首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendritic cells (DC) are able to elicit anti-tumoral CD8(+) T cell responses by cross-presenting exogenous antigens in association with major histocompatibility complex (MHC) class I molecules. Therefore they are crucial actors in cell-based cancer immunotherapy. Although apoptotic cells are usually considered to be the best source of antigens, live cells are also able to provide antigens for cross-presentation by DC. We have recently shown that prophylactic immunotherapy by DC after capture of antigens from live B16 melanoma cells induced strong CD8(+) T-cell responses and protection against a lethal tumor challenge in vivo in C57Bl/6 mice. Here, we showed that DC cross-presenting antigens from live B16 cells can also inhibit melanoma lung dissemination in a therapeutic protocol in mice. DC were first incubated with live tumor cells for antigen uptake and processing, then purified and irradiated for safety prior to injection. This treatment induced stronger tumor-specific CD8(+) T-cell responses than treatment by DC cross-presenting antigens from apoptotic cells. Apoptotic B16 cells induced more IL-10 secretion by DC than live B16 cells. They underwent strong native antigen degradation and led to the expression of fewer MHC class I/epitope complexes on the surface of DC than live cells. Therefore, the possibility to use live cells as sources of tumor antigens must be taken into account to improve the efficiency of cancer immunotherapy.  相似文献   

2.
Dendritic cell (DC) vaccines targeting only cancer cells have produced limited antitumor activity in most clinical studies. Targeting cancer-associated fibroblasts (CAFs) in addition to cancer cells may enhance antitumor effects, since CAFs, the central component of the tumor stroma, directly support tumor growth and contribute to the immunosuppressive tumor microenvironment. To co-target CAFs and tumor cells we developed a new compound DC vaccine that encodes an A20-specific shRNA to enhance DC function, and targets fibroblast activation protein (FAP) expressed in CAFs and the tumor antigen tyrosine-related protein (TRP)2 (DC-shA20-FAP-TRP2). DC-shA20-FAP-TRP2 vaccination induced robust FAP- and TRP2-specific T-cell responses, resulting in greater antitumor activity in the B16 melanoma model in comparison to monovalent vaccines or a vaccine encoding antigens and a control shRNA. DC-shA20-FAP-TRP2 vaccination enhanced tumor infiltration of CD8-positive T cells, and induced antigen-spreading resulting in potent antitumor activity. Thus, co-targeting of tumor cells and CAFs results in the induction of broad-based tumor-specific T-cell responses and has the potential to improve current vaccine approaches for cancer.  相似文献   

3.
Dendritic cells (DCs) serve as central regulators of adaptive immunity by presenting antigens and providing necessary co-signals. Environmental information received by the DCs determines the co-signals delivered to the responding adaptive cells and, ultimately, the outcome of the interaction. DCs loaded with relevant antigens have been used as therapeutic cellular vaccines, but the optimal antigen loading method has not been determined. We compared different methods to load class I and class II epitopes from the male antigenic complex, HY, onto DCs for the potency of the immune response induced in vivo. Co-incubation of female DCs with HY peptides, RNA or cell lysate from HY expressing tumor induced immune responses equivalent to male DCs. In contrast, female DCs incubated with irradiated, apoptotic HY expressing tumor cells (or male B cells) generated a stronger immune response than male DCs or female DCs loaded using any of the other methods. DC loading with apoptotic tumor resulted in complete protection against high dose HY-expressing tumor challenge whereas 100% lethality was observed in groups receiving DCs that were loaded with peptides, RNA, or lysate. We conclude that signals provided to the DCs by apoptotic cells substantially augment the potency of DC vaccines.  相似文献   

