首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
gamma-Aminobutyric acid (GABA)-stimulated release of L-glutamate from various neuronal regions of acute mouse hippocampal slices was detected with a patch sensor that responds to L-glutamate at the sub-micromolar level. The response of the patch sensor to L-glutamate was evaluated in terms of an integrated current. The integrated current increased with the concentration of L-glutamate ranging from 0.50 to 5.0 microM. By using the patch sensor, GABA-induced L-glutamate release from acute mouse hippocampal slices was detected. The effect of antagonists for GABA(A) and GABA(B) receptors on the L-glutamate release was also investigated. The GABA (25 microM) stimulation induced the release of L-glutamate via GABA(A) receptor in the CA1 region, but GABA did not induce L-glutamate release in the CA3 region. However, in the presence of the GABA(B) receptor antagonist (3-aminopropyl)(diethoxymethyl)phosphinic acid (CGP-35348), release of L-glutamate in the CA3 region was evoked by GABA stimulation. The glutamate release was completely suppressed when both GABA(A) and GABA(B) receptor were inhibited. The current results show that the glutamate release in the CA3 region occurs via a GABA(A) pathway when GABA(B) receptors are inhibited.  相似文献   

2.
L-Glutamate is believed to function as an intercellular transmitter in the islets of Langerhans. However, critical issues, i.e. where, when and how L-glutamate appears, and what happens upon stimulation of glutamate receptors in the islets, remain unresolved. Vesicular glutamate transporter 2 (VGLUT2), an isoform of the vesicular glutamate transporter essential for neuronal storage of L-glutamate, is expressed in alpha cells (Hayashi, M., Otsuka, M., Morimoto, R., Hirota, S., Yatsushiro, S., Takeda, J., Yamamoto, A., and Moriyama, Y. (2001) J. Biol. Chem. 276, 43400-43406). Here we show that VGLUT2 is specifically localized in glucagon-containing secretory granules but not in synaptic-like microvesicles in alpha TC6 cells, clonal alpha cells, and islet alpha cells. VGLUT1, another VGLUT isoform, is also expressed and localized in secretory granules in alpha cells. Low glucose conditions triggered co-secretion of stoichiometric amounts of L-glutamate and glucagon from alpha TC6 cells and isolated islets, which is dependent on temperature and Ca(2+) and inhibited by phentolamine. Similar co-secretion of L-glutamate and glucagon from islets was observed upon stimulation of beta-adrenergic receptors with isoproterenol. Under low glucose conditions, stimulation of glutamate receptors facilitates secretion of gamma-aminobutyric acid from MIN6 m9, clonal beta cells, and isolated islets. These results indicate that co-secretion of L-glutamate and glucagon from alpha cells under low glucose conditions triggers GABA secretion from beta cells and defines the mode of action of L-glutamate as a regulatory molecule for the endocrine function. To our knowledge, this is the first example of secretory granule-mediated glutamatergic signal transmission.  相似文献   

3.
An excised patch membrane sensor for arachidonic acid (AA) is described, whose response stems from AA-induced channel-type transport of ions across the excised patch membrane. The patch membrane sensor was prepared in situ by excising mouse hippocampal cell membranes with patch pipets having a tip diameter of < 0.5 microm. The sensor responds to AA, giving rise to a channel-type current, and its magnitude (apparent conductance) increased with increasing AA concentration in the range from 10 to 30 nM. The detection limit was 2.1 nM (S/N = 3). The induction of channel-type currents was selective to AA over fatty acids such as palmitic acid, stearic acid, oleic acid, gamma-linolenic acid, and docosahexaenoic acid and AA metabolites such as 12-HETE, 5-HETE, and prostaglandin D(2). The sensor was applied to quantification of AA released from various neuronal regions (CA1, CA3, and DG) of mouse hippocampus under stimulation of 100 microM L-glutamate. The release of AA from each region was observed 1 min after the stimulation and the concentration of AA 5 min after the stimulation varied among the neuronal sites, i.e., 8+/-1 nM (n = 5) for CA1, 15+/-3 nM (n = 3) for CA3, and 6+/-2 nM (n = 9) for DG. The L-glutamate-evoked release of AA was partly inhibited by ionotropic glutamate receptor antagonists (APV and DNQX) and completely blocked by phospholipase A2 (PLA2) inhibitor (MAFP), suggesting that the release of AA occurred by glutamate receptor-mediated activation of PLA2. The potential use of the present sensor for detecting local concentration of AA at various neuronal sites is discussed.  相似文献   

