首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intact rat liver mitochondria possess a very low hydrolytic activity, if any, towards exogenous pyrophosphate. This activity can be unmasked by making mitochondria permeable to PPi by toluene treatment or by disrupting them with detergents or ultrasound, thus indicating that the active site of pyrophosphatase is localized in the matrix. The initial rates of PPi hydrolysis of toluene-permeabilized mitochondria and purified pyrophosphatase were found to depend, in a similar manner, on PPi and Mg2+ concentrations. The simplest model consistent with these data in both cases implies that the reaction proceeds via two pathways and requires MgPPi as substrate and at least one Mg2+ ion as activator. In the presence of 0.4 mM Mg2+ (physiological concentration) the inhibition constant for Ca2+ is 12 microM and the enzyme activity is no less than 50% of the maximal one. The data obtained suggest that the activity of pyrophosphatase in mitochondria is high enough to keep free PPi concentration at a level close to the equilibrium one.  相似文献   

2.
Dissociation of Mg2+ from one of the two metal-binding sites whose occupancy is absolutely required for catalysis by rat liver inorganic pyrophosphatase is a slow reaction (tau 1/2 = 3 h). Polycarboxylic Mg2+ complexons markedly accelerate this process due to their binding with Mg2+ on the enzyme. PPi, ATP and a number of diphosphonate analogs of PPi also bind with Mg2+ on the enzyme with concomitant decrease in enzyme activity by 75% but do not release the bound Mg2+. The resulting ternary complex rapidly (tau 1/2 of several seconds) dissociates upon dilution into substrate-free medium. PPi and imidodiphosphate, which are substrates for pyrophosphatase, decrease the rate of reactivation by at least two orders of magnitude. The results can be explained by existence of two interconvertible forms of the enzyme, of which one is inactive and is stabilized by substrate or its analogs.  相似文献   

3.
A method allowing to obtain two highly purified forms (membrane-bound and soluble ones) of inorganic pyrophosphatase from bovine heart mitochondria is described. Both forms have the isoelectric point of 5.8, pH optimum with Mg2+ at 7--9, are maximally stable at pH 5.8 and absolutely specific to PPi and require Mg2+ or Co2+ for their activity. The soluble pyrophosphatase is also activated by Zn2+. Besides, the two forms differ in their electrophoretic mobilities, affinity for DEAE cellulose and stability in acidic (pH less than 5.8) and alkaline media.  相似文献   

4.
Inhibition of inorganic pyrophosphatase of animal mitochondria by calcium   总被引:1,自引:0,他引:1  
Calcium ion is an uncompetitive inhibitor of the inorganic pyrophosphatases of bovine heart and rat liver mitochondria with respect to substrate MgPPi at pH 8.5 and a non-competitive inhibitor of the former enzyme at pH 7.2. The concentration of Ca2+ required to decrease the maximal velocities for both enzymes at pH 8.5, 0.4 mM Mg2+ was about 10 microM. The inhibition results from the binding of two Ca2+ ions to both free enzymes and their complexes with the substrate. The results suggest that Ca2+ regulates pyrophosphatase activity and hence PPi level in mammalian mitochondria.  相似文献   

5.
Inorganic pyrophosphatase (pyrophosphate phosphohydrolase, EC 3.6.1.1) from human erythrocyte hemolysates has been purified up to 10 000-fold. The purified enzyme is homogenous and has a specific activity of 79.75 mumol PPi hydrolysed.min-1.mg-1 at pH 8 and 37 degrees C. It was confirmed that it is a dimer with a molecular weight of 42 000, composed of two identical protomers. From kinetic studies, it is proposed that human erythrocyte inorganic pyrophosphatase activity depends on free Mg2+ concentration in different ways. This ion constitutes part of the substrate (the Mg.PPi complex; Km = 1.4.10(-4) M) and probably acts as an allosteric activator (kinetic activation constant: KMg2+a = 7.5.10(-4) M). Equilibrium binding studies performed in the absence of PPi showed 4 binding sites for Mg2+, all having the same high affinity (dissociation constant: KMg2+d = 4.10(-6) M). Since the concentration of free Mg2+ in red blood cells is very low and may vary with the oxygenation state, it is likely that in vivo erythrocyte pyrophosphatase activity is regulated.  相似文献   

