首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Meiofauna of a sewage-polluted sandy beach, where sand alone constituted > 90%, was surveyed. Nematodes dominated the fauna numerically at all stations, followed by harpacticoid copepods. Most of the animals were confined to the top 5 cm of the sediment. A seasonal pattern was observed in the distribution of the fauna. There were significant spatial and temporal variations in mean meiofauna density, attributed to organic discharge via sewage and prevailing environmental conditions in the study area.  相似文献   

2.
ECOLOGY OF MARINE MEIOBENTHOS   总被引:11,自引:0,他引:11  
  相似文献   

3.
The meiofauna and macrofauna of some tropical beaches   总被引:3,自引:0,他引:3  
A. D. McIntyre   《Journal of Zoology》1968,156(3):377-392
The fauna of a number of intertidal habitats ranging from estuarine mud to marine sand has been examined in the region of Porto Novo, south-east India. Quantitative estimates of meiofauna and macrofauna are given, and the distribution and relationships of these two size categories discussed. Comparison is made with intertidal areas in other parts of the world.  相似文献   

4.
The distribution and abundance of subtidal meiofauna in Mandovi estuary of Goa were studied from June 1983 to June 1984. Monthly faunal abundance ranged from 491 to 2791/10 cm2 and dry weight biomass from 0.16 to 2.80 mg 10 cm2. Free living nematodes were the dominant group contributing over 75% of the total density and 30 to 42% of the total biomass. Among nematodes the deposit feeders were more abundant in fine muddy substratum while epigrowth feeders dominated in sandy substratum.Harpacticoids were next, comprising 6.9 to 8.7% of the total meiofauna number, followed by turbellaria (3.8–4.5%), polychaeta (2.8–3.2%) and ostracods (1.6–4.5%) The contribution of other groups to faunal density was 4.5–6.2%. In the biomass the ostracods contributed most (29.8–54.7%), followed by nematodes (23.8–34.6%). Over 60% of the fauna occurred in the top 2 cm of the sediment and the faunal density reduced significantly with increasing depth in the sediment. The vertical distribution of meiofauna was positively correlated to the vertical distribution of Eh, chlorophyll a and interstitial water. Seasonality was greatly influenced by the south-west monsoon and the fauna quickly repopulated after the monsoon. Salinity, temperature and food influenced the faunal abundance.  相似文献   

5.
Sandy intertidal zones were analysed for the presence of meiofauna. The material was collected on six macro-tidal sandy beaches along the North Sea (The Netherlands, France, Belgium), in order to analyse the vertical and horizontal meiofaunal distribution patterns. Eleven higher meiofauna taxa (one represented by larval stage—Copepoda nauplii) were recorded. The maximum total meiofauna abundance was observed on the Dutch beach (4,295±911 ind. 10 cm−2) in the Westerschelde estuary, while the lowest values (361±128 ind. 10 cm−2) were recorded in France at the Audresselles beach. Meiofauna of the different localities consisted mainly of nematodes, harpacticoids and turbellarians. Nematodes numerically dominated all sampled stations, comprising more than 45% of the total meiofauna density. Meiofauna was mainly concentrated at the sand surface with about 70% present in the uppermost 5 cm. Meiofauna occurred across the entire intertidal zone. A clear zonation pattern in the distribution of meiofauna taxa across the beaches was observed. The present work suggests that designation of exposed sandy beaches as physically controlled (McLachlan 1988) does not explain their biological variability.  相似文献   

