首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The taxomony of strain CRSS (DSM 15686(T)=ATCC BAA-848(T)) isolated from Cape Russell in Antarctica (Ross Sea, 74 52.35 S 163 53.03 E) was investigated in a polyphasic approach. The morphological, physiological and genetic characteristics were compared with that of related species of the genus Halomonas. The isolate grew optimally at pH 9.0, 10% NaCl at 30 degrees C. The cells were Gram-negative aerobic rods able to produce exopolysaccharide. They accumulated glycine-betaine, as a major osmolyte, with minor components ectoine and glutamate. The strain CRSS biosynthetised alpha-glucosidase. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol as major components. Ubiquinone with nine repetitive unities (Q9) was the only quinone found and the fatty acid composition was dominated by C18:1 (53%). The G+C content of DNA was 55.0mol% and its phylogenetic position was established by 16S rRNA gene sequencing as a member of the genus Halomonas. For physiological, chemotaxonomic and genetic features (DNA-DNA hybridisation) it is proposed to classify the isolate as a new species for which we propose the name Halomonas alkaliantarctica sp. nov.  相似文献   

2.
The taxomony of strain M8, isolated from algal mat formed at the origin of a sulfurous spring in Rifieto (Savignano Irpino, Campania, Italy), was investigated in a polyphasic approach. The morphological, physiological and genetic characteristics were compared with of Planococcus and Planomicrobium species. The isolate grew optimally at pH 9.0, 1.8 M NaCl at 37 degrees C. The cells were Gram-positive cocci that form pairs, tetrads and aggregates of several cells. The isolate was aerobic/microaerophilic and accumulated glycine-betaine, as a major osmolyte, with minor components glutamate and an unknown compound. M8 was able to hydrolyse X-Glc (5-bromo-4-chloro-3-indoyl beta-d-glucopyranoside). The polar lipid profile consisted of phosphatidylglycerol and diphosphatidylglycerol as major components, and phosphocholine as a minor compound. MK8 was the only quinone found and the fatty acid composition was dominated by branched acids, mainly aiC15:0. The G+C content of DNA was 47.9% and its phylogenetic position was established by 16S rRNA gene sequencing as a member of the genus Planococcus. The DNA/DNA similarity of M8 to the type species Planococcus citreus was less than 55%. For this reason and for physiological and chemotaxonomic features, it is proposed to create a new species Planococcus rifietensis sp. nov.  相似文献   

3.
An unsterile and continuous fermentation process was developed based on a halophilic bacterium termed Halomonas TD01 isolated from a salt lake in Xinjiang, China. The strain reached 80 g/L cell dry weight containing 80% poly(3-hydroxybutyrate) (PHB) on glucose salt medium during a 56 h fed-batch process. In a 14-day open unsterile and continuous process, the cells grew to an average of 40 g/L cell dry weight containing 60% PHB in the first fermentor with glucose salt medium. Continuous pumping of cultures from the first fermentor to the second fermentor containing the nitrogen-deficient glucose salt medium diluted the cells but allowed them to maintain a PHB level of between 65% and 70% of cell dry weight. Glucose to PHB conversions were between 20% and 30% in the first fermentor and above 50% in the second one. This unsterile and continuous fermentation process opens a new area for reducing the cost in polyhydroxyalkanoates production.  相似文献   

4.
AIMS: The objective of this work was to determine the role of different compatible solutes in adaptation of Pantoea agglomerans CPA-2 at different stages of growth to solute (0.98, 0.97, 0.96 aw), heat (35 and 40 degrees C) and acidic (pH 4.0, 5.0, 6.0) stress. METHODS AND RESULTS: Solute stress was imposed by using NaCl, glucose or glycerol, and pH was imposed with malic and citric acids. The accumulation of glycine-betaine, ectoine and amino acids in bacterial cells was quantified using high performance liquid chromathography (HPLC). There was a significant (P<0.05) accumulation of glycine-betaine (NaCl modified, 100-150 micromol g(-1) dry weight of cells) and ectoine (glucose modified media, >340 micromol g(-1) dry weight of cells) in the cells over a 48 h incubation period when compared with controls (<10 micromol g(-1) dry weight of cells). Chromatographic profile of amino acids was different with respect to control when NaCl or glucose was used as osmolyte. CONCLUSIONS: Pantoea agglomerans CPA-2 cells synthesised significant amounts of glycine-betaine and ectoine in response to imposed solute stress. However, these compounds and tested amino acids were not involved in cellular adaptation to either heat or pH stress. SIGNIFICANCE AND IMPACT OF THE STUDY: This type of information can be effectively applied to improve ecophysiological quality of cells of bacterial biocontrol agents for better survival and biocontrol efficacy in the phyllosphere of plants.  相似文献   