4.
Treatment of rat cortical synaptosomes with micromolar concentrations of L-glutamate stimulated the release of the secreted form of amyloid precursor protein in a concentration-dependent, however biphasic manner as assayed by semiquantitative Western blot analysis. The secreted amyloid precursor protein released from synaptosomes into the incubation medium was highest in the presence of 500 microM L-glutamate (about 64% over the level assayed in the incubation medium in the absence of any drug). In contrast, direct stimulation of protein kinase C by phorbol-12-myristate-13-acetate resulted in a concentration-independent increase in secretory amyloid precursor protein release by about 100% already detectable at a concentration of 0.1 microM but with no significant change at higher concentrations up to 10 microM. The presented data show that there is a constitutive release of secretory amyloid precursor protein from synaptosomes and suggest that (i) processing of amyloid precursor protein at the synaptic level is controlled by L-glutamate presumably via activation of protein kinase C, and (ii) isolated cortical synaptosomes represent a useful experimental approach to selectively study amyloid precursor protein metabolism at the synaptic level.  相似文献   

5.
Many cell types release ATP in response to mechanical or biochemical stimulation. The mechanisms responsible for this release, however, are not well understood and may differ among different cell types. In addition, there are numerous difficulties associated with studying the dynamics of ATP release immediately outside the cell membrane. Here, we report a new method that allows the visualization and quantification of ATP release by fluorescence microscopy. Our method utilizes a two-enzyme system that generates NADPH when ATP is present. NADPH is a fluorescent molecule that can be visualized by fluorescence microscopy using an excitation wavelength of 340 nm and an emission wavelength of 450 nm. The method is capable of detecting ATP concentrations <1 microM and has a dynamic range of up to 100 microM. Using this method, we visualized and quantified ATP release from human polymorphonuclear leukocytes and Jurkat T cells. We show that upon cell stimulation, the concentrations of ATP can reach levels of up to 80 microM immediately outside of the cell membrane. This new method should prove useful for the study of the mechanisms of release and functional role of ATP in various cell systems, including individual cells.  相似文献   

6.
[3H]gamma-aminobutyric acid (GABA) was taken up by cultured embryonic retina cells during the initial stages of cell differentiation. The accumulated GABA was released in the bathing medium and a transient increase in the efflux of GABA was observed when cultures were pulse-stimulated (2 min) with 0.1 mM L-glutamate but not with D-glutamate. The EC50 for L-glutamate to evoke [3H]GABA release was approximately 15 microM. This value is close to the Km for high-affinity uptake of L-glutamate by retina cells. When Na+ ions were replaced by Li+ ions, L-glutamate-induced release of GABA was abolished. Moreover, L-[14C]glutamate uptake by retina cells was significantly reduced when NaCl was replaced by LiCl in the incubation medium. L-Glutamate elicited release of GABA was Ca2+ independent, and was observed when Ca2+ was replaced by Co2+ or when Mg2+ ions were increased to 10 mM concentration. D-Aspartate, which is taken up by the same high-affinity uptake mechanism as L-glutamate, induced an increase in [3H]GABA efflux comparable to L-glutamate. The addition of unlabeled GABA to the medium also promoted the release of accumulated [3H]GABA. However, GABA was twofold less effective than L-glutamate in eliciting [3H]GABA release. The addition of both GABA and L-glutamate to the incubation medium indicated that [3H]GABA efflux due to L-glutamate and GABA was additive. L-Aspartate also promoted an increase in the efflux of [3H]GABA accumulated by retina cells. However, L-aspartate effect was significantly decreased in the absence of Ca2+ or when Na+ ions were replaced by Li+. Our results indicate that at least three releasable pools of GABA are present in the chick embryo retina cells: (a) a GABA-promoted GABA release-homoexchange, (b) a Ca2+-dependent L-aspartate-promoted release, and (c) a Ca2+-independent, Na+-dependent L-glutamate-evoked release. In addition, our data strongly suggest that the L-glutamate-promoted GABA release is due to a process of exchange of L-glutamate with GABA, which may play a fundamental role in the fine control of the excitability of local circuits in the retina.  相似文献   