6.
1. The pyrophosphatase activity in cytosolic and mitochondrial fractions of rat liver was 1.7 and 0.26 units/mg of protein respectively when assayed at 37 degrees C in the presence of physiological [Mg2+] (0.3 mM). 2. Approx. 80% of the mitochondrial pyrophosphatase was inaccessible to extramitochondrial PPi, of which 40% represented soluble matrix enzyme (0.38 unit/mg of matrix protein). 3. Ca2+ inhibited the soluble matrix enzyme; the effective K0.5 for inhibition increased as [Mg2+], an essential cofactor of the enzyme, increased. Measured values were 0.39, 1.15, 3.7, 8.3 and 12.5 microM at 0.04 mM-, 0.1 mM-, 0.3 mM-, 0.6 mM- and 1 mM-Mg2+ respectively. 4. The data were analysed by a kinetic model similar to that for yeast pyrophosphatase, which assumes the substrate to be MgPPi (Km 5 microM) with Mg2+ also activating at an additional site (K0.5 23 microM). Ca2+ inhibits through the formation of CaPPi, a strong competitive inhibitor (Ki 0.067 microM). 5. Heart mitochondria also contain a soluble matrix pyrophosphatase of similar activity to that of liver mitochondria and with the same sensitivity to [Ca2+]. 6. The data provide an explanation for the increase in mitochondrial PPi, mediated by Ca2+, which is responsible for the increase in matrix volume induced by gluconeogenic hormones [Davidson & Halestrap (1988) Biochem. J. 254, 379-384].  相似文献   

7.
We have shown a dual role for Mg2+ in the hydrolysis of PPi catalysed by inorganic pyrophosphatase (PPase; EC 3.6.1.1) of Streptococcus faecalis; Mg2+ is necessary for the formation of the substrates, Mg1PPi2- and Mg2PPi0, and it also acts as an allosteric activator [Lahti + Jokinen (1985) Biochemistry 24, 3526-3530]. No activity can be observed with S. faecalis PPase in the absence of bivalent cations, which indicates that free PPi cannot serve as a substrate for this enzyme. However, significant activities were observed in the presence of spermine and spermidine, even though no bivalent cations were present. It was shown by particle-induced gamma-ray emission and particle-induced X-ray-emission analysis that the polyamines used were not contaminated with Mg2+ or any other bivalent cations that could support PPase activity. Hence it is obvious that polyamines are able to form a complex with PPi that serves as a substrate for PPase. The apparent stability constants for the 1:1 adducts of spermine and spermidine were estimated by a resin competition method. The values obtained at pH 7.5 were 2.7 X 10(3) M-1 and 6.4 X 10(2) M-1 respectively. Kinetic results further suggested that polyamines can also substitute for Mg2+ as an activator in vitro. The physiological significance of these polyamine effects were discussed.  相似文献   

8.
A scheme of interactions of Mg2+ ions and their 1:1 complex with PPi (PPiMg') with two forms of inorganic pyrophosphatase isolated from beef heart mitochondria has been deduced from the analysis of enzyme kinetics at pH varying from 5.6 to 8.5. The scheme implies the existence of two catalytically important metal-binding sites on the enzyme. The two enzyme forms differ in maximal velocity and affinity for the metal activator. The pH dependence of kinetic parameters suggests that the active form of the substrate is MgP2O2-7. Ca2+ ions strongly inhibit pyrophosphatase activity and the corresponding Hill coefficient is 1.5. Phosphate and ATP are weak inhibitors of pyrophosphatase of the competitive and noncompetitive type respectively. The results show that these forms of mitochondrial pyrophosphatase are similar to pyrophosphatases isolated from other sources.  相似文献   

9.
A Mg2+ dependent inorganic pyrophosphatase from chloroplasts of Sorghum vulgare has been purified 275-fold to electrophoretic purity with an overall recovery of about 25% activity. Estimations of native and monomeric relative molecular weights by size exclusion chromatography and denaturing electrophoresis suggest that the holoenzyme is a monomer of 42 +/- 1.5 kDa. A high specificity for tetrasodium pyrophosphate (PPi) as substrate has been observed, as the other phosphoesters tested were virtually unaffected. The Mg2+:PPi ratio of 5:1 at pH 8.0 shifts to 2.5:1.0 at pH 9.0 and 10:1 at pH 7.0. None of the divalent cations tested could substitute for Mg2+. Further, in the presence of Mg2+, these divalent cations inhibit the catalytic hydrolysis of PPi. EDTA rapidly and irreversibly inactivates the purified enzyme in a biphasic manner. Of the metabolites tested, Pi and L-malate significantly inhibited the catalytic activity of the enzyme. Malate inhibits the enzyme through an allosteric mechanism. A Hill plot of this inhibition shows that at least two molecules of malate bind to each molecule of the purified enzyme. The likely physiological significance of this result is discussed.  相似文献   

