首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sub-cellular distribution of chitin synthetase was studied in homogenates of Saccharomyces cerevisiae protoplasts. Use of a mild disruption method minimized rupture of vacuoles and ensuing contamination of subcellular fractions by vacoular proteinases. After fractionation of whole or partially purified homogenates through an isopycnic sucrose gradient chitin synthetase activity was found to be distributed between two distinct particulate fractions with different buoyant density and particle diameter. When whole homogenates were used, about 52% of the chitin synthetase loaded was localized in a microvesicular population identified as chitosomes (diameter 40–110 nm; bouyant density (d) = 1.146 g/cm3). Another vesicular population containing 26% of the activity was identified as plasma membrane vesicles because of its large mean diameter (260 nm), its high buoyant density (d = 1.203 g/cm3) and by the presence of the vanadate-sensitive ATPase activity. Moreover, after surface labeling of protoplasts with 3H-concanavalin A, the label cosedimented with the presumed plasma membrane vesicles. There was a negligible cross-contamination of the chitosome fraction by yeast plasma membrane markers. In both the plasma membrane and the chitosome fractions, the chitin synthetase was stable and essentially zymogenic. Activation of the chitosome fraction produces microfibrils 100–250 nm in length. Our results support the idea that chitosomes do not originate by plasma membrane vesiculation but are defined sub-cellular organelles containing most of the chitin synthetase in protoplasts of Saccharomyces cerevisiae.  相似文献   

2.
Summary The uptake of ascorbate into protoplasts isolated from aNicotiana tabacum Bright Yellow-2 (BY-2) cell suspension culture was investigated. Addition of14C-labelled ascorbate to freshly isolated protoplasts resulted in a time- and substrate-dependent association of radioactive molecules with the protoplasts. The kinetic characterisation of this presumptive uptake revealed kinetics of Michaelis-Menten type with an apparent maximal uptake activity of 24 pmol/min·106 protoplasts and an apparent affinity constant of 139 M. The amount of ascorbate molecules transported intoN. tabacum protoplasts decreased when nonlabelled dehydroascorbate or iso-ascorbate were added but was not affected by addition of 5,6-o-cyclohexylidene ascorbate or ascorbate-2-sulfate. These data indicate a carrier-mediated uptake of ascorbate into the protoplasts that shows a high structural specificity. To investigate which redox status of ascorbate is preferentially taken up by theN. tabacum protoplasts, transport was tested in the presence of various compounds that can affect the redox status of ascorbate. Testing uptake in the presence of a reductant, dithiothreitol, resulted in a significant and concentration-dependent inhibition of the amount of ascorbate molecules transported into the protoplasts. On the other hand, ascorbate uptake was significantly stimulated in the presence of the enzyme ascorbate oxidase. Ferricyanide did not affect ascorbate transport. Inhibition studies revealed that ascorbate uptake in the protoplasts is sensitive to addition of sulfhydryl reagents N-ethyl maleimide andp-chloro-mercuribenzenesulfonic acid and to a disruption of the proton gradient by the protonophore carbonylcyanide-3-chlorophenylhydrazone. The uptake of ascorbate was also inhibited by addition of cytochalasin B but not sensitive to addition of phloretin or sulfinpyrazone. Taken together these data indicate the presence of an ascorbate transport system in the plasma membrane ofN. tabacum protoplasts and suggest dehydroascorbate as the preferentially transported redox species. The putative presence of different carriers for reduced and oxidised ascorbate in the plasma membrane is discussed.Abbreviations Asc ascorbate - BY-2 Bright Yellow 2 - CCCP carbonylcyanide-3-chlorophenylhydrazone - DHA dehydroascorbate - DTT dithiothreitol - MS medium Murashige and Skoog medium - NEM N-ethylmaleimide - pCMBS p-chloromercuribenzenesulfonic acid  相似文献   

3.
Biosynthesis of alginate in algae may be studied by following the cell wall regeneration of brown seaweed protoplasts in culture. The enzyme mannuronan C-5 epimerase will control the composition of the alginate being synthetized.Freshly isolated protoplasts from the thallus of young Laminaria digitata plants showed only low expression of this enzyme. However, after prolonged periods in culture, this activity increased 15-fold. The synthesis of C-5 epimerase by the protoplasts is probably essential for the formation of a new cell wall.After cellular disruption by osmotic shock and centrifugation, most of the epimerase activity resided in the pellet fraction. This may indicate that the enzyme is membrane associated.  相似文献   