7.
Alzheimer's amyloid beta-protein (Abeta) has been reported to potentiate glutamate toxicity in neurons, but very little is known about interaction between Abeta and glutamate in astrocytes. Therefore, in the present study, we investigated the effects of Abeta and glutamate on morphology of astrocytes. Cultured rat cortical astrocytes exhibited polygonal morphology in the absence of stimulation and differentiated into process-bearing stellate cells following exposure to Abeta (20 microM). L-Glutamate (30-1,000 microM) had no effect on astrocyte morphology in the absence of stimulation but strongly suppressed Abeta-induced stellation. The suppressive effect of L-glutamate on Abeta-induced stellation was not mimicked by glutamate receptor agonists and not blocked by glutamate receptor antagonists. In contrast, the suppressive effect of L-glutamate was mimicked by D- and L-aspartate and transportable glutamate uptake inhibitors. These results suggest that Abeta-induced astrocyte stellation is suppressed by a mechanism related to glutamate transporters.  相似文献   

8.
The mass of total arachidonate released from phospholipids upon agonist stimulation of the cell and the fraction of released arachidonate which is converted to icosanoids are two parameters of arachidonate metabolism which have been difficult to quantitate because the mass of arachidonate released upon cell stimulation is very low. We have been able to quantitate both of these parameters under a variety of experimental conditions using a unique essential fatty acid-deficient mouse fibrosarcoma cell line (EFD-1), which when repleted with arachidonate, produces prostaglandin E2 (PGE2). Because there is no endogenous pool of arachidonate in these cells, the specific activity of exogenous arachidonate does not change upon incorporation into cells, an advantage which permits mass determination of very small quantities of arachidonate directly from radioactive counts. EFD-1 cells were incubated with various concentrations of [14C]arachidonate (for release studies) or unlabeled arachidonate (for PGE2 radioimmunoassays) for 24 h and then stimulated with bradykinin. The time courses for arachidonate release and PGE2 production demonstrated that free arachidonate was rapidly converted to PGE2 with plateau levels attained for both parameters within 240 s of agonist exposure for 2 microM and for 10 microM arachidonate-repleted cultures. There was a linear relationship (r = 0.94) between the mass of arachidonate in the cell and the mass of arachidonate released upon stimulation, up to a cellular concentration of 11 nmol of arachidonate/10(6) cells, a concentration 10-20% above normal for the parent mouse fibrosarcoma cell line (HSDM1C1) which is not essential fatty acid-deficient. Importantly, the percent of released arachidonate which was converted to PGE2 decreased from 90 to 15% with increasing concentrations of cellular arachidonate, because PGE2 production plateaued at greater than or equal to 6 nmol of arachidonate/10(6) cells, but total arachidonate release continued to rise. Finally, we demonstrated that agonist stimulation with thrombin, A23187, and bradykinin all showed the same percent conversion of released arachidonate to PGE2, implying that the determination of this fraction is not a function of the mechanism of release. These studies with our unique cell line indicate that, when the concentration of arachidonate in the cell is not elevated above amounts normally found in our HSDM1C1 cell line, released arachidonate is rapidly and almost quantitatively converted to PGE2, independent of the agonist used to stimulate the cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Simultaneous monitoring of amperometric currents at a glass capillary sensor based on recombinant GluOx and field excitatory postsynaptic potentials (fEPSPs) were performed in region CA1 of mouse hippocampal slices. A transient increase in the glutamate current relative to the basal one at control stimulation (0.052Hz) was evoked by stimulation at 2 Hz for 2 min. The magnitude of the glutamate current was dependent on the intensity (current) of a 2 Hz stimulus and reflected the slope of the fEPSP. The in situ calibration of the L-glutamate sensor revealed that the extracellular concentration of L-glutamate released by 2 Hz stimulation before tetanus is in the range from 0.8 to 2.2 μM and it is enhanced after tetanic stimulation. The L-glutamate level at a test stimulus (0.052 Hz) was estimated to be 32 nM. The recombinant GluOx-based sensor exhibited weak responses to glutamine above 300 μM and L-aspartic acid above 200 μM. The potential use of a glass capillary sensor in combination with fEPSP measurements for electrophysiological study is discussed.  相似文献   