4.
For cancer immunotherapy the loading of dendritic cells (DCs) with whole tumor cell lysate preparations represents a simple and promising approach for presentation of tumor-associated antigens (TAAs), avoiding the disadvantages of HLA-matching and definition of TAAs. The aim of this study was to investigate whether lysate-pulsed DCs efficiently cross-prime CD8+ T cells and induce a strong T(H)1 cell response, as compared to DCs pulsed with specific peptides (FLU M1 and Melan-A/Mart-1). As a model system breast carcinoma cell lysate from either MCF-7 or MDA-MB-231 cell lines (both HLA-A*0201+) expressing the TAA MUC1 were selected. Both cell lines expressed MUC1, the epithelial mucin, which is a large molecular weight O-glycosylated protein expressed in the majority of breast, ovarian, and other epithelial malignancies and is under evaluation as a target antigen in cancer immunotherapy. We developed a simple lysate preparation method to solubilize all cell proteins without degradation. For loading of monocyte-derived dendritic cells, 100 microgmL(-1) of breast carcinoma cell lysate was used, accompanied by an adjuvant consisting of tumor necrosis factor-alpha (TNF-alpha) and prostaglandin-E2. T cells were co-cultivated with lysate or peptide pulsed DCs and were restimulated weekly. Before cultivation, and after the 3rd stimulation, tetramer frequencies for the MUC1 epitopes M1.2 and F7 as well as for the FLU M1 and Melan-A/Mart-1 epitopes were determined. After stimulation with lysate, higher frequencies for M1.2-specific T cells were observed compared with the F7 epitope. Furthermore, we found expansion factors for M1.2-specific T cells that had been stimulated with MCF-7 lysate-pulsed DCs of up to 43-fold. The analysis of typical T(H)1/T(H)2 cytokines (IFN-gamma, TNF-alpha, IL-12p70, IL-2, IL-4, IL-5, and IL-10) revealed a strong T(H)1 response. These results provide evidence for a strong T(H)1 polarization and cross-priming of MUC1-specific CD8+ T cells and demonstrate the feasibility of using lysate-pulsed dendritic cells in breast cancer immunotherapy.  相似文献   

5.
Due to their capacity to induce primary immune responses, dendritic cells (DC) are attractive vectors for immunotherapy of cancer. Yet the targeting of tumor Ags to DC remains a challenge. Here we show that immature human monocyte-derived DC capture various killed tumor cells, including Jurkat T cell lymphoma, malignant melanoma, and prostate carcinoma. DC loaded with killed tumor cells induce MHC class I- and class II-restricted proliferation of autologous CD8+ and CD4+ T cells, demonstrating cross-presentation of tumor cell-derived Ags. Furthermore, tumor-loaded DC elicit expansion of CTL with cytotoxic activity against the tumor cells used for immunization. CTL elicited by DC loaded with the PC3 prostate carcinoma cell bodies kill another prostate carcinoma cell line, DU145, suggesting recognition of shared Ags. Finally, CTL elicited by DC loaded with killed LNCap prostate carcinoma cells, which express prostate specific Ag (PSA), are able to kill PSA peptide-pulsed T2 cells. This demonstrates that induced CTL activity is not only due to alloantigens, and that alloantigens do not prevent the activation of T cells specific for tumor-associated Ags. This approach opens the possibility of using allogeneic tumor cells as a source of tumor Ag for antitumor therapies.  相似文献   

6.
Effective vaccines and immunotherapies against cancer require professional antigen-presenting cells to cross-present exogenous antigen to initiate cytotoxic T-cell responses to destroy tumors. Virus-like particles (VLPs), containing tumor antigens, which can immunize against cancers, are cross-presented by dendritic cell (DC) but the mechanism by which this occurs is not fully understood. Here, we used VLPs, derived from rabbit hemorrhagic disease virus (RHDV) with both murine and human DCs, to elucidate these pathways. We have employed inhibitors to demonstrate that these VLPs are taken up by clathrin-dependent macropinocytosis and phagocytosis before being degraded in acidic lysosomal compartments. VLP-derived peptides are loaded onto major histocompatibility complex I that have been recycled from the cell surface. Antigen-coupled VLPs and murine ovalbumin-specific and human melanoma-associated antigen recognized by T cells (MART-1)-specific CD8(+) T cells were used to demonstrate cross-presentation via this alternate, receptor recycling pathway, which operated independently of the proteasome and the transporter-associated with antigen presentation. Finally, we found that cross-presentation of VLPs in vivo was not confined to CD8α(+) DC subsets. These data define the cross-presentation pathway for RHDV VLPs and may lead to improved cancer immunotherapies.  相似文献   

