首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
毛冠菊属的花粉形态和结构及其系统学意义   总被引:1,自引:0,他引:1  
对国产菊科特有属的花粉形态和结构进行了光学显微镜、扫描电镜和透射电镜的观察和研究。该属的花粉可以分为圆球形、扁球形和长球形三种类型。种之间的花粉差异主要表现在大小、形状和外壁纺饰的细微变化等方面。与紫菀族、竿里光旋和旋覆共族三个族的代表种的花粉特征进行对比分析,并结合其它生物演化证据,可得取以下结论:(1)支持and-Mazzetti的分类意见,毽炙属应归于紫族中;(2)毛冠菊属的花粉可划分为圆球  相似文献   

2.
The Astereae is the largest tribe of Asteraceae in North America. Morphological diversity suggests that the North American assemblage is polyphyletic as 12 endemic genera, as well as lineages of the genus Erigeron and Conyza (Conyzinae), have been hypothesized to represent at least five separate invasions of North America from Africa, Australia, Eurasia, and South America. This hypothesis was tested with a phylogenetic analysis of nucleotide sequence data from the internal transcribed spacers (ITS) of nuclear ribosomal DNA. Sequences for 62 taxa represent seven outgroup taxa and all major Northern and Southern Hemisphere groups of Astereae, including broad taxonomic and geographic sampling of Conyzinae and Aster s.l. (sensu lato). Parsimony analyses indicate that all North American Astereae are members of a strongly supported clade, and that a diverse group of predominantly woody taxa from Africa, Australia, and South America, are basal Astereae. Furthermore, Aster s.l. is deeply polyphyletic as Eurasian taxa, including Aster s.s. (sensu stricto), appear more closely related to Southern Hemisphere taxa than to North American Aster segregates. There is only low to moderate agreement between proposed higher level Astereae relationships based on ITS and those based either on morphology or chloroplast restriction site data.  相似文献   

3.
在扫描电镜下观察了毛冠菊属Nannoglottis 8种植物舌片的微形态特征,以探讨其颇有争议的系统位置。所有种类舌片近轴面的细胞为板状,长圆形;径向、切向壁直;外壁特征性突起,外壁中央为纵向皱纹,相邻细胞之间的纹饰无系统连接。这些特征表明毛冠菊属和紫菀族Astereae关系密切,但它在紫菀族内的系统位置可能比较特殊。这些结果和依据ITS序列推测的紫菀族系统发育的结果相吻合。文中还讨论了一些微形态性状的演化趋势以及微形态性状在毛冠菊属部分种类分类中的应用。  相似文献   

4.
5.
To understand the evolution of host-parasite relationships in the genus Golovinomyces (Ascomycete: Erysiphaceae), which are obligate parasitic fungi of plants, we investigated the phylogenetic relationships of the genus based on 60 internal transcribed spacer (ITS) and 41 28S rDNA sequences. Five major groups, each represented by isolates from a single tribe of the Asteraceae, were identified in the taxa analyzed in this study. Host plants of four groups were strictly restricted to the Asteraceae. The fifth group, the Lactuceae group, is a large group composed of isolates collected from the tribe Lactuceae of the Asteraceae and all other plant families, which suggests a close affinity between Golovinomyces and the Asteraceae in the early stages of their evolution. Tree topology comparisons between the asteraceous hosts and their parasites suggest that Golovinomyces diverged along with the phylogeny of host tribes Carsueae, Astereae, Heliantheae, and Lactuceae of the Asteraceae. However, a conflict of branching order between the tribe Anthemideae and their parasites suggests that host-jumping has occurred in the tribe Anthemideae. Consequently, we suggest that there are two different phases in the evolutionary history of the host-parasite relationships of Golovinomyces. One phase is divergence in accord with the phylogeny of their hosts, which occurred within the Asteraceae. The another phase is host-jumping, which occurred from the Asteraceae to other families and within the Asteraceae.  相似文献   