10.
The mechanism of L-glutamate uptake was studied in Rhodobacter sphaeroides. Uptake of L-glutamate is mediated by a high-affinity (Kt of 1.2 microM), shock-sensitive transport system that is inhibited by vanadate and dependent on the internal pH. From the shock fluid, an L-glutamate-binding protein was isolated and purified. The protein binds L-glutamate (apparent Kd of 1.3 microM) and L-glutamine (Ki of 15 microM) with high affinity. The expression level of this binding protein is maximal at limiting concentrations of glutamine in the growth medium. The glutamate-binding protein restores the uptake of L-glutamate in spheroplasts. L-Aspartate is a strong competitive inhibitor of L-glutamate uptake (Ki of 3 microM) but competes only poorly with L-glutamate for binding to the binding protein (Ki of > 200 microM). The uptake of L-aspartate in R. sphaeroides also involves a binding protein which is distinct from the L-glutamate-binding protein. These data suggest that in R. sphaeroides, the L-glutamate- and L-aspartate-binding proteins interact with the same membrane transporter.  相似文献   

11.
Crosslinking of type I Fc epsilon receptors (Fc epsilon RI) on the surface of basophils or mast cells initiates a cascade of processes leading to the secretion of inflammatory mediators. We report here a correlation between mediator secretion and the activation of Cl- channels in rat mucosal-type mast cells (line RBL-2H3). Stimulation of RBL cells by either IgE and antigen or by a monoclonal antibody specific for the Fc epsilon RI, resulted in the activation of Cl- ion channels as detected by the patch-clamp technique. Channel activation occurred slowly, within minutes after stimulation. The channel has a slope conductance of 32 pS at potentials between 0 and -100 mV, and an increasing open-state probability with increasing depolarization. Activation of apparently the same Cl- channels could be mimicked without stimulation by isolating inside-out membrane patches in tyrode solution. Parallel inhibition of both Cl- channel activity and mediator secretion, as monitored by serotonin release, was observed by two compounds, the Cl- channel blocker 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and the anti-allergic drug cromolyn. NPPB inhibited both the antigen-induced Cl- current and the serotonin release, where half-maximal inhibition occurred at similar doses, at 52 microM and 77 microM, respectively. The drug cromolyn, recently found to inhibit immunologically induced mediator secretion from RBL cells upon intracellular application, also blocks Cl- channels (IC50 = 15 microM) when applied to the cytoplasmic side of an inside-out membrane patch. The observed Cl- channel activation upon immunological stimulation and the parallel inhibition of channel current and of serotonin release suggests a functional role for this Cl- channel in mediator secretion from the mast cells studied.  相似文献   

12.
Strain OKM-9 is a mesophilic, mixotrophic iron-oxidizing bacterium that absolutely requires ferrous iron as its energy source and L-amino acids (including L-glutamate) as carbon sources for growth. The properties of the L-glutamate transport system were studied with OKM-9 resting cells, plasma membranes, and actively reconstituted proteoliposomes. L-Glutamate uptake into resting cells was totally dependent on ferrous iron that was added to the reaction mixture. Potassium cyanide, an iron oxidase inhibitor, completely inhibited the activity at 1 mM. The optimum pH for Fe2+-dependent uptake activity of L-glutamate was 3.5-4.0. Uptake activity was dependent on the concentration of the L-glutamate. The Km and Vmax for L-glutamate were 0.4 mM and 11.3 nmol x min(-1) x mg(-1), respectively. L-Aspartate, D-aspartate, D-glutamate, and L-cysteine strongly inhibited L-glutamate uptake. L-Aspartate competitively inhibited the activity, and the apparent Ki for this amino acid was 75.9 microM. 2,4-Dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone, gramicidin D, valinomycin, and monensin did not inhibit Fe2+-dependent L-glutamate uptake. The OKM-9 plasma membranes had approximately 40% of the iron-oxidizing activity of the resting cells and approximately 85% of the Fe2+-dependent uptake activity. The glutamate transport system was solubilized from the membranes with 1% n-octyl-beta-D-glucopyranoside and reconstituted into a lecithin liposome. The L-glutamate transport activity of the reconstituted proteoliposomes was 8-fold than that of the resting cells. The Fe2+-dependent L-glutamate uptake observed here seems to explain the mixotrophic nature of this strain, which absolutely requires Fe2+ oxidation when using amino acids as carbon sources.  相似文献   