5.
Tissue-water relations were used to characterize the responses of two Mediterranean co-occurring woody species (Quercus ilex L. and Phillyrea latifolia L.) to seasonal and experimental drought conditions. Soil water availability was reduced 15% by partially excluding rain throughfall and lateral flow (water runoff). Seasonal and experimental drought elicited physiological and morphological adaptations other than osmotic adjustment: both species showed large increases in cell-wall elasticity and decreased saturated-to-dry-mass ratio. Increased elasticity (lower elastic modulus) resulted in concurrent decreases in relative water content at turgor loss. In addition, P. latifolia showed significant increases in apoplastic water fraction. Decreased saturated-to-dry-mass ratio and increased apoplastic water fraction were accompanied by an increased range of turgor maintenance, which indicates that leaf sclerophyllous traits might be advantageous in drier scenarios. In contrast, the degree of sclerophylly (as assessed by the leaf mass-to-area ratio) was not related to tissue elasticity. An 15% reduction in soil water availability resulted in significant reductions in diameter growth when compared to control plants in both species. Moreover, although P. latifolia underwent larger changes in tissue water-related traits than Q. ilex in response to decreasing water availability, growth was more sensitive to water stress in P. latifolia than in Q. ilex. Differences in diameter growth between species might be partially linked to the effects of cell-wall elasticity and turgor pressure on growth, since Q. ilex showed higher tissue elasticity and higher intrinsic tolerance to water deficit (as indicated by lower relative water content at turgor loss) than P. latifolia.  相似文献   

6.
李雅卓  李章  张继彪  付杰 《微生物学报》2020,60(9):1893-1906
2010年深水地平线事故发生后,在被石油污染的墨西哥湾观察到大量的"海油雪"形成,海油雪的相关研究成为人们关注的焦点。海油雪是指石油、浮游植物、细菌黏液等组成的团聚物,能够将石油从海面沉降至海底,对石油的风化过程产生深远影响。因此,研究海油雪的形成机制和生态效应,对于深入认识海油雪在石油-海洋系统中的作用具有重要意义。本文从物理凝聚、微生物和石油分散剂三个方面对海油雪的形成机制展开探讨,分析了海油雪对石油风化、底栖生物毒性和其他污染物迁移转化的影响,并结合现有研究进行了展望。  相似文献   

7.
The review deals with lactic acid bacteria in characterizing the stress adaptation with cross-protection effects, mainly associated with Lactobacillus, Bifidobacterium and Lactococcus. It focuses on adaptation and cross-protection in Lactobacillus, Bifidobacterium and Lactococcus, including heat shocking, cold stress, acid stress, osmotic stress, starvation effect, etc. Web of Science, Google Scholar, Science Direct, and PubMed databases were used for the systematic search of literature up to the year 2020. The literature suggests that a lower survival rate during freeze-drying is linked to environmental stress. Protective pretreatment under various mild stresses can be applied to lactic acid bacteria which may enhance resistance in a strain-dependent manner. We investigate the mechanism of damage and adaptation under various stresses including heat, cold, acidic, osmotic, starvation, oxidative and bile stress. Adaptive mechanisms include synthesis of stress-induced proteins, adjusting the composition of cell membrane fatty acids, accumulating compatible substances, etc. Next, we reveal the cross-protective effect of specific stress on the other environmental stresses. Freeze-drying is discussed from three perspectives including the regulation of membrane, accumulation of compatible solutes and the production of chaperones and stress-responsive proteases. The resistance of lactic acid bacteria against technological stress can be enhanced via cross-protection, which improves industrial efficiency concerning the survival of probiotics. However, the adaptive responses and cross-protection are strain-dependent and should be optimized case by case.  相似文献   

