首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Export and secretion of the lipoprotein pullulanase by Klebsiella pneumoniae   总被引:18,自引:8,他引:10  
Pullulanase, a secreted lipoprotein of Klebsiella pneumoniae, is initially localized to the outer face of the outer membrane, as shown by protease and substrate accessibility and by immunofluorescence tests. Freeze-thaw disruption of these cells released both membrane-associated and apparently soluble forms of pullulanase. Membrane-associated pullulanase co-fractionated with authentic outer membrane vesicles upon isopycnic sucrose-gradient centrifugation, whereas the quasi-soluble form had the same equilibrium density as inner membrane vesicles and extracellular pullulanase aggregates. The latter also contained outer membrane maltoporin, but were largely devoid of other membrane components including LPS and lipids. K. pneumoniae carrying multiple copies of the pullulanase structural gene (pulA) produced increased amounts of cell-associated and secreted pullulanase, but a large proportion of the enzyme was neither exposed on the cell surface nor released into the medium, even after prolonged incubation. This suggests that factors necessary for pullulanase secretion were saturated by the over-produced pullulanase. When pulA was expressed under lacZ promotor control, the pullulanase which was produced was not exposed on the cell surface at any time, suggesting that pullulanase secretion genes are not expressed constitutively, and raising the possibility that they, like pulA, may be part of the maltose regulon.  相似文献   

2.
Pullulanase, a secreted lipoprotein of Klebsiella pneumoniae, is initially localized to the outer face of the outer membrane, as shown by protease and substrate accessibility and by immunofluorescence tests. Freeze-thaw disruption of these cells released both membrane-associated and apparently soluble forms of Pullulanase. Membrane-associated Pullulanase co-fractionated with authentic outer membrane vesicles upon isopycnic sucrose-gradient centrifugation, whereas the quasi-soluble form had the same equilibrium density as inner membrane vesicles and extracellular Pullulanase aggregates. The latter also contained outer membrane maltoporin, but were largely devoid of other membrane components including LPS and lipids. K. pneumoniae carrying multiple copies of the Pullulanase structural gene (pulA) produced increased amounts of cell-associated and secreted Pullulanase, but a large proportion of the enzyme was neither exposed on the cell surface nor released into the medium, even after prolonged incubation. This suggests that factors necessary for Pullulanase secretion were saturated by the over-produced Pullulanase. When pulA was expressed under lacZ promoter control, the Pullulanase which was produced was not exposed on the cell surface at any time, suggesting that Pullulanase secretion genes are not expressed constitutively, and raising the possibility that they, like puM, may be part of the maltose regulon.  相似文献   

3.
Extracellular pullulanase of Klebsiella pneumoniae is a lipoprotein.   总被引:40,自引:12,他引:28       下载免费PDF全文
Pullulanase is a starch-debranching enzyme produced by the gram-negative bacterium Klebsiella pneumoniae. In this organism, the enzyme is first exported to the outer membrane and is subsequently released into the growth medium. Evidence reported here indicates that pullulanase is a lipoprotein. It is apparently synthesized as a precursor with a 19-residue-long signal sequence and modified by the covalent attachment of palmitate to the cysteine residue which becomes the amino terminus after cleavage of the signal sequence. In this respect, pullulanase is similar to some penicillinases produced by gram-positive bacteria which are initially exported to the cell surface and subsequently released into the medium. However, pullulanase and the penicillinases differ in one important aspect, namely, that the extracellular pullulanase still carries the covalently attached fatty acyls, whereas extracellular penicillinases lack the modified amino-terminal cysteine together with a limited number of other residues from the amino terminus.  相似文献   

4.
Pullulanase from Klebsiella pneumoniae strain FG9 has an unusual N-terminal amino acid sequence that includes six repeats of the tripeptide Gly-X-Pro. This type of sequence is characteristic of animal collagens and collagen-like proteins which form triple helical structures. We have investigated the molecular organization of this bacterial pullulanase isolated from the cell surface of Escherichia coli cells that carry the cloned FG9 pulA (pullulanase encoding) gene. Non-denaturing polyacrylamide gel analysis shows that pullulanase exists as higher order, apparently homogeneous, structures. We have used highly purified bacterial collagenase to probe the role of the collagen-like region and we demonstrate that this feature is essential for non-covalent association of pullulanase homotrimers. In addition we show collagenase-specific release of cell-bound pullulanase.  相似文献   