13.
By monitoring changes in the cytosolic [Ca2+](i) and rates of juvenile hormone (JH) synthesis in response to L-glutamate agonists and antagonists, we identified and characterized glutamate receptor subtypes in corpus allatum (CA) cells of the cockroach, Diploptera punctata. During the first ovarian cycle, corpora allata exhibited a cycle of changes in sensitivity to L-glutamate correlated to cyclic changes in rates of JH synthesis. When exposed to 60 microM L-glutamate in vitro, the active corpora allata of day-4 mated females produced 60% more JH, while inactive corpora allata at other ages showed 10-20% stimulatory response. Pharmacological characterization using various L-glutamate receptor agonists and antagonists indicated that several ionotropic subtypes of L-glutamate receptors were present in the CA. The CA showed an increase in rates of JH synthesis in response to NMDA, kainate, and quisqualate, but not to AMPA in both L-15 medium and minimum incubation medium. In contrast, applications of the metabotropic receptor-specific agonist trans-ACPD failed to elicit a change in the cytosolic [Ca2+](i) and JH production.An elevation of cytosolic calcium concentration, followed by 20-30% rise in JH production, was observed when active CA cells were exposed to 10-40 microM kainate. Kainate had no stimulatory effect on JH synthesis in calcium-free medium. The kainate-induced JH synthesis was blocked by 20 microM CNQX but was not affected by 20 microM NBQX. Kainate-stimulated JH production was not suppressed by MK-801 (a specific blocker of NMDA-receptor channel), nor was NMDA-stimulated JH production affected by CNQX (a specific antagonist of kainate receptor). These data suggest that active CA cells are stimulated to synthesize more JH by a glutamate-induced calcium rise via NMDA-, kainate- and/or quisqualate-sensitive subtypes of ionotropic L-glutamate receptors. The metabotropic-subtype and ionotropic AMPA-subtype L-glutamate receptors are unlikely to be present on active CA cells.  相似文献   

14.
The binding of L-[3H]glutamate to an isolated membrane preparation from crayfish tail muscle has been studied. The muscle homogenate was osmotically shocked, frozen and thawed, and thoroughly washed before incubation with L-[3H]glutamate. The preparation showed high specific binding of L-glutamate with a KD of 0.12 microM and Bmax of 4.7 pmol/mg protein measured in Tris/HCl pH 7.3 and at 4 degrees C. Nonspecific binding was 5-10% of total binding. The glutamate binding was highly stereospecific [K0.5 (D-glutamate), 270 microM] and showed a high degree of discrimination between L-glutamate and L-aspartate [K0.5 (L-aspartate), 54 microM]. In mammalian CNS preparations potent agonists of L-glutamate such as kainate and N-methyl-D-aspartate had no effect at 1 mM, and quisqualate was a weak inhibitor of L-glutamate binding [K0.5 (quisqualate), 162 microM]. Ibotenate was the most potent inhibitor [K0.5 (ibotenate), 0.27 microM], and various esters of L-glutamate were of intermediate potency as displacers of L-[3H]glutamate binding (K0.5 values from 6 to 60 microM). The glutamate binding site from crayfish muscle is clearly different from any of the subclasses of glutamate receptors in mammalian CNS. A possible physiological function of the binding site is a postsynaptic receptor for glutamate, either an extra-junctional or a junctional receptor.  相似文献   