8.
The adaptation of lactic acid bacteria (LAB) to unfavorable growth conditions, e.g., depletion of nutrient sources, overthreshold cell density of a population, or antibiotic impact, was shown to include: (1) formation of cyst-like dormant cells (CDC) providing for survival and species preservation and (2) realization of intra-population phenotypic variability, which is demonstrated by development of non-dominant colonies on plates inoculated with CDC suspensions. In Lactobacillus plantarum, the dormant cells, which retained viability and heat resistance for a long time, were formed in 10- and 20-fold concentrated suspensions of the stationary phase cells. In 4-month cell suspensions, two types of cells were present, CDC and L-forms. The CDC of Lactococcus lactis were formed in (1) post-stationary cultures grown under glucose limitation and (2) in stationary phase cultures resuspended in starvation medium (without glucose). Populations of CDC stored for different periods of time varied in the ability for phase variation; as a result, both variants exhibited a shift of the population’s CDC spectrum to the transition of the dominant S-colony type to the R-type up to complete substitution (by day 25). In Lactobacillus acidophilus AT-41, CDC appeared in (1) post-stationary cultures grown on a nitrogen-limited medium; (2) autolyzing cultures treated with ampicillin or erythromycin; and (3) concentrated (10- and 20-fold) suspensions of stationary-phase cells. At plating of L. acidophilus CDC, the substitution of the S-type for the dominant R-type in variants (1) (day 30), (2) (100 μg/ml ampicillin, day 10), and (3) (day 25) was 68.6%, 30.1%, and 61.2%, respectively. The S-variant of L. acidophilus was used for development of a novel lactofermented product based on vegetable (beet) juice fermentation, which sustained high titer of viable cells (2 × 106 cells/ml).  相似文献   

9.
A facultative psychrophilic bacterium, strain L-2, that grows at 0 and 5°C as minimum growth temperatures in complex and defined media, respectively, was isolated. On the basis of taxonomic studies, strain L-2 was identified as Cobetia marina. The adaptability of strain L-2 to cold temperature was higher than that of the type strain and of other reported strains of the same species. When the bacterium was grown at 5–15°C in a defined medium, it produced a high amount of trans-unsaturated fatty acids. By contrast, in a complex medium in the same temperature range it produced a low amount of trans-unsaturated fatty acids. In the complex medium at 5°C, the bacterium exhibited a three-fold higher growth rate than that obtained in the defined medium. Following a temperature shift from 11 to 5°C, strain L-2 grew better in complex than in defined medium. Furthermore, when the growth temperature was shifted from 0 to 5°C both the growth rate and the yield of strain L-2 growing in complex medium was markedly enhanced. These phenomena suggest that an upshift of the growth temperature had a positive effect on metabolism. The effects of adding complex medium components to the defined medium on bacterial growth rate and fatty acid composition at 5°C were also studied. The addition of yeast extract followed by peptone was effective in promoting rapid growth, while glutamate addition was less effective, resulting in a cis-unsaturated fatty acid ratio similar to that of cells grown in the complex medium. These results suggest that the rapid growth of strain L-2 at low temperatures requires a high content of various amino acids rather than the presence of a high ratio of cis-unsaturated fatty acids in the cell membrane.  相似文献   

10.
This research aims to examine the effect of cadmium uptake on lipid composition and fatty acid biosynthesis, in young leaves of tomato treated seedlings (Lycopersicon esculentum cv. Ibiza F1). Results in membrane lipids investigations revealed that high cadmium concentrations affect the main lipid classes, leading to strong changes in their composition and fatty acid content. Thus, the exposure of tomato plants to cadmium caused a concentration-related decrease in the unsaturated fatty acid content, resulting in a lower degree of fatty acid unsaturation. The level of lipid peroxides was significantly enhanced at high Cd concentrations. Studies of the lipid metabolism using radioactive labelling with [1-14C]acetate as a major precursor of lipid biosynthesis, showed that levels of radioactivity incorporation in total lipids as well as in all lipid classes were lowered by Cd doses. In total lipid fatty acids, [1-14C]acetate incorporation was reduced in tri-unsaturated fatty acids (C16:3 and C18:3); While it was enhanced in the palmitic (C16:0), palmitoleic (C16:1), stearic (C18:0) and linoleic (C18:2) acids. [1-14C]acetate incorporation into C16:3 and C18:3 of galactolipids [monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG)] and some phospholipids [phosphatidylcholine (PC) and phosphatidylglycerol (PG)] was inhibited by Cd stress. Our results showed that in tomato plants, cadmium stress provoked an inhibition of polar lipid biosynthesis and reduced fatty acid desaturation process.  相似文献   

11.
Atriplex prostrata was grown for one month in nutrient solutions with NaCl, KCl, Na2SO4, and K2SO4 (at osmotic potentials of 0, –0.75, –1.00, and –1.50 MPa). Plants treated with K2SO4 had less glycinebetaine at –1.0 and –1.50 MPa than those treated with Na+ salts, probably due to the inhibitory effects of K+ on glycinebetaine accumulation.  相似文献   

