首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ultracentrifugal analysis of the plasma of squirrel monkeys at various times after the injection of [Me-(14)C]choline revealed the specific activities of lecithin in both high (HDL) and low (LDL) density lipoproteins to be similar. This was also true for sphingomyelin. The exchange of phospholipids in vitro was studied by incubating unlabeled plasma with labeled LDL and HDL isolated 40 hr after the injection of [Me-(14)C]choline. Recentrifugation of plasma immediately after the addition of either (14)C-labeled LDL or HDL demonstrated that significant exchanges of both lecithin and sphingomyelin had occurred. In further studies, (14)C-labeled LDL or HDL were incubated with plasma and the low density lipoproteins were rapidly isolated by precipitation with heparin-Mn(2+). Complete equilibration of lecithin and sphingomyelin between LDL and HDL was attained after 4 and 5 hr, respectively. The fractional exchange rates for lecithin and sphingomyelin of LDL to HDL were 0.60 hr(-1) and 0.45 hr(-1). Corresponding values for HDL to LDL were 0.51 hr(-1) and 0.53 hr(-1). Inhibition of plasma lecithin:cholesterol acyltransferase reduced the exchange of sphingomyelin but had no effect on lecithin exchange. The rates of exchange of four lecithin subfractions of different unsaturation between LDL and HDL were the same.  相似文献   

2.
The effect of temperature and plasma on the exchange of apoprotein C and phospholipids between VLDL and HDL was studied using 125I-labeled and 32P-labeled VLDL. Temperature affected the exchange of apoproteins and phospholipids similarly, and both were enhanced by increasing the temperature of incubation to 20 degrees C and higher. The exchange of apoC was almost complete within 5 minutes of incubation and was not influenced by the addition of plasma to the incubation mixture. The exchange of phospholipids occurred much more slowly and was enhanced 5- to 10-fold in the presence of plasma. These results indicate that the exchange of both phospholipids and apoC is dependent on the temperature of the incubation, but that they exchange independently, at least in part. It is suggested that the exchange of apoC occurs through dissociation of the apoprotein from the lipoprotein surface to the water phase, whereas the exchange of phospholipids is mediated mainly by a carrier molecule present in plasma and absent in lipoproteins.  相似文献   

3.
The interaction of synthetic dimyristoyl phosphatidylcholine (lecithin) liposomes with isolated apoC-I and apoC-III proteins from very low density lipoproteins has been studied by microcalorimetry. Complex formation is a highly exothermal process characterized by a maximal enthalpy of -130 kcal/mol (-544 kJ) apoC-III-1 and -65 kcal/mol apoC-I proteins (-272 kJ). The complex composition determined after its isolation by ultracentrifugal flotation agrees with the value derived from the enthalpy binding curves. The binding of a constant amount of dimyristoyl lecithin to apoprotein mixtures containing various proportions of apoA-I and apoC-III failed to demonstrate the existence of any preferential association between the two apoproteins, in contrast with results obtained previously with apoA-I/apoA-II protein mixtures. Finally the various contributions to the enthalpy of binding such as that arising from an increase in apoprotein helicity have been evaluated. A classification of the apolipoproteins according to their lipid-binding affinity is proposed as: apoA-II congruent to apoC-III greater than apoC-I greater than apoA-I proteins.  相似文献   