6.
Anderberg, A. A. & Karis, P. O. 1995. Psednotrichia , a genus of the tribe Senecioneae hitherto misplaced in the Astereae (Asteraceae). — Nord. J. Bot. 15: 375–379. Copenhagen. ISSN 0107–055X.
The tribal position for the little known genus Psednorrichia , is established. This monotypic genus, hitherto placed in the tribe Astereae, is a congener of Xyridopsis of the tribe Senecioneae (Asteraceae). The two species of Xyridopsis are here transferred to Psednotrichia and the new combinations P. xyridopsis and P. newtonii are made. A brief discussion of the morphology of the genus, and its systematic position within the tribe Senecioneae is provided.  相似文献   

7.
毛冠菊属系统位置的核形态证据   总被引:3,自引:2,他引:1  
首次记载了毛冠菊属2种4居群的核形态资料。两种植物的染色体间期和前期染色体为复杂型 和中间型。狭舌毛冠菊两居群的染色体数目与核型公式为2n=18=14m+2sm+2st(2SAT);毛冠菊两居 群的染色体数目与核型公式为2n=18=14m+2sm(2SAT)+2st。它们分别代表了整个毛冠菊属的两组 植物,并包含了形态学上最原始的种类,因此,该属的染色体基数可能为x=9。核形态证据表明毛冠菊属放在紫菀族比放在旋覆花族和千里光族中更为合理。  相似文献   

8.
Both chloroplast trnL (UAA) intron and nuclear ribosomal ITS sequences highly confirmed the monophyly of the tribes of the Gentianaceae defined by the recent classification, and revealed the tribe Exaceae as a basal clade just next to the basal-most lineage, the tribe Saccifolieae. Within the tribe Exaceae, Sebaea (except Sebaea madagascariensis) appeared as the most basal clade as the sister group to the rest of the tribe. The Madagascan endemic genera Gentianothamnus and Tachiadenus were very closely related to each other, together standing as sister to a clade comprising Sebaea madagascariensis, Ornichia, and Exacum. The saprophytic genus Cotylanthera nested deeply inside Exacum. Sebaea madagascariensis was shown closer to the Madagascan endemic genus Ornichia than to any other sampled Sebaea species. Exacum appeared as the most derived taxon within this tribe. The topology of the phylogenetic trees conform with the Gondwana vicariance hypothesis regarding the biogeography of Exaceae. However, no evidence for matching the older relationships within the family to the tectonic history could be corroborated with various divergence time analyses. Divergence dating estimated a post-Gondwana diverging of the Gentianaceae about 50 million years ago (MYA), and the tribe Exaceae as about 40 MYA. The Mozambique Channel land-bridge could have played an important role in the biogeographic history of the tribe Exaceae.  相似文献   

9.
Anthemideae (Asteraceae) is primarily a north temperate, Old World tribe of 109 genera and approximately 1740 species. We sequenced a 1200-bp portion of chloroplast gene ndhF for representative genera and subtribes and constructed a phylogeny for the tribe. There is support for monophyly of subtribes Chrysantheminae and Gonosperminae and for portions of some subtribes. However, our molecular phylogeny differs significantly from traditional classifications and from previously published morphological phylogenies of the tribe. Many South African genera from several different subtribes form a basal grade, indicating multiple, relictual lineages. Eurasian genera form a recently derived clade that includes the Mediterranean genera of the Iberian Peninsula and North Africa. There is little resolution or support for the placement of eastern Asian genera. Apparently, the tribe originated in the Southern Hemisphere, presumably in Africa, with the Eurasian and Mediterranean members being derived from a common ancestor.  相似文献   