6.
Permanent meiofauna taxa and portions of the population of other invertebrates that are temporarily in the meiofauna size class are often precluded from stream studies and assessments. This study was designed to determine the identity, density, and distribution of major meiofauna taxa relative to substrate size in a set of similar headwater streams. Using a coring technique, meiofauna (80 μm–1 mm) and substrate samples were collected from 11 Ozark headwater streams in the Boston Mountain ecoregion of Arkansas, USA. Mean meiofauna density among streams was 1739 ± 436 organisms per l. Permanent meiofauna taxa (Copepoda, Cladocera, Ostracoda, Rotifera, Nematoda, Hydrachnida, and Tardigrada) comprised 22.5% of the organisms collected with a mean density of 394 ± 233 organisms per l; temporary meiofauna taxa (Oligochaeta, Turbellaria, Hydroidea, Chironomidae, Ephemeroptera, and other insects) comprised the remainder with a density of 1346 ± 308 organisms per l. Chironomidae was the most numerous temporary meiofauna taxon, and Hydrachnida was the most numerous permanent taxon. Streams were found to differ significantly in substrate composition and densities of major taxonomic categories. Substrate size was found to predict densities for most of these taxonomic categories. Meiofauna patchiness was reflected in high variability within streams. Canonical correspondence analysis revealed positive associations between Copepoda and Nematoda and silt, and between Copepoda, Nematoda, and Rotifera and fine sand. Hydrachnida and Rotifera were negatively associated with silt and coarse sand, respectively. The potential value of inclusion of meiofauna in stream environmental assessments is discussed.  相似文献   

7.
Groundwater meiofauna washed out of springs was studied by means of spring water filtration. The principal interest was a quantitative analysis of the number and diversity of outwash fauna in relationship to hydrological conditions. In addition, a comparative analysis was made of outwash fauna of different outlets of the same hydrological system. The spring complex studied is part of the Centraal Plateau in the southern-most part of The Netherlands. This area is characterized by, for The Netherlands, relatively high hydraulic heads and large permeability of aquifers. Influence of human activities (agriculture) in the recharge area was demonstrated by elevated concentrations of nitrate, chloride, and sulphate in the spring waters. No traces of groundwater pollution by heavy metals or pesticides were found. Temporal variation of meiofauna outwash was studied in a single rheocrene spring during one year. This rheocrene had a relatively large and constant discharge (1300±8 ¦h–1). Meiofauna numbers fluctuated between 110–240 ind. m–3. Considerable differences in meiofauna numbers in a one-off analysis of different springs (rheocrenes and helocrenes) were found. Numbers ranged from 140 to 5800 org. m–3 and an inverse relationship with the amount of water discharged was shown. Organisms in the water filtrates were of multiple origin: aquifer(e.g. Niphargus, Parastenocaris), benthic spring head habitats (e.g. Gammarus, Chironomidae), and (saturated) soils near the outlets (e.g. Criconomatidae). Meiofauna abundance and composition is discussed in relation to hydrology and spring head morphology. A semi-quantitative analysis of outwash aquifer fauna was masked by the presence of epigean elements or elements of unclear origin. The outwash fauna of rheocrenes of large discharge supposedly is the most representative for the aquifer. Adaptations of hypogean populations to oligotrophic porous environments and the consequences for drift of juvenile stages is discussed.  相似文献   

8.
This article describes the relationship between 10 selected properties of the sediments (chlorophyll a and b, colloidal and total carbohydrate, water concentration, sediment type, organic matter, erosion threshold and erosion rate) and meio- and macrofauna within and among three different habitats in an urbanized intertidal mudflat/mangrove forest in Tambourine Bay, Sydney Harbour, Australia. Many of the biogeochemical variables were significantly different among habitats, often grading from mudflat to mangrove canopy. In contrast to previous studies, patterns of distribution of macrofauna among habitats were weak. For the meiofauna, only copepods showed any significant difference among habitats, with the greatest numbers in the open mudflat habitat and least under the mangrove canopy. There was a gradient in fauna among the habitats; overall macrofauna abundances were greatest under the mangrove canopy and least on the mudflat, while meiofauna abundance was greatest in the pneumatophore habitat and least under the canopy. Correlations between fauna and properties of sediment were generally weak. When the habitats were analysed separately, some correlations were strengthened but relationships were inconsistent. Thus, while some taxa vary significantly among habitats there was not a strong relationship between biogeochemical properties and either macro- or meiofauna. This suggests that localised factors other than the measured properties of the sediments are driving patterns in fauna at these small scales, which requires further investigation to be unravelled.  相似文献   

