1-1 cells and over-expression of either AtBS14a or AtBS14b can support the growth of sft1Δ cells but not bet1Δ cells. These data together with structure–function and biochemical studies presented herein suggest that AtBS14a and AtBS14b share properties that are consistent with them being members of the Bet1/Sft1 SNARE protein family.  相似文献   

14.
In the yeast Saccharomyces cerevisiae, two similar phosphatidylinositol 3-kinase complexes (complexes I and II) function in distinct biological processes, complex I in autophagy and complex II in the vacuolar protein sorting via endosomes. Atg14p is only integrated into complex I, likely facilitating the function of complex I in autophagy. Deletion analysis of Atg14p revealed that N-terminal region containing the coiled-coil structures was essential and sufficient for autophagy. Atg14p localized to pre-autophagosomal structure (PAS) and vacuolar membranes, whereas Vps38p, a component specific to complex II, localized to endosomes and vacuolar membranes. Vps34p and Vps30p, components shared by the two complexes, localized to the PAS, vacuolar membranes, and several punctate structures that included endosomes. The localization of these components to the PAS was Atg14p dependent but not dependent on Vps38p. Conversely, localization of these proteins to endosomes required Vps38p but not Atg14p. Vps15p, regulatory subunit of the Vps34p complexes, localized to the PAS, vacuolar membranes, and punctate structures independent of both Atg14p and Vps38p. Together, these results indicate that complexes I and II function in distinct biological processes by localizing to specific compartments in a manner mediated by specific components of each complex, Atg14p and Vps38p, respectively.  相似文献   

15.
The interaction between v-SNAREs on transport vesicles and t-SNAREs on target membranes is required for membrane traffic in eukaryotic cells. Here we identify Vti1p as the first v-SNARE protein found to be required for biosynthetic traffic into the yeast vacuole, the equivalent of the mammalian lysosome. Certain vti1-ts yeast mutants are defective in alkaline phosphatase transport from the Golgi to the vacuole and in targeting of aminopeptidase I from the cytosol to the vacuole. VTI1 interacts genetically with the vacuolar t-SNARE VAM3, which is required for transport of both alkaline phosphatase and aminopeptidase I to the vacuole. The v-SNARE Nyv1p forms a SNARE complex with Vam3p in homotypic vacuolar fusion; however, we find that Nyv1p is not required for any of the three biosynthetic pathways to the vacuole. v-SNAREs were thought to ensure specificity in membrane traffic. However, Vti1p also functions in two additional membrane traffic pathways: Vti1p interacts with the t-SNAREs Pep12p in traffic from the TGN to the prevacuolar compartment and with Sed5p in retrograde traffic to the cis-Golgi. The ability of Vti1p to mediate multiple fusion steps requires additional proteins to ensure specificity in membrane traffic.  相似文献   

16.
《Autophagy》2013,9(2):205-213
We have developed a method for monitoring autophagy using Rosella, a biosensor comprised of a fast-maturing pH-stable red fluorescent protein fused to a pH-sensitive green fluorescent protein variant. Its mode of action relies upon differences in pH between different cellular compartments and the vacuole. Here we demonstrate its utility in yeast (Saccharomyces cerevisiae) by expression in the cytosol, and targeting to mitochondria or to the nucleus. When cells were cultured in nitrogen depleted medium, uptake of the compartment labelled with the biosensor (i.e. cytosol, mitochondria, or nucleus) into the vacuole was observed. We showed that this vacuolar uptake was, for cytosol and mitochondria, an ATG8-dependent process while the uptake of the nucleus was significantly reduced in the absence of Atg8p and can be said to be partially ATG8-dependent. We further demonstrated the value of the biosensor as a reporter of autophagy by employing fluorescence-activated cell sorting of discrete populations of cells undergoing autophagy.  相似文献   

17.
Dynamins and dynamin-like proteins play important roles in organelle division. In Saccharomyces cerevisiae, the dynamin-like protein Vps1p (vacuolar protein sorting protein 1) is involved in peroxisome fission, as cells deleted for the VPS1 gene contain reduced numbers of enlarged peroxisomes. What relationship Vps1p has with peroxisomes remains unclear. Here we show that Vps1p interacts with Pex19p, a peroxin that acts as a shuttling receptor for peroxisomal membrane proteins or as a chaperone assisting the assembly/stabilization of proteins at the peroxisome membrane. Vps1p contains two putative Pex19p recognition sequences at amino acids 509-523 and 633-647. Deletion of the first (but not the second) sequence results in reduced numbers of enlarged peroxisomes in cells, as in vps1delta cells. Deletion of either sequence has no effect on vacuolar morphology or vacuolar protein sorting, suggesting that the peroxisome and vacuole biogenic functions of Vps1p are separate and separable. Substitution of proline for valine at position 516 of Vps1p abrogates Pex19p binding and gives the peroxisome phenotype of vps1delta cells. Microscopic analysis showed that overexpression of Pex19p or redirection of Pex19p to the nucleus does not affect the normal cellular distribution of Vps1p in the cytosol and in punctate structures that are not peroxisomes, suggesting that Pex19p does not function in targeting Vps1p to peroxisomes. Subcellular fractionation showed that a fraction of Vps1p is associated with peroxisomes and that deletion or mutation of the first Pex19p recognition sequence abrogates this association. Our results are consistent with Pex19p acting as a chaperone to stabilize the association of Vps1p with peroxisomes and not as a receptor involved in targeting Vps1p to peroxisomes.  相似文献   