10.
Phylogenetic relationships among 13 species in the tribe Mutisieae and a single species from each of three other tribes in the Asteraceae were assessed by chloroplast DNA restriction site mapping. Initially, 211 restriction site mutations were detected among 16 species using 10 restriction enzymes. Examination of 12 of these species using nine more enzymes revealed 179 additional restriction site mutations. Phylogenetic analyses of restriction site mutations were performed using both Dolio and Wagner parsimony, and the resulting monophyletic groups were statistically tested by the bootstrap method. The phylogenetic trees confirm an ancient evolutionary split in the Asteraceae that was previously suggested by the distribution of a chloroplast DNA inversion. The subtribe Barnadesiinae of the tribe Mutisieae is shown to be the ancestral group within the Asteraceae. The molecular phylogenies also confirm the paraphyly of the Mutisieae and provide statistical support for the monophyly of three of its four currently recognized subtribes (Barnadesiinae, Mutisiinae, and Nassauviinae). The fourth subtribe, Gochnatiinae, is shown to be paraphyletic. Within the subtribes, several closely related generic pairs are identified. Chloroplast DNA sequence divergence among genera of the Asteraceae ranges between 0.7 and 5.4%, which is relatively low in comparison to other angiosperm groups. This suggests that the Asteraceae is either a relatively young family or that its chloroplast DNA has evolved at a slower rate than in other families.  相似文献   

11.
The Daisies, Bellis and Bellium, form a monophyletic complex within the core Astereae (Asteraceae). Although most early diverging lineages show an African distribution, the core Astereae is today widespread on five continents with the Bellis/Bellium complex as the only representative in the Mediterranean basin. Molecular clock estimates placed the divergence of Astereae from its sister tribe Anthemideae in the Oligocene. Using a combination of three plastid genes, we estimated divergence times for different lineages of the tribe Astereae. This, together with temporal and biogeographical reconstructions using the nrITS region, allows placing and timing of the major lineages of the Bellis/Bellium complex. The age reconstruction places the divergence of the tribe Astereae in the late Miocene (18?C19?million years ago), followed by an out-of-Africa dispersal into Asia where the worldwide expansion may have started. Our results suggest that the colonization of the Mediterranean basin by the Astereae started from Eurasia some 10?million years ago. A Messinian early divergence of the Bellis/Bellium complex in the Mediterranean was estimated. However, a parallel 4-million-year delay for the within-genera diversification was inferred, probably related to the establishment of the sclerophyllous Mediterranean forest. Despite a similar time frame for the within-genera diversification, today??s species numbers differ considerably between Bellis (15 spp.) and Bellium (five spp.).  相似文献   

12.
报道中国东北辽宁省发现的菊科(Asteraceae)紫菀族(Astereae)一个新归化属胶菀属(Grindelia)。它在外形上接近于旋覆花属(1nula),但区别在于胶菀属花药基部钝,花柱分枝顶端附属物呈披针形或三角形,冠毛鳞片状。依据在中国所采集的标本描述了该属在中国的唯一代表种胶菀(Grindelia squarrosa)的形态特征,并讨论了其自然分布和进入中国的可能途径。  相似文献   

13.
Studies of herbivorous insects have played a major role in understanding how ecological divergence can facilitate genetic differentiation. In contrast to the majority of herbivorous insects, grasshoppers as a group are largely polyphagous. Due to this relative lack of intimate grasshopper-plant associations, grasshopper-plant systems have not played a large part in the study of host-associated genetic differentiation. The oligophagous grasshopper, Hesperotettix viridis (Thomas), is endemic to North America and feeds on composites (Asteraceae) within the tribe Astereae. Previous work has shown both preference and performance differences between H. viridis individuals feeding on either Solidago mollis or Gutierrezia sarothrae. Using 222 AFLP markers, we examined the genetic relationships among 38 H. viridis individuals feeding on these plants both in sympatry and allopatry. Neighbour-joining analysis resulted in two distinct host-associated clades with 71% bootstrap support for host-associated monophyly. Analyses of molecular variation (amova) revealed significant genetic structuring with host plant accounting for 20% of the total genetic variance while locality accounted for 0%. Significant genetic differentiation was detected between S. mollis-feeders and G. sarothrae-feeders even when the two were present at the same locality. These results are consistent with observed differences in preference and performance between H. viridis grasshoppers feeding on either G. sarothrae or S. mollis and indicate that H. viridis is comprised of at least two genetically distinct host plant-associated lineages.  相似文献   