9.
What drives small‐scale spatial patterns in lotic meiofauna communities?   总被引:2,自引:0,他引:2  
  • 1 Lotic meiofaunal communities demonstrate extremely variable dynamics, especially when viewed at small spatial scales (≤ metres). Given the limited amount of research on lotic meiofauna, we chose to organise our discussion of their small‐scale spatial patterns around the dominant factors we believe drive their spatial distributions in streams. We separate scale‐dependent effects that structure lotic meiofauna into biotic factors (e.g. predation, food quantity/quality, dispersal) and abiotic factors (e.g. local flow dynamics and substratum characteristics).
  • 2 The impact of predation on the distribution of meiofauna varies with the scale over which predators forage (e.g. fish predation influences meiofauna in different ways and at broader spatial scales than do invertebrate predators), the type of streambed substrata in which the predator‐prey interactions occur, and the dispersal ability of different meiofauna. The latter is greatly influenced by predator and prey (meiofauna) interactions with the flow environment.
  • 3 Organic matter influences the small‐scale distribution of meiofauna in streams. Both its quality as food (as indicated by C:N content, ATP content, or microbial biomass) and its spatial distribution on the streambed, influence meiofauna patchiness, community structure and life history characteristics. As a habitat, the structure that organic matter provides (e.g. wood or leaves) can influence predator‐prey interactions, offer materials for case‐building and offer refugia during disturbance events ‐ all of which influence the small‐scale spatial distribution of meiofauna.
  • 4 Stream flow influences the distribution of meiofauna at broad scales (10s–100s of metres), primarily because of the high susceptibility of meiofauna to passive drift; small‐scale interactions between flow and substrata are also important, however, particularly at more localised (≤ metre) scales. At both scales, substratum particle size is important to interstitial‐dwelling fauna, influencing the probability of passive drift by meiofauna as well as local microhabitat conditions (e.g. dissolved oxygen; upwelling/downwelling in the hyporheic zone) and, thus, the small‐scale distribution among microhabitats.
  • 5 In general, the processes governing the distribution of meiofauna at small scales cannot be separated entirely from those processes working at larger scales. A conceptual diagram is presented illustrating the relative importance of various factors in influencing the spatial patterns of meiofauna and over what scales these factors act.
  相似文献   

10.
Smol  N.  Willems  K. A.  Govaere  J. C. R.  Sandee  A. J. J. 《Hydrobiologia》1994,282(1):197-217
Meiofauna composition, abundance, biomass, distribution and diversity were investigated for 31 stations in summer. The sampling covered the whole Oosterschelde and comparisons between the subtidal — intertidal and between the western-central — eastern compartment were made.Meiofauna had a community density ranging between 200 and 17 500 ind 10 cm–2, corresponding to a dry weight of 0.2 and 8.4 gm–2. Abundance ranged between 130 and 17 200 ind 10 cm–2 for nematodes and between 10 and 1600 ind 10 cm–2 for copepods. Dry weight biomass of these taxa was between 0.5–7.0 gm–2 and 0.008–0.3 gm–2 for nematodes and copepods respectively.The meiofauna was strongly dominated by the nematodes (36–99%), who's abundance, biomass and diversity were significantly higher intertidally than subtidally and significantly higher in the eastern part than in the western part. High numbers were positively correlated with the percentage silt and negatively with the median grain size of the sand fraction. The abundance and diversity of the copepods were highest in the subtidal, but their biomass showed an inverse trend being highest on the tidal flats.The taxa diversity of the meiofauna community and species diversity of both the nematodes and the copepods were higher in subtidal stations than on tidal flats. In the subtidal, the meiofauna and copepod diversity decreased from west to east, whereas nematode diversity increased.The vertical profile clearly reflected the sediment characteristics and could be explained by local hydrodynamic conditions.Seasonal variation was pronounced for the different taxa with peak abundance in spring, summer or autumn and minimum abundance in winter.Changes in tidal amplitude and current velocity enhanced by the storm-surge barrier will alter the meiofauna community structure. As a result meiofauna will become more important in terms of density and biomass, mainly due to increasing numbers of nematodes, increasing bioturbation, nutrient mineralisation and sustaining bacterial growth. A general decrease in meiofauna diversity is predicted. The number of copepods is expected to decrease and interstitial species will be replaced by epibenthic species, the latter being more important in terms of biomass and as food for the epibenthic macrofauna and fishes.  相似文献   