5.
Hybrid proteins were constructed in which C-terminal regions of the bacterial cell surface and extracellular protein pullulanase were replaced by the mature forms of the normally periplasmic Escherichia coli proteins beta-lactamase or alkaline phosphatase. In E. coli strains expressing all pullulanase secretion genes, pullulanase-beta-lactamase hybrid protein molecules containing an N-terminal 834-amino-acid pullulanase segment were efficiently and completely transported to the cell surface. This hybrid protein remained temporarily anchored to the cell surface, presumably via fatty acids attached to the N-terminal cysteine of the pullulanase segment, and was subsequently specifically released into the medium in a manner indistinguishable from that of pullulanase itself. These results suggest that the C-terminal extremity of pullulanase lacks signal(s) required for export to the cell surface. When beta-lactamase was replaced by alkaline phosphatase, the resulting hybrid also became exposed at the cell surface, but exposition was less efficient and specific release into the medium was not observed. We conclude that proteins that do not normally cross the outer membrane can be induced to do so when fused to a permissive site near the C-terminus of pullulanase.  相似文献   

6.
Eukaryotic serine proteases are an important family of enzymes whose functions include fertilization, tissue degradation by neutrophils, and host invasion by parasites. To avoid damaging the cells or organisms that produced them, serine proteases must be tightly regulated and sequestered. This study elucidates how the parasitic blood fluke Schistosoma mansoni synthesizes, stores, and releases a serine protease during differentiation of its invasive larvae. In situ hybridization with a cDNA probe localized the protease mRNA to acetabular cells, the first morphologically distinguishable parasite cells that differentiate from the embryonic cell masses present in the intermediate host snail. The acetabular cells contained vimentin but not cytokeratins, consistent with a mesenchymal, not epithelial, origin. Antiprotease antibodies, localized by immunoperoxidase, showed that the protease progressively accumulated in these cells and was packaged in vesicles of three morphologic types. Extension of cytoplasmic processes containing protease vesicles formed "ducts" which reached the anterior end of fully differentiated larvae. During invasion of human skin, groups of intact vesicles were released through the acetabular cytoplasmic processes and ruptured within the host tissue. Ruptured protease vesicles were noted adjacent to degraded epidermal cells and dermal-epidermal basement membrane, as well as along the surface of the penetrating larvae themselves. These observations are consistent with the proposed dual role for the enzyme in facilitating invasion of host skin by larvae and helping to release the larval surface glycocalyx during metamorphosis to the next stage of the parasite.  相似文献   

7.
Pullulanase is an extracellular, cell surface-anchored lipoprotein produced by Gram-negative bacteria belonging to the genus Klebsiella. Its correct localization in recombinant Escherichia coli requires the products of 14 genes that are linked to the enzyme structural gene in the Klebsiella chromosome. In addition, we show here that six sec genes (secA, secB, secD, secE, secF and secY) are all required for processing of the prepullulanase signal peptide to occur. This implies that pullulanase crosses the cytoplasmic membrane via the general export pathway of which the sec gene products are essential components. Removal or drastic alteration of the prepullulanase signal peptide cause the enzyme to remain cytoplasmic. We propose that pullulanase secretion occurs in two steps, the first of which is common to all signal peptide-bearing precursors of exported and secreted proteins, whereas the second is specifically involved in translocating pullulanase to the cell surface.  相似文献   

8.
Clostridium thermosulfurogenes EM1 formed blebs, i.e., protrusions still in contact with the cytoplasmic membrane, that originated from the cytoplasmic membrane during growth in batch culture and continuous culture. They could be observed squeezed between the cell wall and cytoplasmic membrane in cells with seemingly intact wall layers (surface layer and peptidoglycan layer) as well as in cells with wall layers in different states of degradation caused by phosphate limitation or high dilution rates. Blebs were found to turn into membrane vesicles by constriction in cases when the cell wall was heavily degraded. Bleb and vesicle formation was also observed in the absence of substrates that induce alpha-amylase and pullulanase synthesis. No correlations existed between bleb formation and the presence of active enzyme. Similar blebs could also be observed in a number of other gram-positive bacteria not producing these enzymes, but they were not observed in gram-negative bacteria. For immunoelectron-microscopic localization of alpha-amylase and pullulanase in C. thermosulfurogenes EM1, two different antisera were applied. One was raised against the enzymes isolated from the culture fluid; the other was produced against a peptide synthesized, as a defined epitope, in analogy to the N-terminal amino acid sequence (21 amino acids) of the native extracellular alpha-amylase. By using these antisera, alpha-amylase and pullulanase were localized at the cell periphery in samples taken from continuous culture or batch culture. In samples prepared for electron microscopy by freeze substitution followed by ultrathin sectioning, blebs could be seen, and the immunolabel pinpointing alpha-amylase enzyme particles was seen not only randomly distributed in the cell periphery, but also lining the surface of the cytoplasmic membrane and the blebs. Cells exhibiting high or virtually no enzyme activity were labeled similarly with both antisera. This finding strongly suggests that alpha-amylase and pullulanase may occur in both active and inactive forms, depending on growth conditions.  相似文献   