10.
Kinetic and binding studies of yeast inorganic pyrophosphatase (EC 3.6.1.1) revealed a regulatory PPi-binding site. Rate vs substrate concentration dependencies were markedly nonhyperbolic in the range of 0.1-150 microM MgPPi at fixed Mg2+ levels of 0.05-10 mM provided that the enzyme had been preequilibrated with Mg2+. Imidodiphosphate, hydroxymethylenebisphosphonate, and phosphate eliminated the deviations from the Michaelis-Menten kinetics and inhibited PPi hydrolysis in a manner consistent with their binding at both active and regulatory sites. The results agreed with a model in which binding of uncomplexed PPi at the regulatory site markedly increases enzyme affinity for the activating Mg2+ ion. Ultrafiltration studies revealed the binding of at least 3 mol of the inhibitory hydroxymethylenebisphosphonate and of 2 mol of noninhibitory methylenebisphosphonate per mole of the dimeric enzyme.  相似文献   

11.
In this work the two interconvertible forms of inorganic pyrophosphatase (EC 3.6.1.1) of Streptococcus faecalis were shown to differ in kinetics. The highly active form of the enzyme was more sensitive to the changes in the Mg2+ concentration, and thus also more sensitive to the inhibition caused by ATP, which competes with PPi for the chelation of Mg2+ ions. We have previously described a kinetic model for the less-active form of S. faecalis inorganic pyrophosphatase [Lahti & Jokinen (1985) Biochemistry 24, 3526-3530]. The kinetic model of the highly active enzyme form is proposed to be a modification of the model of the less-active form in which enzyme activation by free Mg2+ is necessary for the reaction to occur. In this model the enzyme exists in two states, referred to as R- and T-states. In the absence of ligands the enzyme is in the T-state. R-state, i.e. the catalytically active state, exists only in the presence of free Mg2+. Mg1PPi2- is the primary substrate, and free pyrophosphate is a weak inhibitor that cannot serve as a substrate for the highly active form of S. faecalis inorganic pyrophosphatase. This model closely resembles that previously presented for yeast inorganic pyrophosphatase.  相似文献   

12.
A scheme of Mg2+ and Pi binding to yeast inorganic pyrophosphatase has been deduced from the concentration dependencies of the rate of oxygen exchange between Pi and water. The exchange reaction requires the binding of MgPi and free Pi (pathway I) or two MgPi (pathway II) in addition to two Mg2+ ions bound in the absence of Pi. Pathway II predominates above 0.16 mM Mg2+. The rate of formation of bound PPi from bound Pi for pathway II is three times as high as that for pathway I. The results suggest that the binding of the fourth Mg2+ ion to pyrophosphatase stimulates its synthetic vs its hydrolytic capability.  相似文献   

13.
Some kinetic and spectral approaches have been used to study the interactions in the enzyme-Mg2+-F--pyrophosphate (or imidodiphosphate, a non-hydrolyzeable pyrophosphate analog) system underlying the mechanism of yeast inorganic pyrophosphatase inhibition by fluoride. The continuous curves of the enzymatic reaction were obtained with an automatic phosphate analyzer operating on the time scale of seconds. Increasing concentrations of NaF caused an increase in the inactivation rate constant to a constant level of 5.3 min-1 for PPi (pH 6.2-7.2) and 3.9 min-1 for imidodiphosphate, (pH 7.2). At a saturating fluoride concentration, the initial rate of PPi hydrolysis dropped to 10%. NaF and imidodiphosphate changed the protein spectrum at 270-310 nm and strengthened the binding of each other to the protein. The binding of F- required a Mg2+-binding site with Kd = 0.15 mM being filled in. The free enzyme and its Ca2+ complex did not bind F-. The experimental results indicate that pyrophosphatase inhibition by fluoride occurs in two steps. The inhibitor adds first to the Mg2+ ion on the enzyme in a readily reversible reaction causing a 90% decrease of the catalytic activity. Thereafter, a slow isomerization of the enzymesubstrate complex takes place, resulting in a complete loss of activity.  相似文献   