4.
Cytological effects of glycine on Bacillus subtilis var. amyloliquefaciens were compared between the cells of the glycine-sensitive parent and resistant mutant. Glycine induced disruption of the protoplasts which had been prepared by treating the glycine-sensitive cells with lysozyme. This effect of glycine was almost completely prevented by preincubating the protoplasts with spermine. The protoplasts prepared from the resistant cells were markedly stable in the presence of glycine. In this mutant, neither cell lysis nor cessation of the enzyme production by glycine occurred, contrary to the results obtained with the glycine-sensitive parent. Between both type of cells little difference could be observed in the metabolic activity for glycine, but free amino acid content was higher in the glycine-resistant cells than in the parent ones.  相似文献   

5.
K. Harding  E. C. Cocking 《Protoplasma》1986,130(2-3):153-161
Summary E. coli spheroplasts can be used to deliver DNA vectors into plant protoplasts. The use of fluorescent dyes showed that 25–100% of the protoplast population was associated with 1–9 spheroplasts following incubation with several fusogens. Electron microscopy demonstrated spheroplasts attached to protoplasts via a plasma membrane protrusion after high pH/Ca2+ treatment, but PEG-high pH/Ca2+ promoted endocytosis of spheroplasts into a plasma membrane bounded vesicle. Ultrastructural profiles showed that fusion between spheroplasts and protoplasts did not occur. Immunofluorescence studies detectedE. coli antigens associated with tobacco protoplasts, and after fusogen treatment the antigens were dispersed within the peripheral cytoplasm. The elimination of residual contaminatingE. coli cells from protoplasts was achieved by lysozyme and antibiotic treatment, thus allowing DNA vector assessment in axenic culture.  相似文献   

6.
W. Müller  K. Wegmann 《Planta》1978,139(2):155-158
Four independent kinds of observations indicate that the cell wall regenerated by oat (Avena sativa L.) and corn (Zea mays L.) protoplasts in culture is less well developed than that regenerated by tobacco (Nicotiana tabacum L.) protoplasts. Following wall regeneration the cereal protoplasts remained susceptible to osmotic shock upon transfer to water, showed great enlargement, stained poorly with calcofluor white, and maintained a positive internal electrical potential. The development of a negative membrane potential by tobacco protoplasts in culture often occurred simultaneously with the onset of cell division. Since division was observed only in protoplasts which had regenerated good cell walls and had re-established negative membrane potentials it is suggested that culture conditions which favor these two processes should improve protoplast viability.  相似文献   

7.
8.
Effects of Selected Herbicides on Plant Protoplasts   总被引:1,自引:0,他引:1  
Plant protoplasts were released from immature tomato fruits by incubation with a 20% solution of polygalacturonase (Pectinol R-10, Rhom & Haas) dissolved in 0.1 M KCl + 0.1 M MgCl2. In this salt solution the protoplasts remained stabilized for up to 8 h and were used as a source of exposed plasma membrane. Gross responses of protoplasts to selected chemicals and herbicides were recorded photomicroscopically. Paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) treatments resulted in a characteristic response which was different from that of general denaturants (trichloroacetic acid, ethanol, and detergents) and of osmotic shock. Initial phases of the paraquat response were characterized by a segregation of the cytoplasm into isolated areas on the inner membrane surface. The final phase was a rupture of the plasma membrane and collapse of the cell. The herbicides, 2,4′-dinitro-4-trifluoromethyl-diphenylether (preforan); 1,1-dimethyl-3-(α,α,α-trifluoro-m-tolyl)urea (fluometuron); 3-(3-chloro-4-bromophenyl)-1-methoxy-1-methylurea (chlorbromuron); and α,α,α-trifluoro-2,6-dinitro-N-N-dipropyl-p-toluidine (trifluralin) produced no apparent structural effect on the protoplasts.  相似文献   