12.
The roles of O-acetylserine (thiol) lyase (OASTL, EC 4.2.99.8) and abscisic (ABA) acid in stress responses to NaCl and cadmium treatments were investigated in Typha latifolia L. and Phragmites australis (Cav.) Trin. ex Steudel plants. OASTL activity increased under stress (25-300 microM Cd, 100mM NaCl, 1 microM ABA) in both Typha and Phragmites mainly in roots, contributing substantially to satisfy the higher demand of cysteine for adaptation and protection. The earliest significant responses in intact roots were recorded after 12-24 h of Cd treatments, but different levels of stimulation were also observed after 3 and 7 days of exposure. The OASTL activity responses of Phragmites to salinity (100mM NaCl) were higher than those of Typha. Cysteine synthesis in Typha is much higher than in Phragmites, which supports the efficiency of the thiol-metabolism-based protection shown in Typha. Exogenous ABA increased OASTL activity in both species. Cd treatments led to increased ABA levels in roots. Phragmites showed higher ABA levels compared to Typha. The increase of ABA content indicates the involvement of this phytohormone in early stress responses, while the stimulation of OASTL following the ABA application suggests that ABA has a role in an OASTL activation pathway.  相似文献   

13.
This study describes effects of exposure of the freshwater ciliate Tetrahymena pyriformis to the "classic" weak acid respiratory uncoupler pentachlorophenol (PCP) on the population growth kinetics and membrane lipid profiles. The assessment of growth kinetics of naive populations exposed to PCP, at concentrations eliciting <50% growth inhibition, showed generation times of exposed cultures similar to generation times of controls but preceded by a short lag phase (<2 h). Assessment of exposed cultures exhibiting >50% growth inhibition revealed generation times that increased with increasing concentrations of toxicant. In addition, the relative percentages of selected fatty acid methyl esters (FAMEs) in both pellicle and mitochondrial membranes were examined. Upon exposure to PCP the relative percentages of FAMEs 12:0, 14:0, 16:0, 16:1, and 18:0 did not change. However, with exposure to PCP a decrease was observed for FAMEs 15:0 and 17:0. Conversely, with PCP exposure there was an increase in FAME 18:1. A comparison of these results with those elicited upon exposure to the model narcotic 1-octanol reveals marked differences in both growth kinetics and fatty acid shifts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The effect of salt stress (8% w/v NaCl) on fatty acid composition of eight strains of Dipodascus and Dipodascopsis spp. varied from being of slight influence only (Dipodascopsis uninucleata), to decreasing the content of 18:2 (D. reesii, D. tetrasperma and D. australiensis) and to decreasing both 18:1 and 18:2 (D. tothii and D. aggregatus) with a concomitant rise of 14:1 and 16:1. With the exception of D. aggregatus, NaCl inhibited lipid accumulation in all strains. Only trace amounts of fatty acids over C18 in chain length were found.J. ajbidor, M. Lamaka, A. Chrastina and P. Pokreisz are with the Department of Biochemical Technology, Slovak Technical University, Radlinskeho 9, 812 37, Bratislava, Slovak Republic; E. Breirerová is with the Institute of Chemistry, Slovak Academy of Science, Dúbravská cesta 9, Slovak Republic. M. Certík is with the Research Institute of Gerontology, Zámocká ul, P.O. Box 25, 901 01 Malacky, Slovak Republic.  相似文献   