7.
Dendritic cells (DC) loaded with tumor associated antigens (TAA) are often used for the vaccination of cancer patients; however methodologies for the vaccine preparation have not yet been standardized. The purpose of this work was to optimize the ex-vivo production of functional TAA-loaded DC that would produce interleukin-2 (IL-12) and enhance the T cell response. We generated ex-vivo DC from human monocytes with granulocyte macrophage-colony stimulating factor (GM-CSF) and IL-4, and whole necrotic tumor cells (cell lysates) of cancer cell lines were used as model TAA. DC were loaded with lysates without or with additional tumor necrosis factor-alpha (TNF-alpha), or cytokine combination treatments and tested for functional ability in vitro. Tumor cell lysates alone did not fully mature DC either phenotypically or functionally. After antigen uptake additional maturation signals were necessary. TNF-alpha matured DC phenotypically, but additional interferon-gamma (IFN-gamma) treatment was necessary to achieve functional maturation, the production of significant amounts of IL-12. Since IL-12 production by DC increased during the first 24 h of maturation and declined by 48 h, proper timing of the ex-vivo DC treatment was crucial for the generation of functionally mature antigen-loaded DC. Our results suggest that after allowing 4 h of tumor lysate uptake by immature DC, further treatment with TNF-alpha and IFN-gamma for 24 h provides the optimal conditions to obtain functional TAA-loaded DC. These TAA-loaded cytokine pretreated DC then prime na?ve T cells, and enhance both T helper 1 (Th1), Th2 and cytotoxic T lymphocyte (CTL) responses, that are necessary to achieve an effective, specific anti-tumor response.  相似文献   

8.
A major focus of cancer immunotherapy is to develop strategies to induce T-cell responses through presentation of tumor antigens by dendritic cells (DCs). Current vaccines are limited in their ability to efficiently transfer antigens to DCs in vivo. Ex vivo-generated DCs can be efficiently loaded with antigen but after reinjection, few DCs traffic to secondary lymphoid organs, the critical sites for antigen presentation. To enhance efficiency and durability of antigen presentation by DCs, we transduced hematopoietic stem-progenitor cells (HSCs) with a model tumor antigen and then transplanted the gene-modified cells into irradiated recipient mice, which resulted in efficient expression of the transgene in a large proportion of donor derived DCs in lymphoid organs. The combination of bone marrow transplantation (BMT) using transduced HSCs, systemic agents that generate and activate DCs, and mature T-cell infusion resulted in substantial expansion and activation of antigen-specific T cells. This tripartite strategy provided potent antigen-specific immunotherapy for an aggressive established tumor.  相似文献   

9.
Cancer stem cells (CSCs) are responsible for therapeutic resistance and recurrence in colorectal cancer. Despite advances in immunotherapy, the inability to specifically eradicate CSCs has led to treatment failure. Hence, identification of appropriate antigen sources is a major challenge in designing dendritic cell (DC)-based therapeutic strategies against CSCs. Here, in an in vitro model using the HT-29 colon cancer cell line, we explored the efficacy of DCs loaded with exosomes derived from CSC-enriched colonospheres (CSCenr-EXOs) as an antigen source in activating CSC-specific T-cell responses. HT-29 lysate, HT-29-EXOs and CSCenr lysate were independently assessed as separate antigen sources. Having confirmed CSCs enrichment in spheroids, CSCenr-EXOs were purified and characterized, and their impact on DC maturation was investigated. Finally, the impact of the antigen-pulsed DCs on the proliferation rate and also spheroid destructive capacity of autologous T cells was assessed. CSCenr-EXOs similar to other antigen groups had no suppressive/negative impacts on phenotypic maturation of DCs as judged by the expression level of costimulatory molecules. Notably, similar to CSCenr lysate, CSCenr-EXOs significantly increased the IL-12/IL-10 ratio in supernatants of mature DCs. CSCenr-EXO-loaded DCs effectively promoted T-cell proliferation. Importantly, T cells stimulated with CSCenr-EXOs disrupted spheroids' structure. Thus, CSCenr-EXOs present a novel and promising antigen source that in combination with conventional tumour bulk-derived antigens should be further explored in pre-clinical immunotherapeutic settings for the efficacy in hampering recurrence and metastatic spread.  相似文献   