4.
In order to determine the effects of a plasma phospholipid transfer protein on the transfer of phospholipids from very low density lipoproteins (VLDL) to high density lipoproteins (HDL) during lipolysis, biosynthetically labeled rat 32P-labeled VLDL was incubated with human HDL3 and bovine milk lipoprotein lipase (LPL) in the presence of the plasma d greater than 1.21 g/ml fraction or a partially purified human plasma phospholipid transfer protein (PTP). The addition of either the PTP or the d greater than 1.21 g/ml fraction resulted in a 2- to 3-fold stimulation of the transfer of phospholipid radioactivity from VLDL into HDL during lipolysis. In the absence of LPL, the PTP caused a less marked stimulation of transfer of phospholipid radioactivity. Both the d greater than 1.21 g/ml fraction and the PTP enhanced the transfer of VLDL phospholipid mass into HDL, but the percentage transfer of phospholipid radioactivity was greater than that of phospholipid mass, suggesting stimulation of both transfer and exchange processes. Stimulation of phospholipid exchange was confirmed in experiments where PTP was found to augment transfer of [14C]phosphatidylcholine radioactivity from HDL to VLDL during lipolysis. In experiments performed with human VLDL and human HDL3, both the d greater than 1.21 g/ml fraction and the PTP were found to stimulate phospholipid mass transfer from VLDL into HDL during lipolysis. Analysis of HDL by non-denaturing polyacrylamide gradient gel electrophoresis showed that enhanced lipid transfer was associated with only a slight increase in particle size, suggesting incorporation of lipid by formation of new HDL particles. In conclusion, the plasma d greater than 1.21 g/ml fraction and a plasma PTP enhance the net transfer of VLDL phospholipids into HDL and also exchange of the phospholipids of VLDL and HDL. Both the transfer and exchange activities of PTP are stimulated by lipolysis.  相似文献   

5.
6.
7.
Interactions of high density lipoproteins (HDL) with very low (VLDL) and low (LDL) density lipoproteins were investigated during in vitro lipolysis in the presence of limited free fatty acid acceptor. Previous studies had shown that lipid products accumulating on lipoproteins under these conditions promote the formation of physical complexes between apolipoprotein B-containing particles (Biochim. Biophys. Acta, 1987. 919: 97-110). The presence of increasing concentrations of HDL or delipidated HDL progressively diminished VLDL-LDL complex formation. At the same time, association of HDL-derived apolipoprotein (apo) A-I with both VLDL and LDL could be demonstrated by autoradiography of gradient gel electrophoretic blots, immunoblotting, and apolipoprotein analyses of reisolated lipoproteins. The LDL increased in buoyancy and particle diameter, and became enriched in glycerides relative to cholesterol. Both HDL2 and HDL3 increased in particle diameter, buoyancy, and relative glyceride content, and small amounts of apoA-I appeared in newly formed particles of less than 75 A diameter. Association of apoA-I with VLDL or LDL could be reproduced by addition of lipid extracts of lipolyzed VLDL or purified free fatty acids in the absence of lipolysis, and was progressively inhibited by the presence of increasing amounts of albumin. We conclude that lipolysis products promote multiple interactions at the surface of triglyceride-rich lipoproteins undergoing lipolysis, including physical complex formation with other lipoprotein particles and transfers of lipids and apolipoproteins. These processes may facilitate remodeling of lipoproteins in the course of their intravascular metabolism.  相似文献   

8.
9.
10.
Human plasma lipoproteins, fractionated by density gradient ultracentrifugation, and very low density lipoproteins, subfractionated by cumulative rate centrifugation, were subjected to agarose isoelectric focusing in small format thin gels prepared in the laboratory for the commercially available PhastSystem (Pharmacia). From preparation of the gels to their staining, the procedure took less than 3 h. The pH gradient was found reproducible and the apparent average pI of individual low density lipoproteins could be measured with a coefficient of variation of less than 5% between and less than 2% within the same run. The method appears especially suitable for the exploration of charge properties of multiple lipoprotein samples, or other large macromolecules as low density lipoproteins and very low density lipoproteins, with considerable economy of time and reagents.  相似文献   