11.
The “Benthosgarten”, an enclosed area in the western Baltic Sea, is used for benthos ecology experiments. It consists of different kinds of sediment containers filled with “artificial” soft bottom. These containers were sampled by divers over a one-year period to observe the development of the meiofauna population. The first settlement, mainly by nematodes, took place immediately after exposure, and six months later the population was stabilized. The meiofauna consists mainly of nematodes and harpacticoides. Biomass and density are generally lower than in the surrounding area. Only the harpacticoid fauna is well represented by different species and has more individuals per m2 than the surrounding area. Biological aspects of the specific features of the sediment containers, e. g. size and their distance to the sea bottom are discussed.  相似文献   

12.
The composition and abundance of the meiofauna and macrofauna were studied in a survey carried out within 6 locations in a mangrove at the Island of Santa Catarina, South Brazil. Nine meiofaunal taxa were registered with densities ranging between 77 and 1589 inds.10 cm?2. The nematodes, composed by 94 putative species (86 genera), largely dominated the meiofauna. The most abundant genera were Haliplectus (Haliplectidae), Anoplostoma (Anoplostomatidae) and Terschillingia (Linhomoidae). Contrary to the meiofauna, the macrofauna showed a low number of taxa (only 17 recorded) and abundance (up 7250 inds.m?2). The macrofauna was mainly composed by deposit feeders, and numerically dominated by oligochaetes and capitellid polychaetes. For both components, differences in the composition and abundance along the sampling sites were significant but not primarily related to the typical variations along estuaries, such as salinity. The results of the stepwise multiple regression analyses showed that the detritus biomass (ash-free dry weight) was the most important predictor of faunal densities and diversity. The clear relationship between detritus and fauna, together with the contrasting community structure of the two component of the benthos suggest that the meiofauna showed a high efficiency in exploiting the micro-habitat created by the presence of the detritus. Yet the macrofauna, potentially the main consumer of the debris, is negatively affected by their low palatability and poor nutritive value.  相似文献   

13.
Four cruises to the Faroe Bank have collected bottom samples for qualitative analysis of the meiofauna. The preliminary results show a very rich tardigrade fauna, with a large proportion of species new to science. At present 35 species of tardigrades belonging to 4 families (6 sub-families) have been found, of these are 22 new to science (63%). The 35 species comprise more than 20% of all known marine tardigrades. Halechiniscidae is represented by 30 species (1 Euclavarctinae, 11 Styraconyxinae, 12 Tanarctinae, 3 Halechiniscinae, 2 Florarctinae and 1Dipodarctinae). This family comprises 87.87% of the specimens sorted out so far. Specimens from the subfamilies Tanarctinae (46.63%) and Styraconyxinae (31.54%) are dominating. Batillipedidae is represented with 3species (8.63% of the specimens) and Coronarctidae (1.89%) and Stygarctidae (1.61%) with a single species each. Samples with similar sediment from 104—260 m depth have similar species distribution in the families. This implicates that the sediment is the key factor involved in the species distribution and that depth is less important. The calcareous sediment is a unique substrate and the tardigrade fauna of the Faroe Bank can be compared with that of sub-tropical and tropical coralline sand. The composition of species exhibits a strong taxonomic affinity with the tardigrade fauna from more southern latitudes, i.e. the Mediterranean Sea and the south-eastern coast of USA.  相似文献   

14.
The aim of this work was to evaluate the role of different environmental conditions (oxic and anoxic), and the presence of macrofauna and/or meiofauna during the different steps of Scirpus maritimus L. decomposition/mineralization under controlled laboratory conditions. The results showed no significant differences between the anaerobic and the aerobic degradation of plant material, under the presence of bacteria or meiofauna. Nevertheless, under anoxic conditions sediment mineralization was enhanced, with an increase concentration of phosphorus and ammonium in the water phase. Concerning the presence of fauna, results show that, although bacterial activity was responsible for 70% of the S. maritimus leaves degradation, the presence of macrofauna together with meiofauna enhanced the leaves mineralization up to 90%. Moreover, the presence of macrofauna together with meiofauna significantly affected the decomposition of phosphorus and of nitrogen, as well as the leaves lesser labile structural parts, by increasing the mineralization of plant carbon, and raised the nutrient turnover within the system.The present study reinforces the functional link between fauna levels on the nutrient dynamics in salt marshes ecosystems, namely at the vegetation detritus/water column interface. Handling editor: S. M. Thomaz  相似文献   