10.
The aim of the present phase I/II study was to evaluate the safety, immune responses and clinical activity of a vaccine based on autologous dendritic cells (DC) loaded with an allogeneic tumor cell lysate in advanced melanoma patients. DC derived from monocytes were generated in serum-free medium containing GM-CSF and IL-13 according to Good Manufacturing Practices. Fifteen patients with metastatic melanoma (stage III or IV) received four subcutaneous, intradermal, and intranodal vaccinations of both DC loaded with tumor cell lysate and DC loaded with hepatitis B surface protein (HBs) and/or tetanus toxoid (TT). No grade 3 or 4 adverse events related to the vaccination were observed. Enhanced immunity to the allogeneic tumor cell lysate and to TAA-derived peptides were documented, as well as immune responses to HBs/TT antigens. Four out of nine patients who received the full treatment survived for more than 20 months. Two patients showed signs of clinical response and received 3 additional doses of vaccine: one patient showed regression of in-transit metastases leading to complete remission. Eighteen months later, the patient was still free of disease. The second patient experienced stabilization of lung metastases for approximately 10 months. Overall, our results show that vaccination with DC loaded with an allogeneic melanoma cell lysate was feasible in large-scale and well-tolerated in this group of advanced melanoma patients. Immune responses to tumor-related antigens documented in some treated patients support further investigations to optimize the vaccine formulation. Margarita Salcedo and Nadège Bercovici both contributed equally to this work  相似文献   

11.
Liu Z  Fan H  Wu Y  Chen B 《Cytotherapy》2005,7(4):353-362
BACKGROUND: DC are potent APC that can activate both CD4 and CD8 T cells in vitro and in vivo. Although the efficacy of DC-based cancer vaccines is currently being evaluated in clinical trials, the systemic immune suppression in cancer patients negatively impacts the clinical benefit of this therapeutic approach. Therefore, in this study we tested the feasibility and anti-tumor effect of adoptive immunotherapy using in vitro-activated CD62L(low) lymph node cells that were isolated from DC-vaccinated draining lymph nodes (VDLN). METHODS: DC were prepared from BM cells and loaded with tumor lysate for inoculating into naive mice. Subsequently, the VDLN were removed and CD62L(low) cells in the VDLN population isolated, expanded in vitro by 5-day culture with IL-2 and immobilized anti-CD3 stimulation, then injected into mice with established pulmonary tumors. Eighteen days after treatment, mice were killed in order to enumerate pulmonary tumor nodes. RESULTS: DC phagocytosed the tumor lysate efficiently and induced detectable T-cell responses and significant cell expansion in the draining lymph nodes. After induction of maturation by LPS treatment, DC expressed higher levels of CD40, CD86 and MHC class II molecules. When CD62L(low) VDLN cells that had been isolated and expanded in vitro were transferred into tumor-bearing mice, as few as 3 x 10(6) cells were able to cure metastatic pulmonary tumors in vivo. DISCUSSION: DC-based VDLN T cells are an important source of anti-tumor effector for adoptive immunotherapy. This study provides a novel and an effective protocol using T-cell adoptive immunotherapy for application in cancer patients; therefore, clinical trials based on this protocol may be warranted.  相似文献   

12.
Malignant glioma of the CNS is a tumor with a very bad prognosis. Development of adjuvant immunotherapy is hampered by interindividual and intratumoral antigenic heterogeneity of gliomas. To evaluate feasibility of tumor vaccination with (autologous) tumor cells, we have studied uptake of tumor cell lysates by dendritic cells (DCs), and the T-cell stimulatory capacity of the loaded DCs. DCs are professional antigen-presenting cells, which have already been used as natural adjuvants to initiate immune responses in human cancer. An efficacious uptake of tumor cell proteins, followed by processing and presentation of tumor-associated antigens by the DCs, is indeed one of the prerequisites for a potent and specific stimulation of T lymphocytes. Human monocytes were differentiated in vitro to immature DCs, and these were loaded with FITC-labeled tumor cell proteins. Uptake of the tumor cell proteins and presentation of antigens in the context of both MHC class I and II could be demonstrated using FACS analysis and confocal microscopy. After further maturation, the loaded DCs had the capacity to induce specific T-cell cytotoxic activity against tumor cells. We conclude that DCs loaded with crude tumor lysate are efficacious antigen-presenting cells able to initiate a T-cell response against malignant glioma tumor cells.  相似文献   