9.
The hydraulic conductivity of the membrane, Lp, of fused plant protoplasts was measured and compared to that for unfused cells, in order to identify possible changes in membrane properties resulting from the fusion process. Fusion was achieved by an electric field pulse which induced breakdown in the membranes of protoplasts in close contact. Close membrane contact was established by dielectrophoresis. In some experiments pronase was added during field application; pronase stabilizes protoplasts against high field pulses and long exposure times to the field. The Lp-values were obtained from the shrinking and swelling kinetics in response to osmotic stress. The Lp-values of fused mesophyll cell protoplasts of Avena sativa L. and of mesophyll and guard cell protoplasts of Vicia faba L. were found to be 1.9±0.9·10-6, 3.2±2.2·10-6, and 0.8±0.7·10-6 cm·bar-1·s-1, respectively. Within the limits of error, no changes in the Lp-values of fused protoplasts could be detected in comparison to unfused protoplasts. The Lp-values are in the range of those reported for walled cells of higher plants, as revealed by the pressure probe.Abbreviations GCP guard cell protoplast - Lp hydraulic conductivity - MCP mesophyll cell protoplast  相似文献   

10.
Liposome-Mediated transfer of bacterial RNA into carrot protoplasts   总被引:1,自引:0,他引:1  
The uptake of liposome-encapsulated E. coli [3H]RNA by carrot (Daucus carota L.) protoplasts was examined. [3H]RNA extracted from protoplasts that had been incubated with [3H]RNA-containing, large, unilamellar lipid vesicles (liposomes) obtained by ether infusion, and examined by sucrose gradient centrifugation and formamide-polyacrylamide gel electrophoresis, appeared substantially degraded, with a total elimination of 23S RNA and a partial loss of 16S RNA. In contrast, no breakdown of the [3H]RNA was apparent in the liposomes after sequestration, even in the presence of externally added ribonuclease, or in the unfused liposomes remaining after incubation of protoplasts with liposomes. Thus, the degradation of the [3H]RNA extracted from the protoplasts must have occurred within the protoplasts and represents evidence for liposome-mediated RNA uptake. Naked RNA added to the protoplast culture was found to be totally degraded after incubation with the protoplasts. The uptake of liposome-sequestered RNA by protoplasts was demonstrated to be a function both of the lipid composition of the liposomal membrane and of the temperature of incubation of the liposomeprotoplast mixture. Furthermore, the mode of this uptake (fusion versus endocytosis) could be manipulated by adjusting the cholesterol content of the liposomal membrane. The implications of the ability to insert RNA into protoplasts without degradation by extracellular nucleases are discussed.  相似文献   

11.
A method for the formation and regeneration of protoplasts of several strains of the chestnut blight fungus,Cryphonectria parasitica, is presented. The procedure utillizes cellophane membranes for growth and employs centrifugation for separation of protoplasts from hyphal fragments. Yields averaged 8.04×106 protoplasts per membrane. Regeneration frequencies were 40–50% with a soft-agar overlay. These protoplasts are suitable for use in experiments designed to determine the role of dsRNA in hypovirulence ofC. parasitica.  相似文献   

12.
A submicroscopic structure was studied of protoplasts of five different yeast species multiplying by budding, formation of cross septum and by a division typical for apiculate yeasts. The protoplasts retain their species specificity. Most considerable changes typical for the conversion of a cell to protoplast are found in membrane cell systems. The reduction of membranes of the endoplasmic reticulum is particularly striking. Both membrane units are frequently separated from each other by lenticular pseudovacuoles. Mitochondria in protoplasts are swollen and their number is reduced approximately two-fold. Defects are often observed in a nuclear membrane. The perinuclear space is usually extended by lenticular pseudovacuoles. A large number of vacuoles is observed in the basic protoplast cytoplasm. The surface of the protoplasts of all species studied is formed only by a cytoplasmic membrane. A partially digested original cell wall often adheres to protoplasts ofSchizosaccharomyces pombe.  相似文献   

13.
Summary The stress and strain (surface tension and fractional change in area) in the plasma membrane of protoplasts isolated from rye leaves (Secale cereale L. cv Puma) were measured during osmotic expansions from isotonic into a range of more dilute solutions. The membrane surface tension increases rapidly to a maximum and then decreases slowly with some protoplasts lysing in all phases of the expansion. The maximum surface tension is greater for rapid expansions, and protoplasts lyse earlier during rapid expansion. Over the range of expansion rates investigated, the area at which lysis occurs is not strongly dependent on expansion rate. The value of the maximum tension is determined by the expansion rate and the rate at which new material is incorporated into the membrane. During osmotic expansion, protoplasts isolated from cold-acclimated plants incorporate material faster than do those from nonacclimated plants and thus incur lower membrane tensions.  相似文献   