9.
The energy requirement for the second step in pullulanase secretion by the general secretory pathway was studied in Escherichia coli . In order to uncouple the two steps in the secretion pathway (across the cytoplasmic and outer membranes, respectively) and to facilitate kinetic analysis of secretion, a variant form of pullulanase lacking its N-terminal fatty acid membrane anchor was used. The transport of the periplasmic secretion intermediate form of this protein across the outer membrane was not inhibited by concentrations of sodium arsenate in excess of those required to reduce ATP levels to ≤10% of their normal value. Pullulanase secretion was inhibited by the protonophore carbonyl cyanide m -chlorophenyl hydrazone at concentrations which were similar to those reported by others to be required to prevent solute uptake or the export and processing of preproteins across the cytoplasmic membrane, but which were in excess of those required to fully dissipate the proton-motive force and to reduce lactose uptake to a significant extent.  相似文献   

10.
The IgA1 protease of Streptococcus pneumoniae is a Zn-metalloproteinase of 1964 amino acids that specifically cleaves the hinge region of IgA1, the predominant class of immunoglobulin present on mucosal membranes. This protease is associated to the bacterial cell surface via an N-terminal membrane anchor. Following proteolysis it is released in several forms of different molecular weight. Here, we describe the cloning, expression, and characterization of the enzymatic activity and immunogenicity of three fragments of IgA1 protease, including a large one lacking only the 103 N-terminal amino acids that constitute a typical prokaryotic signal sequence. Further, a proteolytically inactive mutant was generated by replacement of the glutamate residue with an alanine residue in the active site motif HExxH (1605-1609). This is the first report of recombinant active forms of S. pneumoniae IgA1 protease, which open the possibility of identifying specific inhibitors that could interfere with the mucosal colonization by pneumococcus. Moreover the inactive mutant could be considered as a candidate vaccine component.  相似文献   

11.
Clostridium thermosulfurogenes EM1 formed blebs, i.e., protrusions still in contact with the cytoplasmic membrane, that originated from the cytoplasmic membrane during growth in batch culture and continuous culture. They could be observed squeezed between the cell wall and cytoplasmic membrane in cells with seemingly intact wall layers (surface layer and peptidoglycan layer) as well as in cells with wall layers in different states of degradation caused by phosphate limitation or high dilution rates. Blebs were found to turn into membrane vesicles by constriction in cases when the cell wall was heavily degraded. Bleb and vesicle formation was also observed in the absence of substrates that induce α-amylase and pullulanase synthesis. No correlations existed between bleb formation and the presence of active enzyme. Similar blebs could also be observed in a number of other gram-positive bacteria not producing these enzymes, but they were not observed in gram-negative bacteria. For immunoelectron-microscopic localization of α-amylase and pullulanase in C. thermosulfurogenes EM1, two different antisera were applied. One was raised against the enzymes isolated from the culture fluid; the other was produced against a peptide synthesized, as a defined epitope, in analogy to the N-terminal amino acid sequence (21 amino acids) of the native extracellular α-amylase. By using these antisera, α-amylase and pullulanase were localized at the cell periphery in samples taken from continuous culture or batch culture. In samples prepared for electron microscopy by freeze substitution followed by ultrathin sectioning, blebs could be seen, and the immunolabel pinpointing α-amylase enzyme particles was seen not only randomly distributed in the cell periphery, but also lining the surface of the cytoplasmic membrane and the blebs. Cells exhibiting high or virtually no enzyme activity were labeled similarly with both antisera. This finding strongly suggests that α-amylase and pullulanase may occur in both active and inactive forms, depending on growth conditions.  相似文献   