13.
The choice of the tumor antigen preparation used for dendritic cell (DC) loading is important for optimizing DC vaccines. In the present study, we compared DCs pulsed with hepatocellular carcinoma (HCC) total RNA or cell lysates for their capacity to activate T cells. We showed here that HCC total RNA pulsed-DCs induced effector T lymphocyte responses which showed higher killing ability to HCC cell lines, as well as higher frequency of IFN-γ producing of CD4+ and CD8+ T cells when compared with lysate pulsed-DCs. Both of RNA and lysate loading did not influence the changes of mature DC phenotype and the capacity of inducing T cell proliferation. However, HCC lysate loading significantly inhibited the production of inflammatory cytokines IL-12p70, IFN-γ and enhanced the secretion of anti-inflammatory cytokines IL-10 of mature DCs. Our results indicated that DCs loaded with HCC RNA are superior to that loaded with lysate in priming anti-HCC CTL response, suggesting that total RNA may be a better choice for DCs-based HCC immunotherapy.  相似文献   

14.
Background: Ovarian cancer commonly relapses after remission and new strategies to target microscopic residual diseases are required. One approach is to activate tumor-specific cytotoxic T cells with dendritic cells loaded with tumor cells. In order to enhance their immunogenicity, ovarian tumor cells (SK-OV-3, which express two well-characterized antigens HER-2/neu and MUC-1) were killed by oxidation with hypochlorous acid (HOCl). Results: Treatment for 1 h with 60 μM HOCl was found to induce necrosis in all SK-OV-3 cells. Oxidized, but not live, SK-OV-3 was rapidly taken up by monocyte-derived dendritic cells, and induced partial dendritic cell maturation. Dendritic cells cultured from HLA-A2 healthy volunteers were loaded with oxidized SK-OV-3 (HLA-A2) and co-cultured with autologous T cells. Responding T cells were tested for specificity after a further round of antigen stimulation. In ELISPOT assays, T cells produced interferon-gamma (IFN-γ) in response to the immunizing cellular antigen, and also to peptides coding for MUC-1 and HER-2/neu HLA-A2 restricted epitopes, demonstrating efficient cross-presentation of cell-associated antigens. In contrast, no responses were seen after priming with heat-killed or HCl-killed SK-OV-3, indicating that HOCl oxidation and not cell death/necrosis per se enhanced the immunogenicity of SK-OV-3. Finally, T cells stimulated with oxidized SK-OV-3 showed no cross-reaction to oxidized melanoma cells, nor vice versa, demonstrating that the response was tumor-type specific. Conclusions: Immunization with oxidized ovarian tumor cell lines may represent an improved therapeutic strategy to stimulate a polyclonal anti-tumor cellular immune response and hence extend remission in ovarian cancer.  相似文献   

15.
Immunization with antigen-pulsed dendritic cells (DCs) can be used to elicit optimal immune responses. We developed the SRDC cell line, with a morphology, phenotype and activity similar to mouse splenic CD4(-)CD8alpha(+)CD205(+)CD11b(-) dendritic cells, which induce a polarized Th1 immune response. We evaluated the ability of SRDCs pulsed with HIV-1 viral lysate, oligomeric soluble gp140 or capsid p24 to induce specific antibody and T-cell responses in CBA/J mice. Immunization with all loaded SRDCs elicited antibody responses against the antigens tested. However, only HIV-1 viral lysate and gp140-pulsed SRDCs elicited specific CD4(+) and CD8(+) T-cell responses. These findings demonstrate the value of well characterized DC lines for optimizing the antigen-loading mixture, according to the DC population targeted. Our data suggest that splenic DCs pulsed with complex antigens, such as HIV-1 viral lysate or oligomeric soluble gp140, could be used as vaccines, eliciting strong primary Th1-polarized and humoral immune responses against HIV proteins in vivo.  相似文献   