15.
G Pines  B I Kanner 《Biochemistry》1990,29(51):11209-11214
Membrane vesicles from rat brain exhibit sodium-dependent uptake of L-[3H]glutamate in the absence of any transmembrane ion gradients. The substrate specificity of the process is identical with (Na+ + K+)-coupled L-glutamate accumulation. Although these vesicles are prepared after osmotic shock and are washed repeatedly, they contain about 1.5 nmol/mg of protein endogenous L-glutamate, apparently located inside the vesicles. The affinity of the process (Km approximately 1 microM) is similar to that of (Na+ + K+)-dependent accumulation by the L-glutamate transporter. Membrane vesicles have been disrupted by the detergent cholate, and the solubilized proteins have been subsequently reconstituted into liposomes. The reconstituted proteoliposomes also exhibit the above uptake--with the same characteristics--provided they contain entrapped cold L-glutamate. Counterflow is optimal when sodium is present on both sides of the membrane, but partial activity is still observed when sodium is present either on the inside or on the outside. Increasing the L-glutamate concentration above the Km results in counterflow completely independent of cis sodium. The initial rate of counterflow is 100-200-fold lower than that of net trans potassium dependent flux. The rate of net flux in the presence of trans sodium or lithium is about 10-fold lower than when choline or Tris are used instead. However, the rate of counterflow (no internal potassium present) was not stimulated by replacing internal sodium or lithium by internal choline. Therefore, optimal functioning of the transporter requires internal potassium while internal sodium and lithium are inhibitory.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The synaptosomal transport of L-[35S]cystine occurs by three mechanisms that are distinguishable on the basis of their ionic dependence, kinetics of transport and the specificity of inhibitors. They are (a) low affinity sodium-dependent transport (Km 463 +/- 86 microM, Vmax 185 +/- 20 nmol mg protein-1 min-1), (b) high affinity sodium-independent transport (Km 6.90 +/- 2.1 microM, Vmax 0.485 +/- 0.060 nmol mg protein(-1) min(-1)) and (c) low affinity sodium-independent transport (Km 327 +/- 29 microM, Vmax 4.18 +/- 0.25 nmol mg protein(-1) min(-1)). The sodium-dependent transport of L-cystine was mediated by the X(AG)- family of glutamate transporters, and accounted for almost 90% of the total quantity of L-[35S]cystine accumulated into synaptosomes. L-glutamate (Ki 11.2 +/- 1.3 microM) was a non-competitive inhibitor of this transporter, and at 100 microM L-glutamate, the Vmax for L-[35S]cystine transport was reduced to 10% of control. L-cystine did not inhibit the high-affinity sodium-dependent transport of D-[3H]aspartate into synaptosomes. L-histidine and glutathione were the most potent inhibitors of the low affinity sodium-independent transport of L-[35S]cystine. L-homocysteate, L-cysteine sulphinate and L-homocysteine sulphinate were also effective inhibitors. 1 mM L-glutamate reduced the sodium-independent transport of L-cystine to 63% of control. These results suggest that the vast majority of the L-cystine transported into synaptosomes occurs by the high-affinity glutamate transporters, but that L-cystine may bind to a site that is distinct from that to which L-glutamate binds. The uptake of L-cystine by this mechanism is sensitive to inhibition by increased extracellular concentrations of L-glutamate. The importance of these results for understanding the mechanism of glutamate-mediated neurotoxicity is discussed.  相似文献   

17.
Calcium-sensitive inositide release in a purified rat liver plasma membrane preparation is increased by calcium-mobilizing hormones in the presence of guanine nucleotides. Vasopressin-stimulated inositide release is evident in the presence of GTP or its nonhydrolyzable analogs guanyl-5'-yl imidodiphosphate and guanosine 5'-(3-O-thio)triphosphate (GTP gamma S). The stimulation of inositide release by (-)-epinephrine (alpha 1), angiotensin II, or vasopressin in the presence of either 1 microM or 10 microM GTP gamma S correlates with the number of receptors present for each hormone. The guanine nucleotide and hormonal stimulation is evident on both inositol trisphosphate production and phosphatidylinositol bisphosphate degradation. Ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (1 mM) completely abolishes stimulation by guanine nucleotides and hormone. Prior treatment of plasma membranes with cholera toxin or islet activating protein or prior injection of animals with islet activating protein does not affect stimulation of inositide release by GTP gamma S or GTP gamma S plus vasopressin. Stimulation by GTP gamma S is dependent upon magnesium and is inhibitable by guanosine 5'-(2-O-thio) diphosphate. Inositide release from the plasma membrane exhibits half-maximal stimulation by calcium at approximately 100 nM free calcium in the presence of 1.5 mM MgCl2 and at approximately 10 microM free calcium in the presence of 10 mM MgCl2. Addition of guanine nucleotides decreases the requirement for calcium and also increases the activity at saturating calcium. The results presented suggest that calcium-mobilizing hormones stimulate polyphosphoinositide breakdown in rat liver plasma membranes through a novel guanine nucleotide binding protein.  相似文献   