12.
The determined nucleotide sequence of the Klebsiella pneumoniae UNF5023 gene pulA comprises a single open reading frame coding for a 1090-residue precursor of the secreted protein pullulanase. The predicted sequence of this protein is highly homologous to that of pullulanase of Klebsiella aerogenes strain W70. However, the UNF5023 pullulanase lacks a collagen-like sequence present at the N-terminus of the mature W70 enzyme and differs further from the W70 pullulanase around residue 300 and at the C-terminus. Pullulanases with or without the collagen-like sequence could not be separated by gel electrophoresis under denaturing or non-denaturing conditions, and were unaffected by collagenase. A large central domain which is highly conserved in both UNF5023 and W70 polypeptides contains eight short sequences that are also found in amylases and iso-amylases. Linker mutations in the region of the UNF5023 pulA gene coding for this domain abolished catalytic activity without affecting transport of the polypeptide across the outer membrane. Hybrid proteins comprising at least the amino-terminal 656 residues of prepullulanase fused to alkaline phosphatase were partially localized to the cell surface, as judged by their accessibility to anti-pullulanase serum in immuno-fluorescence tests. On the basis of these results, we tentatively propose that secretion signals required for recognition and translocation across the outer membrane via the pullulanase-specific extension of the secretion pathway are located near the N-terminus of the pullulanase polypeptide.  相似文献   

13.
Pullulanase secretion in Escherichia coli depends on the expression of a MalT-regulated operon called pulC. Characterization of the first two genes of this operon showed that they encode, respectively, a 31,000-Da protein (PulC) and a 70,600-Da protein (PulD) which has a putative signal peptide and that these two proteins are required for pullulanase secretion. The analysis of alkaline phosphatase hybrid proteins generated by TnphoA mutagenesis of pulC and pulD showed that both PulC and PulD contain export signals which can direct the alkaline phosphatase segment of the hybrids across the inner membrane. A representative PulC-PhoA hybrid protein fractionated mainly with the inner membrane upon isopycnic sucrose gradient centrifugation of membrane vesicles. This, together with sequencing data, suggests that PulC is an inner membrane protein. Antibodies raised against a purified PulD-PhoA hybrid protein were used to show that PulD was enriched in low density outer membrane vesicles.  相似文献   

14.
Some strains of Klebsiella pneumonia secrete pullulanase, a debranching enzyme which produces linear molecules (maltodextrins, amylose) from amylopectin and glycogen. pulA, the structural gene for pullulanase, was introduced into Escherichia coli, either on a multiple-copy-number plasmid or as a single copy in the chromosome. When in E. coli, pulA was controlled by malT, the positive regulatory gene of the maltose regulon. Indeed, pulA expression was undetectable in a malT-negative mutant and constitutive in a malTc strain. Furthermore, the plasmid carrying pulA titrated the MalT protein. When produced in E. coli, pullulanase was not localized in the same way as in K. pneumoniae. In the latter case it was first exported to the outer membrane, with which it remained loosely associated, and was then released into the growth medium. In E. coli the enzyme was distributed both in the inner and the outer membranes and was never released into the growth medium.  相似文献   

15.
The topology of FtsW from Streptococcus pneumoniae, an essential membrane protein involved in bacterial cell division, was predicted by computational methods and probed by the alkaline phosphatase fusion and cysteine accessibility techniques. Consistent results were obtained for the seven N-terminal membrane-spanning segments. However, the results from alkaline phosphatase fusions did not confirm the hydropathy analysis of the C-terminal part of FtsW, whereas the accessibility of introduced cysteine residues was in agreement with the theoretical prediction. Based on the combined results, we propose the first topological model of FtsW, featuring 10 membrane-spanning segments, a large extracytoplasmic loop, and both N and C termini located in the cytoplasm.  相似文献   

16.
The secretion of the Klebsiella oxytoca cell surface lipoprotein pullulanase involves translocation across the cytoplasmic and outer membranes of the Gram-negative bacterial cell envelope. A variant of pullulanase was created by fusing the signal peptide-encoding 5' region of the Escherichia coli gene for periplasmic MalE protein to the 3' end of the pulA gene encoding almost the entire mature part of pullulanase. When produced in E. coli carrying the malE-pulA gene fusion on a high copy number plasmid and the complete set of genes specifically required for pullulanase secretion on a second plasmid, the hybrid protein differed from wild-type pullulanase as follows: (i) it was not fatty-acylated; (ii) it was apparently processed by LepB signal peptidase rather than by LspA lipoprotein signal peptidase; (iii) it was released into the periplasm and was only slowly transported across the outer membrane, and (iv) it was released directly into the medium rather than via the usual surface-anchored intermediate. The hybrid protein was secreted more rapidly when malE-pulA was expressed from a low copy number plasmid. The two steps in the secretion pathway could be totally uncoupled by expressing first the malE-pulA gene fusion and then the cognate secretion genes. These results show that fatty-acylation of wild-type PulA is not essential for secretion but may improve its efficiency when large amounts of the protein are produced, that the two steps in secretion can occur quite independently and that the periplasmic intermediate can persist for long periods under certain circumstances.  相似文献   