18.
The yeast vacuolar enzyme aminopeptidase I (API) is synthesized in the cytoplasm as a precursor (pAPI). Upon its assembly into dodecamers, pAPI is wrapped by double-membrane saccular structures for its further transport within vesicles that fuse with the vacuolar membrane and release their content in the vacuolar lumen. Targeting of API to the vacuole occurs by two alternative transport routes, the cvt and the autophagy pathways, which although mechanistically similar specifically operate under vegetative growth or nitrogen starvation conditions, respectively. We have studied the role of Yol082p, a protein identified by its ability to interact with API, in the transport of its precursor to the vacuole. We show that Yol082p interacts with mature API, an interaction that is strengthened by the amino extension of the API protein. Yol082p is required for targeting of pAPI to the vacuole, both under growing and short term nitrogen starvation conditions. Absence of Yol082p does not impede the assembly of pAPI into dodecamers, but precludes the enclosure of pAPI within transport vesicles. Microscopy studies show that during vegetative growth Yol082p is distributed between a cytoplasmic pool and a variable number of 0.13--0.27-microm round, mobile structures, which are no longer observed under conditions of nitrogen starvation, and become larger in cells expressing the inactive Yol082 Delta C32p, or lacking Apg12p. In contrast to the autophagy mutants involved in API transport, a Delta yol082 strain does not lose viability under nitrogen starvation conditions, indicating normal function of the autophagy pathway. The data are consistent with a role of Yol082p in an early step of the API transport, after its assembly into dodecamers. Because Yol082p fulfills the functional requisites that define the CVT proteins, we propose to name it Cvt19.  相似文献   

19.
Lafourcade C  Galan JM  Peter M 《Genetics》2003,164(2):469-477
The F-box protein Rcy1p is part of a non-SCF (Skp1p-cullin-F-box protein) complex involved in recycling of internalized material. Like rcy1Delta, cells lacking the Rab-GTPase Ypt6p or its heterodimeric GEFs Rgp1p and Ric1p are unable to recycle the v-SNARE Snc1p. Here we provide genetic evidence suggesting that Rcy1p is a positive regulator of Ypt6p. Deletion of the GAP Gyp2p restores recycling in rcy1Delta, while overexpression of an active form of Ypt6p partially suppresses the recycling defect of rcy1Delta cells. Conversely, overexpression of Gyp2p in wild-type cells interferes with recycling of GFP-Snc1p, and the cells accumulate membrane structures as evidenced by electron microscopy. Gyp2p-GFP is distributed throughout the cytoplasm and accumulates in punctate structures, which concentrate in an actin-dependent manner at sites of polarized growth. Taken together, our results suggest that the F-box protein Rcy1p may activate the Ypt6p GTPase module during recycling.  相似文献   

20.
Autophagy is a highly conserved eukaryotic degradation process during which bulk cytoplasmic materials are transported by double-membrane autophagosomes into the vacuole for degradation. Methods of monitoring autophagy are indispensable in studying the mechanism and functions of autophagy. AuTophaGy-related protein 8 (ATG8) functions in autophagosome assembly by decorating on autophagic membranes, and the inner membrane-bound ATG8 proteins enter the vacuole via active autophagy flux. Fluorescence protein (FP)-tagged forms of ATG8 have been explored as visual markers to monitor autophagy in animals and several plant species. Here, we evaluated and modified this FP-ATG8-based autophagy monitoring method in wheat (Triticum aestivum L.) by fluorescence observation of green fluorescence protein (GFP)-tagged and Discosoma red fluorescent protein (DsRED)-tagged forms of one wheat ATG8, TaATG8h, in wheat mesophyll protoplasts. Under a nutrient-starvation condition, punctate GFP/DsRED- TaATG8h fluorescence representing autophagosomes was clearly observed in the cytoplasm. The accumulation of GFP-TaATG8h-labeled autophagosomes was impaired by the autophagosome biogenesis inhibitor 3-methyladenine but enhanced by the vacuolar degradation inhibitor concanamycin A. In addition, accumulated spreading fluorescence was observed in the vacuole, indicating active autophagy fluxes which led to continuous degradation of GFP/DsRED-TaATG8h fusions and release of protease-tolerant free GFP/DsRED proteins in the vacuole. To observe FP-tagged TaATG8h in other types of wheat cell, we also expressed GFP-TaATG8h in leaf epidermal cells. Consistent with its performance in protoplasts, GFP-TaATG8h showed punctate fluorescence representing autophagosomes in leaf epidermal cells. Taken together, our results proved the feasibility of using FP-tagged ATG8 to monitor both autophagosome accumulation and autophagy flux in living wheat cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号