15.
Pelagic–benthic coupling is relatively well studied in the marginal seas of the Arctic Ocean. Responses of meiofauna with regard to seasonal pulses of particulate organic matter are, however, rarely investigated. We examined the dynamics of metazoan meiofauna and assessed the strength of pelagic–benthic coupling in the Southeastern Beaufort Sea, during autumn 2003 and spring–summer 2004. Meiofauna abundance varied largely (range: 2.3 × 105 to 5 × 106 ind m−2), both spatially and temporally, and decreased with increasing depth (range: 24–549 m). Total meiofauna biomass exhibited similar temporal as well as spatial patterns as abundance and varied from 25 to 914 mg C m−2. Significant relationships between sediment photopigments and various representatives of meiofauna in summer and autumn likely indicate the use of sediment phytodetritus as food source for meiofauna. A carbon-based grazing model provided estimates of potential daily ingestion rates ranging from 32 to 723 mg C m−2. Estimated potential ingestion rates showed that meiofauna consumed from 11 to 477% of the sediment phytodetritus and that meiofauna were likely not food-restricted during spring and autumn. These results show that factors governing the distribution and abundance of metazoan meiofauna need to be better elucidated if we are to estimate the benthic carbon fluxes in marginal seas of the Arctic Ocean. This paper is dedicated to the memory of our dear friend and colleague Gaston Desrosiers who contributed so much to benthic ecology. We will continue in his spirit.  相似文献   

16.
Population density and biomass of bacteria and meiofauna were investigated seasonally in the sediments of the north-western bank of Red Sea. Samples of sediments were collected seasonally from three different stations to determine microphytobenthic biomass (chlorophyll a), protein, lipid, carbohydrate, and total organic matter concentrations. These investigations revealed that microbial components tended to increase their dominancy, whereas sensitive meiofauna were extremely reduced during the entire study period. Thus a very low density of the total meiofauna (with an annual average of 109 ± 26 ind./10 cm2) was recorded whilst the benthic microbial population densities exhibited higher values (ranging from 0.31 ± 0.02 × 108 to 43.67 ± 18.62 × 108/g dry sediment). These changes in the relative importance analysis of benthic microbial components versus meiofaunal ones seem to be based on the impact of organic matter accumulation on the function and structure of these benthic communities. Proteins, lipids and carbohydrates showed very low concentration values, and the organic matter mostly consisted of carbohydrates, reflecting lower nutritional values for benthic fauna in general and meiofauna in particular. The distribution of microbial and meiofaunal communities seems to be dependent on the quality of the organic matter rather than on its quantity. Total organic matter concentrations varied between 5.8 and 7.6 mg/g, with organic carbon accounting for only 32% of the total organic matter. Chlorophyll a attained very low values, fluctuating between 0.11 and 0.56 μg/g, indicating the oligotrophy of the studied area. The very low concentration of chlorophyll a in the Red Sea sediment suggests that the sedimentary organic matter, heterotrophic bacteria and/or protozoa constitute an alternative resource that is consumed by meiofauna when algae are less abundant. Protozoa, therefore, represent the “missing link in bacteria–meiofauna interaction in the Red Sea marine sediment ecosystem.  相似文献   