14.
Summary The polycation mediated attachment of purified tritiated DNA to plant protoplasts has been measured by quantitative microautoradiography. The automated grain counting technique used, also provides information on the cell cycle stage of individual protoplasts, which circumvents the need to synchronize the plant cell population before preparation of protoplasts. With protoplasts from asynchronously dividing suspension cultures of Nicotiana syhestris (NS-1), S-phase protoplasts appear to be inefficient binders of 3H-DNA, as compared with G1 or G2 protoplasts. Protoplasts derived from a tumour line of Crepis capillaris (CAPT) exhibit 3H-DNA binding at all cell cycle phases, but Sphase protoplasts appear to be preferential binders. These differences are discussed with reference to cell cycle kinetics, membrane charge variation and the possibility of increasing the efficiency of genetic transformation of higher plant cells in culture.  相似文献   

15.
Murine monoclonal antibodies to membrane antigens were generated by immunization with a crude cellular membrane preparation from suspension-cultured cells of Nicotiana glutinosa L. From a panel of thirteen monoclonal antibodies, seven were found to be directed against antigens present on the plasma-membrane by immunofluorescence visualization of antibody binding to the surface of isolated protoplasts. The corresponding set of plasma-membrane antigen(s) were present in root, shoot and leaf tissue and some but not all of these antigens were of wide species distribution, being found in Nicotiana tabacum L., N. plumbaginifolia L., Glycine max L., Phaseolus vulgaris L. and Triticum aestivum L. Topologically specific labeling of intact protoplasts with a monoclonal antibody reactive with an epitope present on the plasma-membrane specifically labeled a membrane fraction which equilibrated at a density of 1.14 kg/l following centrifugation in a sucrose gradient. In addition to use as biochemical markers for fractionation and molecular characterization of plasma-membranes, these monoclonal antibodies provide the basis for new selection tools in plant cell and gene manipulations.  相似文献   

16.
Murine monoclonal antibodies to protoplast membrne antigens were generated using mouse myelomas and spleen cells from mice immunized with Nicotiana tabacum L. leaf protoplasts. For selecting antibody-secreting clones, a sensitive and rapid enzyme-linked immunosorbent assay (ELISA) for monoclonal antibody binding to immobilized cellular membrane preparations or immobilized protoplasts was developed. With intact protoplasts as immobilized antigen, the ELISA is selective for antibodies that bind to plasma-membrane epitopes present on the external surface of protoplasts. Using the membrane ELISA, a total of 24 hybridoma lines were identified that secreted antibodies to plant membrane epitopes. The protoplast ELISA and subsequent immunofluorescence studies identified four hybridoma lines as secreting antibodies which bound to the external surface of protoplasts and cells. The corresponding antigens were not species- or tissue-specific, were periodatesensitive, and were located in membranes which equilibrated broadly throughout a linear sucrose gradient. When protein blots of electrophoretically separated membrane proteins were probed with these antibodies, a band of Mr 14 kilodaltons (kDa) and a smear of bands of Mr 45–120 kDa were labeled. An additional set of three antibodies appeared by immunofluorescence to bind to the plasma membrane of broken but not intact protoplasts and labeled membranes equilibrating at a density of approx. 1.12 kg·l-1 in a linear sucrose density gradient. These classes of monoclonal antibodies enlarge the library of monoclonal antibodies (Norman et al. 1986, Planta 167, 452–459) available for the study of plant plasma-membrane structure and function.Abbreviations ELISA Enzyme-linked immunosorbent assay - Ig immunoglobulin - kDa kilodalton - Mr relative molecular mass - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

17.
Protoplasts of the basidiomycete, Fomitopsis palustris (formerly Tyromyces palustris), were utilized to study a function of the fungal plasma membrane. Fungal protoplasts exhibited metabolic activities as seen with intact mycelial cells. Furthermore, the uptake of certain compounds into the protoplast cells was quantitatively observed by using non-radioactive compounds. Vanillin was converted to vanillyl alcohol and vanillic acid as major products and to protocatechuic acid and 1,2,4-trihydroxybenzene as trace products by protoplasts prepared from F. palustris. Extracellular culture medium showed no activity responsible for the redox reactions of vanillin. Only vanillic acid was detected in the intracellular fraction of protoplasts. However, the addition of disulfiram, an aldehyde dehydrogenase inhibitor, caused an intracellular accumulation of vanillin, strongly suggesting that vanillin is taken up by the cell, followed by oxidation to vanillic acid. The addition of carbonylcyanide m-chlorophenylhydrazone, which dissipates the pH gradient across the plasma membrane, inhibited the uptake of either vanillin or vanillic acid into the cell. Thus, the fungus seems to possess transporter devices for both vanillin and vanillic acid for their uptake. Since vanillyl alcohol was only observed extracellularly, the reduction of vanillin was thought to be catalyzed by a membrane system.  相似文献   