17.
The fatty acid-acylated enzyme pullulanase is normally found in either of two locations in Escherichia coli, depending on whether or not the producing strains also express the genes specifically required for the second step in pullulanase secretion. When they are expressed, the enzyme is localized to the cell surface, while in their absence, it is directed to an unidentified location in the cell envelope which, upon lysis, forms vesicles whose density is intermediate between those of outer and cytoplasmic membrane vesicles. In order to test the role of the putative lipoprotein sorting signal, Asp2, in pullulanase sorting and secretion, the structural gene (pulA) was subjected to site-directed mutagenesis. Replacement of the Asp2 residue by Asn, Glu, or Ser caused the enzyme to fractionate with outer membrane-derived vesicles rather than with intermediate density vesicles from E. coli cells devoid of pullulanase secretion genes. A pronounced secretion defect was observed in a two-step secretion assay in which the first (sec gene-dependent) and second (pul gene-dependent) secretion steps were uncoupled. We propose that the Asp residue increases the efficiency of pullulanase secretion by allowing the enzyme to be initially sorted to a region of the cell envelope wherein most of the pullulase-specific secretion factors are located.  相似文献   

18.
19.
This article describes the reconstitution in Escherichia coli of a heterologous protein secretion system comprising a gene for an extracellular protein together with its cognate secretion genes. The protein concerned, pullulanase, is a secreted lipoprotein of the Gram-negative bacterium Klebsiella pneumoniae. It is initially localized to the cell surface before being specifically released into the medium. E. coli carrying the cloned pullulanase structural gene (pulA) produces pullulanase but does not expose or secrete it. Secretion genes were cloned together with pulA in an 18.8 kbp fragment of K. pneumoniae chromosomal DNA. E. coli carrying this fragment exhibited maltose-inducible production, exposition and specific secretion of pullulanase. Transposon mutagenesis showed that the secretion genes are located on both sides of pulA. Secretion genes located 5' to pulA were transcribed in the opposite orientation to pulA under the control of the previously identified, malT-regulated malX promoter. Thus these secretion genes are part of the maltose regulon and are therefore co-expressed with pulA. Transposon mutagenesis suggested that secretion genes located 3' of pulA are not co-transcribed with pulA, raising the possibility that some secretion functions are not maltose regulated.  相似文献   

20.
Insertion and folding of polytopic membrane proteins is an important unsolved biological problem. To study this issue, lactose permease, a membrane transport protein from Escherichia coli, is transcribed, translated, and inserted into inside-out membrane vesicles in vitro. The protein is in a native conformation as judged by sensitivity to protease, binding of a monoclonal antibody directed against a conformational epitope, and importantly, by functional assays. By exploiting this system it is possible to express the N-terminal six helices of the permease (N(6)) and probe changes in conformation during insertion into the membrane. Specifically, when N(6) remains attached to the ribosome it is readily extracted from the membrane with urea, whereas after release from the ribosome or translation of additional helices, those polypeptides are not urea extractable. Furthermore, the accessibility of an engineered Factor Xa site to Xa protease is reduced significantly when N(6) is released from the ribosome or more helices are translated. Finally, spontaneous disulfide formation between Cys residues at positions 126 (Helix IV) and 144 (Helix V) is observed when N(6) is released from the ribosome and inserted into the membrane. Moreover, in contrast to full-length permease, N(6) is degraded by FtsH protease in vivo, and N(6) with a single Cys residue at position 148 does not react with N-ethylmaleimide. Taken together, the findings indicate that N(6) remains in a hydrophilic environment until it is released from the ribosome or additional helices are translated and continues to fold into a quasi-native conformation after insertion into the bilayer. Furthermore, there is synergism between N(6) and the C-terminal half of permease during assembly, as opposed to assembly of the two halves as independent domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号