15.
Although IBA is a naturally occurring auxin, its role in plant development is still under debate. In this study a set of Arabidopsis mutants was used to analyze the biosynthesis of IBA in vitro. The mutants chosen for this study can be classified as: (1) involvement in auxin metabolism, transport or synthesis (amt1, aux1, ilr1, nit1, rib1, sur1, trp1-100); (2) other hormones possibly involved in the regulation of IBA synthesis (aba1, aba3, eto2, fae1, hls1, jar1); (3) photomorphogenesis (det1, det2, det3); and (4) root architecture (cob1, cob2, scr1). In addition, two transgenic lines overexpressing the IAA glucose synthase (iaglu) gene from maize were analyzed. The ecotypes No-0 and Wassilewskija showed the highest IBA synthetase activity under control conditions, followed by Columbia, Enkheim and Landsberg erecta. In the mutant lines IBA synthetase activity differed in most cases from the wild type, however no particular pattern of up- or down-regulation, which could be correlated to their possible function, was found. For rib1 mutant seedlings it was tested whether reduced IBA synthetase activity correlates with the endogenous IBA levels. Free IBA differed only depending on the culture conditions, but gave no clear correlation with IBA synthetase activity compared to the wild type. Since drought and osmotic stress as well as abscisic acid (ABA) application enhanced IBA synthesis in maize, it was tested whether IBA synthetase from Arabidopsis is also inducible by drought stress conditions. This was confirmed for the two ecotypes Col and Ler which showed different IBA synthetase activity when cultivated with various degrees of drought stress. IBA synthetase was also determined in photomorphogenic mutants under different light regimes. Induction of IBA synthetase in det1 and det3 plants was found under short day plus a red light pulse or in the dark, respectively. The results are discussed with respect to the functions of the mutated genes.  相似文献   

16.
Propionic acid and its sodium salt have long been used as additives in poultry feed to reduce microbial populations, including Salmonella spp. Propionic acids in poultry feed may have a potential role in inhibiting growth of Salmonella in the chicken intestine. In this study, we determined growth response of a Salmonella typhimurium poultry isolate to propionic acid and sodium propionate under aerobic and anaerobic conditions. Growth rate consistently decreased with the addition of greater concentrations of either propionic acid or sodium propionate. The extent of growth inhibition was much greater with propionic acid than the sodium form. Media pH decreased only with addition of propionic acid. Growth inhibition was more effective under anaerobic growth conditions with either propionic acid or sodium propionate. When determined at the same pH level, growth rate was significantly lowered by addition of 25 mM of either propionate or sodium propionate alone, and also by the decrease in pH levels (P<0.05). These results showed that growth inhibition of S. typhimurium by propionic acid or sodium propionate is greatly enhanced by pH decrease, and to lesser extent by anaerobiosis. We also found that sodium propionate was more inhibitory for growth of S. typhimurium than propionic acid when compared at the same pH levels.  相似文献   

17.
Microlunatus phosphovorus is an activated-sludge bacterium with high levels of phosphorus-accumulating activity and phosphate uptake and release activities. Thus, it is an interesting model organism to study biological phosphorus removal. However, there are no studies demonstrating the polyhydroxyalkanoate (PHA) storage capability of M. phosphovorus, which is surprising for a polyphosphate-accumulating organism. This study investigates in detail the PHA storage behavior of M. phosphovorus under different growth conditions and using different carbon sources. Pure culture studies in batch-growth systems were conducted in shake-flasks and in a bioreactor, using chemically defined growth media with glucose as the sole carbon source. A batch-growth system with anaerobic–aerobic cycles and varying concentrations of glucose or acetate as the sole carbon source, similar to enhanced biological phosphorus removal processes, was also employed. The results of this study demonstrate for the first time that M. phosphovorus produces significant amounts of PHAs under various growth conditions and with different carbon sources. When the PHA productions of all cultivations were compared, poly(3-hydroxybutyrate) (PHB), the major PHA polymer, was produced at about 20–30% of the cellular dry weight. The highest PHB production was observed as 1,421 mg/l in batch-growth systems with anaerobic–aerobic cycles and at 4 g/l initial glucose concentration. In light of these key results regarding the growth physiology and PHA-production capability of M. phosphovorus, it can be concluded that this organism could be a good candidate for microbial PHA production because of its advantages of easy growth, high biomass and PHB yield on substrate and no significant production of fermentative byproducts.  相似文献   

18.
The influence of the arbuscular mycorrhizal fungus Glomus deserticola on the water relations, gas exchange parameters, and vegetative growth of Rosmarinus officinalis plants under water stress was studied. Plants were grown with and without the mycorrhizal fungus under glasshouse conditions and subjected to water stress by withholding irrigation water for 14 days. Along the experimental period, a significant effect of the fungus on the plant growth was observed, and under water stress, mycorrhizal plants showed an increase in aerial and root biomass compared to non-mycorrhizal plants. The decrease in the soil water potential generated a decrease in leaf water potential (psi(l)) and stem water potential (psi(x)) of mycorrhizal and non-mycorrhizal plants, with this decrease being lower in mycorrhizal water-stressed plants. Mycorrhization also had positive effects on the root hydraulic conductivity (Lp) of water stressed plants. Furthermore, mycorrhizal-stressed plants showed a more important decrease in osmotic potential at full turgor (psi(os)) than did non-mycorrhizal-stressed plants, indicating the capacity of osmotic adjustment. Mycorrhizal infection also improved photosynthetic activity (Pn) and stomatal conductance (g(s)) in plants under water stress compared to the non-mycorrhizal-stressed plants. A similar behaviour was observed in the photochemical efficiency of PSII (Fv/Fm) with this parameter being lower in non-mycorrhizal plants than in mycorrhizal plants under water stress conditions. In the same way, under water restriction, mycorrhizal plants showed higher values of chlorophyll content than did non-mycorrhizal plants. Thus, the results obtained indicated that the mycorrhizal symbiosis had a beneficial effect on the water status and growth of Rosmarinus officinalis plants under water-stress conditions.  相似文献   