14.
The effects of divalent cations, especially Ca2+ and Mg2+, on the proton-translocating inorganic pyrophosphatase purified from mung bean vacuoles were investigated to compare the enzyme with other pyrophosphatases. The pyrophosphatase was irreversibly inactivated by incubation in the absence of Mg2+. The removal of Mg2+ from the enzyme increased susceptibility to proteolysis by trypsin. Vacuolar pyrophosphatase required free Mg2+ as an essential cofactor (K0.5 = 42 microM). Binding of Mg2+ stabilizes and activates the enzyme. The formation of MgPPi is also an important role of magnesium ion. Apparent Km of the enzyme for MgPPi was about 130 microM. CaCl2 decreased the enzyme activity to less than 60% at 40 microM, and the inhibition was reversed by EGTA. Pyrophosphatase activity was measured under different conditions of Mg2+ and Ca2+ concentrations at pH 7.2. The rate of inhibition depended on the concentration of CaPPi, and the approximate Ki for CaPPi was 17 microM. A high concentration of free Ca2+ did not inhibit the enzyme at a low concentration of CaPPi. It appears that for Ca2+, at least, the inhibitory form is the Ca2(+)-PPi complex. Cd2+, Co2+ and Cu2+ also inhibited the enzyme. The antibody against the vacuolar pyrophosphatase did not react with rat liver mitochondrial or yeast cytosolic pyrophosphatases. Also, the antibody to the yeast enzyme did not react with the vacuolar enzyme. Thus, the catalytic properties of the vacuolar pyrophosphatase, such as Mg2+ requirement and sensitivity to Ca2+, are common to the other pyrophosphatases, but the vacuolar enzyme differs from them in subunit mass and immunoreactivity.  相似文献   

15.
The mechanism of pyrophosphate (PPi) accumulation in rat liver during acetate metabolism was investigated. Perfusion of the liver with acetate in the presence of noradrenaline and glucagon induced marked accumulation of PPi (2 mumol/g of liver, 200 times that of control). In contrast, perfusion with glutamine, which generates PPi only in the cytosol, caused little accumulation of PPi, even in the presence of the two hormones. The site of PPi accumulation was shown to be the mitochondria by the finding that isolated mitochondria from the liver perfused with acetate and the hormones contained 50 nmol of PPi/mg of protein. The addition of an uncoupler to mitochondria with accumulated PPi caused gradual decrease in their PPi content, with concomitant release of a stoichiometric amount of Ca2+. Similar accumulation of PPi was observed when isolated mitochondria were incubated with acetate and Ca2+. These results show that an increase in cytosolic Ca2+ caused by the co-administration of the two hormones induced uptake of the ion into mitochondria, and that PPi accumulated in mitochondria only when it was generated in the organelles with an elevated concentration of Ca2+. High mitochondrial concentrations of Ca2+ are considered to inhibit inorganic pyrophosphatase through the formation of a stable complex, CaPPi-. Mitochondria with accumulated PPi had normal respiratory activities, and their adenine nucleotide concentrations were increased 2-fold rather than being decreased, the increases also being considered to be caused by their high concentration of Ca2+.  相似文献   

16.
Yeast inorganic pyrophosphatase, with 10 mM 32Pi and 10 mM Mg2+ present at pH 7.3 TO 7.6, rapidly forms enzyme-bound pyrophosphate equivalent to about 5% of the total catalytic sties on the two enzyme subunits. The enzyme thus appears to bind PPi so as to favor thermodynamically its formation from Pi. The enzyme catalyzes a measurable equilibrium formation of free PPi at a much slower rate. Under similar conditions, the enzyme catalyzes a rapid exchange of oxygen atoms between Pi and water with the relative activation by metals being Mg2+ greater than Zn2+ greater than Co2+ greater than Mn2+. Millisecond mixing and quenching experiments demonstrate that the rate of formation and cleavage of the enzyme-bound PPi is rapid enough to explain most or all of the oxygen exchange reaction.  相似文献   

17.
The specific activity of the Mg2+-ATPase and the (Ca2+ + Mg2+)-ATPase has been measured in a microsomal fraction from pig antral smooth muscle with the phosphate-release assay and the NADH-coupled enzyme assay, and the release of inorganic phosphate as a function of time is compared with the concomitant production of ADP. Both assays are found to overestimate the true Mg2+-ATPase activity. The adenylate kinase inhibitor P1,P5-di(adenosine-5'-)pentaphosphate (Ap5A) reduces the specific activity of the Mg2+-ATPase measured in the NADH-coupled enzyme assay to about half of its original value; however, it does not affect the specific activity of the Mg2+-ATPase in the Pi-release assay. The considerable overestimation of the Mg2+-ATPase activity in the NADH-coupled enzyme assay results from a combined action of an ATP pyrophosphatase (ATP in equilibrium AMP + PPi) and adenylate kinase activity contaminating the microsomes. The adenylate kinase activity in the microsomes catalyses the conversion of AMP formed by the ATP pyrophosphatase together with ATP into two ADP's. Also the phosphate-release assay is prone to an overestimation artefact because an inorganic pyrophosphatase will degrade the pyrophosphate and thus lead to additional Pi-production. Measurements of AMP and NAD+ production by HPLC confirmed our proposed reaction scheme. The same (Ca2+ + Mg2+)-ATPase activity is found in both assays, because the (Ca2+ + Mg2+)-ATPase activity is calculated from the difference in ATPase activity in the presence and absence of Ca2+, so that as a consequence the interfering activities are automatically subtracted.  相似文献   