14.
Abstract.  Within a framework of historical analysis of Eneopterinae crickets, the genus Pseudolebinthus Robillard gen.n. and two new species P. africanus Robillard, sp.n. and P. whellani Robillard, sp.n. , endemic from south-east Africa, are described. A cladistic analysis using 198 morphological characters and 47 terminals assessed the phylogenetic position of the new taxa within the subfamily. The resultant topologies support the previously proposed phylogeny for the subfamily and contained tribes. The monophyly of Pseudolebinthus is supported strongly as well as its sister relationship with Xenogryllus within the tribe Xenogryllini. A key to Eneopterinae tribes, Xenogryllini genera and Pseudolebinthus species is given. Taxonomic, evolutionary and acoustic issues raised by the recognition of Pseudolebinthus are discussed.  相似文献   

15.
Species of Ophraella, a North American genus of leaf beetles (Chrysomelidae), feed variously on eight genera in four tribes of Asteraceae. A phylogenetic analysis, based on morphological features and allozymes, was undertaken to deduce the history of host affiliation within the genus. The two data sets are combined to arrive at a provisional phylogeny of the species, onto which host associations are parsimoniously mapped. Among and within the 12 species studied, at least two shifts are postulated to have occurred among congeneric plant species, five between genera in the same tribe, and four between different tribes of Asteraceae. The phylogeny of Ophraella appears not to be congruent with that of its hosts. This and other evidence indicates that many host shifts in Ophraella postdate the divergence of the host plants, a conclusion that may apply commonly to phytophagous insects. A phenetic analysis of the plants' secondary compounds provides modest support for the hypothesis that host shifts are facilitated by commonalities in plant chemistry. A possible trend in host shifts is evident, from chemically simpler to chemically more forbidding plants. The chemical barriers to host shifts in Ophraella appear to require adaptation in both behavior and in physiological attributes. There is no evidence that the host associations of these insects or the divergence in secondary chemistry of their hosts can be attributed to coevolution.  相似文献   

16.
The tribe Acraeini (Nymphalidae, Heliconiinae) is believed to comprise between one and seven genera, with the greatest diversity in Africa. The genera Abananote, Altinote, and Actinote (s. str.) are distributed in the Neotropics, while the genera Acraea, Bematistes, Miyana, and Pardopsis have a Palaeotropical distribution. The monotypic Pardopsis use herbaceous plants of the family Violaceae, Acraea and Bematistes feed selectively on plants with cyanoglycosides belonging to many plant families, but preferentially to Passifloraceae, and all Neotropical species with a known life cycle feed on Asteraceae only. Here, a molecular phylogeny is proposed for the butterflies of the tribe Acraeini based on sequences of COI, EF-1alpha and wgl. Both Maximum Parsimony and Bayesian analyses showed that the tribe is monophyletic, once the genus Pardopsis is excluded, since it appears to be related to Argynnini. The existing genus Acraea is a paraphyletic group with regard to the South American genera, and the species of Acraea belonging to the group of "Old World Actinote" is the sister group of the Neotropical genera. The monophyly of South American clade is strongly supported, suggesting a single colonization event of South America. The New World Actinote (s. str.) is monophyletic, and sister to Abananote+Altinote (polyphyletic). Based on the present results it was possible to propose a scenario for the evolution in host plant use within Acraeini, mainly concerning the use of Asteraceae by the South American genera.  相似文献   