11.
12.
13.
The effect of apoprotein E on the cellular metabolism of very low density lipoproteins (VLDL) was studied using the J-774 macrophage-like cell line as a foam cell model. Exogenous (plasmatic and recombinant) apoE-3 caused a marked enhancement of the cellular binding, association, and degradation of VLDL fractions I, II, and III from both normolipidemic and hypertriglyceridemic subjects. ApoE-3 did not affect the cellular metabolism of low density lipoproteins (LDL). The stimulatory effect of apoE-3 was specific and was not observed with E-2. ApoE-mediated enhancement of VLDL metabolism was markedly suppressed by competition with LDL or by down-regulation of the LDL receptor while the basal cellular metabolism of VLDL was not. The macrophage, however, appears also to exhibit a second apoE-3-dependent pathway for VLDL metabolism which is discerned from the LDL and scavenger receptors and is relatively resistant to cholesterol in the culture medium. This pathway is responsible for the basal and perhaps a small fraction of the apoE-3-stimulated metabolism of VLDL in the macrophage. Such activity may play a role in promoting foam cell formation by triglyceride-rich lipoproteins.  相似文献   

14.
15.
16.
17.
Very low density lipoproteins (VLDL), Sf60 to 400, from normolipemic individuals do not suppress 3-hydroxy-3-methylglutaryl-CoA reductase activity in cultured normal human fibroblasts at concentrations 20-fold higher than those of low density lipoproteins (LDL) that give total suppression. To determine if these VLDL contain all of the structural elements necessary for receptor-mediated suppression, they were converted in vitro with bovine milk lipoprotein lipase to low density lipoproteins. These LDL-like lipoproteins were as effective in suppression as LDL isolated directly from plasma, with half-maximal and complete suppression at 1 and 4 microgram of cholesterol ml-1. Neither native LDL nor LDL produced in vitro suppressed receptor-negative fibroblasts. We conclude that action of lipoprotein lipase on VLDL leads to a rearrangement of lipoprotein components that permits interaction of LDL produced in vitro with the LDL-specific cell surface receptor of fibroblasts and subsequent suppression of 3-hydroxy-3-methylglutaryl-CoA reductase.  相似文献   

18.
Using the dynamic fluorescence quenching method, it was shown that very low density (VLDL) apoproteins (apo B, E and C) tryptophanyls exhibit a lower accessibility towards water-soluble quenchers as compared to apo B LDL chromophores. The efficiency of proteolytic degradation by trypsin of VLDL-associated apo E and apo C was much lower than that of apo B. These results may be due to the cluster arrangement of amphipatic apo E and apo C on the VLDL surface and/or to their partial shielding by apo B. Treatment of VLDL particles with sub-lytic concentrations of the detergent, Tween-20, did not change the relaxation characteristics of amphipatic apoprotein tryptophanyl microenvironment, but resulted in a reversible structural transition registered by a "red" shift of the emission spectrum maximum as well as by change of the iodine quenching pattern. The detergent-induced increase of the VLDL tryptophanyl accessibility to acrylamide and the decrease of the quenching constant at the partial and complete particle solubilization were related to a change of the apo B molecular package. Treatment of VLDL with Tween-20 or cow milk lipoprotein lipase resulted in the appearance of tryptophanyl population that was not involved in the resonance energy transfer to the lipid phase-localized fluorescent probe pyrene, which is indicative of the protein dissociation. Treatment of VLDL particles with sub-lytic concentrations of Tween-20 revealed a lower (compared to apo C) relative affinity of apo E for the VLDL lipid surface. Inhibition of the lipoprotein lipase activity by apoprotein C-III was found to be non-competitive. It was concluded that lipolysis is a self-regulatory process which involves changes in the effector apoprotein concentration on the surface of triglyceride-rich particles.  相似文献   

19.
The size distributions of electrophoretically isolated subfractions of the very low density human plasma lipoproteins have been determined using electron microscopy. The primary and secondary particles observed in plasma of normal subjects after fat ingestion appear to have similar size distributions. Particles produced by corn oil feeding can be fixed by the osmium tetroxide reaction while those produced by butter fat feeding could not be fixed or made visible by this technique. Good agreement between particle size as measured by electron microscopy and particle size as predicted by ultra-centrifugal analysis was obtained.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号