18.
Initial rates of PPi hydrolysis by cytosolic and mitochondrial inorganic pyrophosphatases of rat liver have been measured in the presence of 0.2-100 microM MgPPi and 0.01-50 mM Mg2+ at pH 7.2 to 9.3. The apparently simplest model consistent with the data for both enzymes implies that they bind substrate, in the form of MgPPi, and three Mg2+ ions, of which two are absolutely required for activity. The third metal ion facilitates substrate binding but decreases maximal velocity for the cytosolic enzyme, while substrate binding is only modulated for the mitochondrial enzyme. The model is also applicable to bovine heart mitochondrial pyrophosphatases. The active form of the substrate for the cytosolic pyrophosphatase is MgP2O7(-2); the catalytic and metal-binding steps require a protonated group with pKa = 9.2 and an unprotonated group with pKa = 8.8, respectively. The results indicate that the mitochondrial pyrophosphatase is more sensitive to variations of Mg2+ concentration in rat liver cells than is the cytosolic one.  相似文献   

19.
Initial rates of pyrophosphate hydrolysis and synthesis by baker's yeast inorganic pyrophosphatase and equilibrium amounts of enzyme-bound and free pyrophosphate were measured over wide ranges of Mg2+ and respective substrate concentrations. Computer analysis of these data, in conjunction with those on phosphate/water oxygen exchange [Kasho, V. N. & Baykov, A. A. (1989) Biochem. Biophys. Res. Comm. 161, 475-480], yielded values of the equilibrium constants for Mg2+ binding to free enzyme and central complexes and values of the forward and reverse rate constants for the four reaction steps, namely, PPi binding/release, PPi hydrolysis/synthesis and two Pi binding/release steps. All catalytic steps were found to proceed through two parallel pathways, involving 3 or 4 Mg2+/PPi or 2 Pi bound. Product release is the slowest catalytic event in both hydrolysis and synthesis of pyrophosphate, at least, for the four-metal pathway. In the hydrolytic reaction, magnesium pyrophosphate binding is faster for the four-metal pathway, dissociation of the second Pi is faster for the three-metal pathway, while PPi hydrolysis and the release of the first Pi may proceed with similar rates. Release of pyrophosphate formed on the enzyme is faster for the three-metal pathway. Both pathways are expected to operate in vivo, and their relative contributions will vary with changes in the Mg2+ concentration, thus providing a means for pyrophosphatase-activity regulation.  相似文献   

20.
Trans cisternal elements of the Golgi apparatus from rat liver, identified by thiamin pyrophosphatase cytochemistry, were isolated by preparative free-flow electrophoresis and were found to undergo acidification as measured by a spectral shift in the absorbance of acridine orange. Acidification was supported not only by adenosine triphosphate (ATP) but nearly to the same degree by inorganic pyrophosphate (PPi). The proton gradients generated by either ATP or PPi were collapsed by addition of a neutral H+/K+ exchanger, nigericin, or the protonophore, carbonyl cyanide m-chlorophenylhydrazone, both at 1.5 microM. Both ATP hydrolysis and ATP-driven proton translocation as well as pyrophosphate hydrolysis and pyrophosphate-driven acidification were stimulated by chloride ions. However, ATP-dependent activities were optimum at pH 6.6, whereas pyrophosphate-dependent activities were optimum at pH 7.6. The Mg2+ optima also were different, being 0.5 mM with ATP and 5 mM with pyrophosphate. With both ATPase and especially pyrophosphatase activity, both by cytochemistry and analysis of free-flow electrophoresis fractions, hydrolysis was more evenly distributed across the Golgi apparatus stack than was either ATP- or PPi-induced inward transport of protons. Proton transport colocalized more closely with thiamin pyrophosphatase activity than did either pyrophosphatase or ATPase activity. ATP- and pyrophosphatase-dependent acidification were maximal in different electrophoretic fractions consistent with the operation of two distinct proton translocation activities, one driven by ATP and one driven by pyrophosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号