17.
Both chloroplast trnL (UAA) intron and nuclear ribosomal ITS sequences highly confirmed the monophyly of the tribes of the Gentianaceae defined by the recent classification, and revealed the tribe Exaceae as a basal clade just next to the basal-most lineage, the tribe Saccifolieae. Within the tribe Exaceae, Sebaea (except Sebaea madagascariensis) appeared as the most basal clade as the sister group to the rest of the tribe. The Madagascan endemic genera Gentianothamnus and Tachiadenus were very closely related to each other, together standing as sister to a clade comprising Sebaea madagascariensis, Ornichia, and Exacum. The saprophytic genus Cotylanthera nested deeply inside Exacum. Sebaea madagascariensis was shown closer to the Madagascan endemic genus Ornichia than to any other sampled Sebaea species. Exacum appeared as the most derived taxon within this tribe. The topology of the phylogenetic trees conform with the Gondwana vicariance hypothesis regarding the biogeography of Exaceae. However, no evidence for matching the older relationships within the family to the tectonic history could be corroborated with various divergence time analyses. Divergence dating estimated a post-Gondwana diverging of the Gentianaceae about 50 million years ago (MYA), and the tribe Exaceae as about 40 MYA. The Mozambique Channel land-bridge could have played an important role in the biogeographic history of the tribe Exaceae.  相似文献   

18.
To clarify the relationship between two genera, Draba and the narrow genus Coelonema, endemic to the QilianMountains of the northeastern Qinghai-Tibet Plateau, phylogenetic analyses were conducted using nuclear ribosomal DNA ITS, and the chloroplast DNA trnL, from Coelonema draboides and 30 species of Draba representing eight sections, including 25 species of Chinese Draba, seven of which were endemic to the study region. The results unambiguously support several previously published proposals to unite Coelonema with Draba and accommodate C. draboides in the latter genus on the basis of morphological re-examination. Our molecular data presented here also provide evidence that these two genera should be combined as a monophyletic group with high support. In addition, it is estimated that Draba may have originated about 1.36–2.71 Mya, with C. draboides diverging from Draba about 0.15–0.31 Mya, based on the molecular calibration of ITS datasets. The assumed speciation and rapid expansion of these two genera is likely to have occurred in the eastern edge of the QilianMountains area according to molecular phylogeny and estimated divergence times, which correspond well with the known geological and paleobotanical histories of the Qinghai-Tibet Plateau.  相似文献   

19.
20.
A phylogenetic study of representatives of the family Coleophoridae was conducted using a comprehensive approach, including methods of morphological and molecular genetic analyses. The existent data on the family system were compared with the results of phylogenetic analysis of the COI mitochondrial gene sequences. Four of the five studied subfamilies (Coleophorinae, Ischnophaninae, Augasminae, and Tolleophorinae) corresponded to their location on the phylogram; representatives of Metriotinae were part of Coleophorinae. According to the aggregate data from molecular phylogeny and morphology, the most numerous subfamily of casebearers, Coleophorinae, is polyphyletic within its current boundaries. The results of our analysis of COI molecular divergence does not refute the monophyly of the tribes Casignetellini, Carpochenini, Klinzigedini, Goniodomini, Casasini, and Atractulini from the subfamily Coleophorinae. The allocation of the tribes Aporipturini and Sistrophoecini within the subfamily does not correspond to the molecular data. Monophyly of the genera Ecebalia, Perygra, and Casignetella was confirmed. These genera are well isolated, which reflects the evolutionary significance of the morphological characters chosen for their taxonomic division. The boundaries of the cluster containing these genera correspond to those of the tribe Casignetellini, justifying the allocation of this tribe within the subfamily. The existence of monophyletic tribes Goniodomini (genus Goniodoma) and Carpochenini (genera Ionescumia, Carpochena, and Falkmisa) was also supported. The exceptions were the genera Kasyfia, Tollsia, and Agapalsa, whose monophyly was not confirmed by our results. The distribution of the sequences of species of these genera indicated a paraphyletic origin of Kasyfia and Tollsia and a polyphyletic origin of Agapalsa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号