18.
Tewari RK  Watanabe D  Watanabe M 《Planta》2012,235(1):99-110
Despite extensive research over the past years, regeneration from protoplasts has been observed in only a limited number of plant species. Protoplasts undergo complex metabolic modification during their isolation. The isolation of protoplasts induces reactive oxygen species (ROS) generation in Brassica napus leaf protoplasts. The present study was conducted to provide new insight into the mechanism of ROS generation in B. napus leaf protoplasts. In vivo localization of H2O2 and enzymes involved in H2O2 generation and detoxification, molecular antioxidant-ascorbate and its redox state and lipid peroxidation were investigated in the leaf and isolated protoplasts. Incubating leaf strips in the macerating enzyme (ME) for different duration (3, 6, and 12 h) induced accumulation of H2O2 and malondialdehyde (lipid peroxidation, an index of membrane damage) in protoplasts. The level of H2O2 was highest just after protoplast isolation and subsequently decreased during culture. Superoxide generating NADPH oxidase (NOX)-like activity was enhanced, whereas superoxide dismutase (SOD) and ascorbate peroxidase (APX) decreased in the protoplasts compared to leaves. Diaminobenzidine peroxidase (DAB-POD) activity was also lower in the protoplasts compared to leaves. Total ascorbate content, ascorbate to dehydroascorbate ratio (redox state), were enhanced in the protoplasts compared to leaves. Higher activity of NOX-like enzyme and weakening in the activity of antioxidant enzymes (SOD, APX, and DAB-POD) in protoplasts resulted in excessive accumulation of H2O2 in chloroplasts of protoplasts. Chloroplastic NADPH oxidase-like activity mediated perpetual H2O2 generation probably induced apoptotic-like cell death of B. napus leaf protoplasts as indicated by parallel DNA laddering and decreased mitochondrial membrane potential.  相似文献   

19.
Protoplasts ofBifidobacterium thermophilum were prepared by a combination of lysozyme and protease digestion, and ferrous iron uptake studies were carried out. Little, if any, iron was internalized by the protoplasts, although large amounts of iron were bound to the protoplast surface. This binding was much greater than that of intact cells, which prefer to internalize iron by an energy-dependent process. It was also found that the binding of iron by protoplasts of cells grown in an iron-deficient medium was much more extensive than that of cells grown in an iron-sufficient medium. Soluble and particulate fractions of protoplasts were prepared by grinding them in a glass homogenizer, and the particulate fraction was also subjected to iron binding studies. The amount of iron bound was the same as that in intact protoplasts, indicating that the particulate fraction membrane fragments bound iron on their outer surface only. Nevertheless, when iron-preloaded cells were protoplasted and their surface cleared of iron, their particulate fraction contained considerable amounts of iron, indicating that the inner surface of the membranes is capable of binding iron as long as the cell is intact. The amount of iron so bound was dose-dependent on the amount of iron entering the cell. The failure of the outer and inner surface iron pools to mix was confirmed by the fact that when iron-preloaded protoplasts were incubated with additional iron, only the latter (surface-bound) was elutable with nonradioactive 2 mM FeSO4. It is concluded that increasing bifidobacterial iron load increases the amount of iron bound to the inner surface of the membrane; the procedure, which is effective in forming bifidobacterial protoplasts, destroys their iron transport mechanism while uncovering surface iron-binding sites; and that such iron-binding sites may be of significance in the cellular iron metabolism processes.  相似文献   

20.
Ethane was used as an indicator of lipid peroxidation in order to characterize the membrane damage induced by electrical pulses during the processes of electrofusion and electropermeabilization. The increase of ethane in fused protoplasts ofVicia faba L. was found to be correlated with the intensity of field strength and pulse number, which also affected the yield of hybrids. The degree of membrane damage is postulated to depend on the accumulation of lipid free-radicals, which can be increased by light, by longer storage time of protoplasts and by higher field strength and pulse number. As a result, the conditions for electropermeabilization lead to greater membrane damage compared with those for electrofusion. The measurement of ethane production may prove to be useful for characterization of the membrane integrity, viability and regeneration ability of protoplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号