16.
Development of new effective method for cancer therapy is one of the most important trends in the modern medicine. Along with surgery, chemotherapy and radiotherapy, induction of an immune response against the tumor cells is a promising approach for therapy of cancer, particularly metastatic, slowly dividing tumors and cancer stem cells. Induction of the antitumor T-cell immune response involves activation of antigen-presenting cells, which can efficiently present the cancer antigens and activate T-lymphocytes. The immune response may be activated by dendritic cells (DC) loaded with tumor antigens, such as tumor-specific proteins, tumor cell lysates, apoptotic or necrotic tumor cells, as well as nucleic acids encoding tumor antigens. Regardless of the selected source of the tumor antigen, preparation of mature DC is a principal step in the development of anticancer vaccines aimed at the induction of the cytotoxic T-cell immune response. Recently, various research groups have proposed several strategies for producing mature DC, differed by the set of agents used. It has been shown that the maturation strategy influences both their phenotype and the ability to induce the immune response. In this review we have analyzed the results of studies on the various strategies of preparation of mature DCs.  相似文献   

17.
Immunotherapy of malignant diseases mediated by dendritic cells (DC) pulsed with tumor antigens ex vivo is a promising new tool in the individual treatment of malignant diseases. The present study focuses on the problem of how to optimize in vitro culture conditions and induce the maturation of DC with the capacity to induce antitumor immunity toward leukemic cells. DC were generated from peripheral mononuclear cells by co-cultivation with granulocyte/macrophage-colony stimulating factor (GM-CSF) and interleukin-4 (IL-4). Tumor antigens were added for 2 h after 7 days in culture. Irradiated leukemic blasts, blast lysate, apoptotic cells from the Jurkat cell line (T ALL) and their lysate were used in various concentrations for antigen pulsing. Harvested DC were phenotyped by flow cytometry, and viability was assessed using trypan blue exclusion (Annexin test). After the cells had been pulsed with tumor antigens and co-cultured with autologous lymphocytes, the production of interferon-gamma (IFN-gamma) and IL-12 was analyzed, and lymphocyte proliferative response and cytotoxicity against the target tumor cell line were assessed. The cultivation of monocytes under the described conditions led to the expression of surface markers typical of DC (i.e. CD83, CD86, HLA-DR, CD11c and CD40). Pulsation by antigens from leukemic cells further increased the cell populations expressing these markers. Antigen pulsation decreased the viability of generated DC depending on the increase in concentration of tumor antigens. Pulsed DC-lymphocyte interaction increased the proliferative response of lymphocytes and IFN-gamma production depending on the type of tumor antigens used for pulsation. The highest proliferative response was detected with DC pulsed with Jurkat cell-line lysate. Similarly to the proliferation assay, cytotoxic testing showed the highest efficiency of DC pulsed with Jurkat cell-line lysate in killing the target malignant cells. Our results show that an appropriate antigen concentration used for DC pulsing is one of the crucial factors in an effective treatment strategy, as high concentrations of tumor antigens induce apoptosis of DC, thereby rendering them non-functional. Under optimal conditions, pulsation by lysate from leukemic blasts induced the maturation of DC and led to an increase in the proliferation of autologous lymphocytes, to the production of Th1-cytokines and to the induction of cytotoxicity toward the leukemic cell line. These results are encouraging for the possible application of pulsed DC in the therapy of acute lymphoblastic leukemia.  相似文献   