18.
L-Glutamate, N-methyl-D-aspartic acid (NMDA), quisqualate, and kainate were found to increase endogenous somatostatin release from primary cultures of rat cortical neurons in a dose-dependent manner. The rank order of potency calculated from the dose-response curves was quisqualate greater than glutamate = NMDA greater than kainate, with EC50 values of 0.4, 20, and 40 microM, respectively. Alanine, glutamine, and glycine did not modify the release of somatostatin. The stimulation of somatostatin release elicited by L-glutamate was Ca2+ dependent, was decreased by Mg2+, and was blocked by DL-amino-5-phosphonovaleric acid (APV) and thienylphencyclidine (TCP), two specific antagonists of NMDA receptors. The NMDA stimulatory effect was strongly inhibited by APV in a competitive manner (IC50 = 50 microM) and by TCP in a noncompetitive manner (IC50 = 90 nM). The release of somatostatin induced by the excitatory amino acid agonists was not blocked by tetrodotoxin (1 microM), a result suggesting that tetrodotoxin-sensitive, sodium-dependent action potentials are not involved in the effect. Somatostatin release in response to NMDA was potentiated by glycine, but the inhibitory strychnine-sensitive glycine receptor did not appear to be involved. Our data suggest that glutamate exerts its stimulatory action on somatostatin release essentially through an NMDA receptor subtype.  相似文献   

19.
Summary The distribution of radioactivity at branches and terminals of the fast axon in extensor tibiae muscle incubated in the radiolabelled putative neurotransmitter L-glutamate was determined by electron microscopic autoradiography. Quantitative analysis of the distribution of silver grains at the axon branches and terminals in preparations stimulated at a low frequency shows that most of the radioactivity is present in the glial cells. In preparations stimulated to the point of fatigue substantial radioactivity is present in both the glial cells and the axoplasm of the terminals. It is suggested that the uptake of L-glutamate into the axoplasm of the terminals is correlated with the depletion and recovery of vesicle numbers after stimulation.The authors thank Dr. N.M. Blackett for running the computer analyses of the autoradiographical data. R.P. Botham gratefully acknowledges the SRC for financial assistance  相似文献   

20.
The ability of 1-carboxymethyl-2-imino-3-phosphonoimidazolidine (cyclocreatine-P), accumulated by a simple brain model, to function as a supplemental synthetic phosphagen and respond to the decreases in cytosolic ATP/free ADP ratios that occur during prolonged stimulation by various excitatory amino acids was investigated. Suspensions of chopped whole brain from 11- to 14-day-old chick embryos were incubated with 30 mM cyclocreatine for 90 min, resulting in accumulation of 100 mumol/g dry weight of cyclocreatine-P, and then incubated for up to 1 h with a series of excitatory amino acids of widely differing potencies. Under these conditions net utilization of cyclocreatine-P was detected in response to stimulation by the following neuroexcitatory compounds at the indicated threshold concentrations: kainate (20 microM), N-methyl-DL-aspartate (20 microM), L-homocysteate (20 microM), L-glutamate (200 microM), D-glutamate (200 microM), L-aspartate (2 mM), DL-2-amino-3-phosphonopropionate (2 mM), and DL-2-amino-4-phosphonobutyrate (2 mM). Significant increases in water content of chick embryo brain minces accompanied stimulation by excitatory amino acids. It is suggested that changes in water content or cyclocreatine-P levels in this sensitive brain model might be utilized in automatable screening procedures for detecting novel antagonists and/or new agonists of excitatory amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号