17.
Using a Phillipson microbomb calorimeter, the energy values of the “infauna-substrate-feeders”Sipunculus nudus andPhascolosoma vulgare and the nutritive value of their food substrate were determined. Calorific measurements were made of the total food substrate, of meiofauna organisms living in it and of fecal pellets from other invertebrate animals which are an important part in the food supply. Analyses of the gut content of the sipunculids and their feces were compared with the surrounding sediment. The total sediment had an ash content of about 97%, and an energy content of approximately 0.14 cal mg?1 dry weight; this is equivalent to 165 kcal m?2. For the meiofauna in this substrate a biomass of 800 mg dry weight was calculated. Using calorific determinations of important meiofauna groups (nematodes 5274 kcal kg?1, ostracods 5884 and 6000 kcal kg?1), one square meter of the sediment surface — the sipunculid food source — yielded a caloric content of 3.78 kcal for the meiofauna, which means a contribution of 2.3% to the total food substrate. The largest part of the calorific contents is by far provided by fecal pellets with 0.6 cal mg?1 dry weight or 150 kcal m?2; this accounts for 92% of the total calorific content of the food substrate. Peritrophic membranes and attached microorganisms may be responsible for this spectacularly high value. Coprophagy plays an important role. The rest of the total value was contributed by particulate and dissolved detritus as well as protozoans with a calculated sum of 10 kcal m?2 or 6%. Food uptake is selective with regard to small sediment grain sizes. The amount of meiofauna in the gut is 80 times lower than in the surrounding environment, the energy content in the anterior gut 10 times higher. The energy loss inS. nudus from the anterior gut to the middle gut is more than 70%, to the posterior gut a further loss of 19% was observed. Calorific measurements in the feces were no longer possible. The utilization of food appears to be almost 100%. A correlation between ash content and the quantity of the sand grain-size fraction 37–125 μm and the calorific content is shown. The meiofauna does not represent a significant part of the total food structure, but it is taken up and utilized as food by the sediment feeding macrofauna.  相似文献   

18.
象山港国华宁海电厂附近海域小型底栖动物的群落结构   总被引:2,自引:0,他引:2  
谢礼  林霞  朱艺峰 《生态科学》2012,31(2):167-172
于2008年夏季(6月)和冬季(12月),在象山港国华宁海电厂沿排水口右侧、从近到远相隔500m设立三个断面A、B、C,并对小型底栖动物丰度及其群落结构变化进行调查研究,结果表明:共鉴定出10个小型底栖动物类群,平均丰度达9407.9inds/10cm2.从类群上看,自由生活海洋线虫占总丰度的62.3%,介形类占第二位,为19.3%.ANOSIM分析结果显示小型底栖动物季节间的丰度存在明显差异(p<0.05),夏季平均丰度(8055.3±1282.9inds/10cm2)比冬季(2141.1±614.2inds/10cm2)约高出3倍.冬季不同断面间的丰度无显著差异,但夏季断面间差异显著(p<0.05),尤其在排水口附近的A断面丰度最低,为1002.8inds/10cm2.SIMPER分析结果显示海洋线虫、介形类、腹足类、涡虫、桡足类是各断面之间非相似的关键类群,这些类群的迁移指示电厂温排水已导致排水口附近海域小型底栖群落结构不稳定,不仅水平分布有差异,垂直分布也明显不同.  相似文献   

19.
Meiofauna associated with a Pacific coral reef in Costa Rica   总被引:3,自引:0,他引:3  
The meiofauna of two coral reef habitats at Isla del Naño, Costa Rica was studied over a one year period. The dominant groups were: Foraminifera (21.2%), Copepoda (19.7%), Nematoda (19.1%), Gastropoda (16.5%), Polychaeta (7.2%) and Bivalvia (6.6%). The highest diversity was found in coarse, heterogeneous sands with the highest percentage of carbonates. The meiofauna showed a high degree of horizontal aggregation, which is a characteristic pattern for macro- and meiofauna in sediments of variable composition. No vertical variation in distribution was evident, probably due to the deep location of the Redox Potential Discontinuity layer. The total densities of organisms found in this study (99 to 575 ind/10 cm2) are low compared with densities in similar non-reefal sands (7 to 6116), and from fine sediments (80 to 17 000), but are comparable to densities found in other reef areas (39 to 609.5 ind/10 cm2). This is the first report on meiofauna from the eastern Pacific, and the first time that foraminiferans are the dominant group.  相似文献   

20.
The intertidal and subtidal soft bottom macro- and meiofauna of a glacier fjord on Spitsbergen was studied after complete ice melt in June 2003. The abundances of the benthic fauna were within the range reported from estuaries and similar intertidal areas of boreal regions. The high proportion of juveniles in the eulittoral zone indicated larval recruitment from subtidal areas. The macrobenthic fauna can be divided into an intertidal and a subtidal community, both being numerically dominated by annelids. Deposit feeders were numerically predominant in intertidal sites, whereas suspension feeders were most abundant in the subtidal area. Among the meiofauna, only the benthic copepods were identified to species, revealing ecological adaptations typical for intertidal species elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号