18.
"Day-7" myeloid DCs are commonly used in the clinic. However, there is a strong need to develop DCs faster that have the same potent immunostimulatory capacity as "Day-7" myeloid DCs and at the same time minimizing time, labor and cost of DC preparations. Although "2 days" DCs can elicit peptide-specific responses, they have not been demonstrated to engulf, process and present complex whole tumor lysates, which could be more convenient and personalized source of tumor antigens than defined peptides. In this preclinical study, we evaluated the T-cell stimulatory capacity of Day-2, Day-4, and Day-7 cultured monocyte-derived DCs loaded with SKOV3 cell whole lysate prepared by freeze-thaw or by UVB-irradiation followed by freeze-thaw, and matured with lipopolysaccharide (LPS) and interferon (IFN)-gamma. DCs were evaluated for antigen uptake, and following maturation with LPS and IFN-gamma, DCs were assessed for expression of CD80, CD40, CD86, ICAM-1 and CCR7, production of IL-12p70 and IP-10, and induction of tumor-specific T-cell responses. Day-4 and Day-7 DCs exhibited similar phagocytic abilities, which were superior to Day-2 DCs. Mature Day-7 DCs expressed the highest CD40 and ICAM-1, but mature Day-4 DCs produced the most IL-12p70 and IP-10. Importantly, Day-4 and Day-7 DCs derived from ovarian cancer patients stimulated equally strongly tumor-specific T-cell responses. This is the first study demonstrating the highly immunogenic and strong T-cell stimulatory properties of Day-4 myeloid DCs, and provided important preclinical data for rapid development of potent whole tumor lysate-loaded DC vaccines that are applicable to many tumor types.  相似文献   

19.
Ma JZ  Lim SN  Qin JS  Yang J  Enomoto N  Ruedl C  Ronchese F 《PloS one》2012,7(5):e37481
Cytotoxic T lymphocytes (CTL) provide protection against pathogens and tumors. In addition, experiments in mouse models have shown that CTL can also kill antigen-presenting dendritic cells (DC), reducing their ability to activate primary and secondary CD8(+) T cell responses. In contrast, the effects of CTL-mediated killing on CD4(+) T cell responses have not been fully investigated. Here we use adoptive transfer of TCR transgenic T cells and DC immunization to show that specific CTL significantly inhibited CD4(+) T cell proliferation induced by DC loaded with peptide or low concentrations of protein antigen. In contrast, CTL had little effect on CD4(+) T cell proliferation induced by DC loaded with high protein concentrations or expressing antigen endogenously, even if these DC were efficiently killed and failed to accumulate in the lymph node (LN). Residual CD4(+) T cell proliferation was due to the transfer of antigen from carrier DC to host APC, and predominantly involved skin DC populations. Importantly, the proliferating CD4(+) T cells also developed into IFN-γ producing memory cells, a property normally requiring direct presentation by activated DC. Thus, CTL-mediated DC killing can inhibit CD4(+) T cell proliferation, with the extent of inhibition being determined by the form and amount of antigen used to load DC. In the presence of high antigen concentrations, antigen transfer to host DC enables the generation of CD4(+) T cell responses regardless of DC killing, and suggests mechanisms whereby CD4(+) T cell responses can be amplified.  相似文献   

20.
The development of protocols for the ex vivo generation of dendritic cells (DCs) has led to intensive research of their potential use in immunotherapy. Accumulating results show the efficacy of this treatment on melanomas which are highly immunogenic. However, its efficacy remains unclear in other tumors. In this study, allogeneic gastric cancer cell–DC hybrids were used to determine the efficacy of this type of immunotherapy in gastric cancer. Fusion cells of DC and allogeneic gastric cancer cells were generated by polyethylene glycol (PEG) and electrofusion. These hybrids were used to induce tumor associated antigen (TAA) specific cytotoxic T lymphocytes (CTLs). The DCs were successfully fused with the allogeneic gastric cancer cells resulting in hybrid cells. These hybrid cells were functional as antigen-presenting cell because they induced allogeneic CD4+ T cells proliferation. CD8+ T cells stimulated by the MKN-45-DC hybrid cells were able to kill MKN-45 when used for immunization. The CTLs killed another gastric cancer cell line, MKN-1, as well as a melanoma cell line, 888mel, suggesting the recognition of a shared tumor antigen. MKN-45 specific CTLs can recognize carcinoembryonic antigen (CEA), indicating that the killing is due to tumor antigens as well as alloantigens. This approach suggests the possible use of allogeneic gastric cancer cell–DC hybrids in DC based immunotherapy for gastric cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号