19.
Seedlings of sorghum varieties (M35-1, a drought tolerant species; SPV-839, a drought sensitive one) differing in their drought tolerance were subjected to 150 mM NaCl stress for a short duration of time (up to 72 h). Both the varieties failed to exhibit efficient ion exclusion mechanism like that of salt tolerant species, but in turn resulted in higher accumulation of Na+ and Cl ions over a period of 72 h salt stress. In addition, accumulation of calcium, potassium and proline in seedlings of sorghum varieties was moderate to short-term NaCl stress. The modulation of antioxidant components significantly diverged between the two varieties during seed germination, further the efficiency of antioxidant scavenging system is maintained during short-term NaCl treatments. In comparison to tolerant variety, the sensitive variety depicted higher SOD activity under control and salinity treatments but specific activity of catalase was significantly reduced. In contrast, drought tolerant variety exhibited efficient hydrogen peroxide scavenging mechanisms with higher catalase and GST activities under control and salt stress conditions, but not in the sensitive one. In conclusion, our comparative studies indicate that drought tolerant and susceptible varieties of sorghum induce efficient differential oxidative components of enzymatic machinery for scavenging ROS thereby alleviating the oxidative stress generated by salt stress during seedling growth.  相似文献   

20.
张钰  陈慧  王改萍 《西北植物学报》2023,43(6):996-1005
以2年生楸树(苏楸1号和008-1)扦插苗为材料,采用盆栽试验法,分析盐胁迫(0.5%NaCl)处理下楸树幼苗生长、生理的变化,并分析不同浓度外源ABA(15、25、35 mg/L)对盐胁迫(30 d)楸树幼苗的缓解效应及其生理生化特性,以探索重度盐胁迫下适合楸树幼苗生长的适宜外源ABA浓度,为增强盐碱地楸树的耐盐性、提高盐碱地的利用提供理论依据。结果显示:(1)0.5%NaCl胁迫下,两品种楸树幼苗叶片表现出不同程度的盐害症状,且‘苏楸1号’叶片盐害症状较‘008-1’严重;随胁迫时间延长,两品种楸树幼苗的相对电导率(REC)均呈先上升后下降的变化趋势,叶绿素(Chl)、相对含水量(RWC)均呈降低趋势,可溶性糖(SS)、可溶性蛋白(SP)、脯氨酸(Pro)以及超氧化物歧化酶(SOD)活性均呈先上升后下降趋势,但‘008-1’的REC显著低于‘苏楸1号’,Chl、RWC、SS、SP、Pro、SOD均显著高于苏楸1号,表明‘008-1’的耐盐性较‘苏楸1号’更强。(2)喷施外源ABA使得盐胁迫下‘008-1’楸树的苗高显著增加、新叶提前萌发,表明外源ABA在一定程度上能够缓解盐胁迫对楸树生长的影响;喷施外源ABA降低了盐胁迫下‘008-1’楸树幼苗叶片的REC,提高了Chl、RWC、SS、SP、Pro、SOD、过氧化物酶(POD)以及过氧化氢酶(CAT)活性,促进了内源激素生长素(IAA)、脱落酸(ABA)、赤霉素(GA3)以及玉米素核苷(ZR)的积累。研究表明,楸树品种‘008-1’的耐盐性更强;外源喷施适宜浓度ABA能够缓解盐胁迫对楸树幼苗生长的影响,降低幼苗叶片细胞膜透性,促进幼苗渗透调节物质的积累,增强渗透调节能力,并提高盐胁迫下幼苗的抗氧化酶活性,促进植物对内源激素含量的调节,从而提高楸树的耐盐性,且以25 mg/L ABA处理的效果最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号