首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Salivary gland polytene chromosomes of Drosophila melanogaster have a reproducible set of intercalary heterochromatin (IH) sites, characterized by late DNA replication, underreplicated DNA, breaks and frequent ectopic contacts. The SuUR mutation has been shown to suppress underreplication, and wild-type SuUR protein is found at late-replicating IH sites and in pericentric heterochromatin. Here we show that the SuUR gene influences all four IH features. The SuUR mutation leads to earlier completion of DNA replication. Using transgenic strains with two, four or six additional SuUR(+) doses (4-8xSuUR(+)) we show that wild-type SuUR is an enhancer of DNA underreplication, causing many late-replicating sites to become underreplicated. We map the underreplication sites and show that their number increases from 58 in normal strains (2xSuUR(+)) to 161 in 4-8xSuUR(+) strains. In one of these new sites (1AB) DNA polytenization decreases from 100% in the wild type to 51%-85% in the 4xSuUR (+) strain. In the 4xSuUR(+) strain, 60% of the weak points coincide with the localization of Polycomb group (PcG) proteins. At the IH region 89E1-4 (the Bithorax complex), a typical underreplication site, the degree of underreplication increases with four doses of SuUR(+) but the extent of the underreplicated region is the same as in wild type and corresponds to the region containing PcG binding sites. We conclude that the polytene chromosome regions known as IH are binding sites for SuUR protein and in many cases PcG silencing proteins. We propose that these stable silenced regions are late replicated and, in the presence of SuUR protein, become underreplicated.  相似文献   

2.
The Suppressor of Underreplication ( SuUR) gene contributes to the regulation of DNA replication in regions of intercalary heterochromatin in salivary gland polytene chromosomes. In the SuUR mutant these regions complete replication earlier than in wild type and, as a consequence, undergo full polytenization. Here we describe the effects of ectopic expression of SuUR using the GAL4-UAS system. We demonstrate that ectopically expressed SuUR exerts qualitatively distinct influences on polyploid and diploid tissues. Ectopic expression of SuUR inhibits DNA replication in polytene salivary gland nuclei, and reduces the degree of amplification of chorion protein genes that occurs in the follicle cell lineage. Effects caused by ectopic SuUR in diploid tissues vary considerably; there is no obvious effect on eye formation, but apoptosis is observed in the wing disc, and wing shape is distorted. The effect of ectopic SuUR expression is enhanced by mutations in the genes E2F and mus209 ( PCNA). Differential responses of polyploid and diploid cells to ectopic SuUR may reflect differences in the mechanisms underlying mitotic cell cycles and endocycles.  相似文献   

3.
It has been previously shown that the SuUR gene encodes a protein located in intercalary and pericentromeric heterochromatin in Drosophila melanogaster polytene chromosomes. The SuUR mutation suppresses the formation of ectopic contacts and DNA underreplication in polytene chromosomes; SuUR+ in extra doses enhances the expression of these characters. This study demonstrates that heterochromatin-dependent PEV silencing is also influenced by SuUR. The SuUR protein localizes to chromosome regions compacted as a result of PEV; the SuUR mutation suppresses DNA underreplication arising in regions of polytene chromosomes undergoing PEV. The SuUR mutation also suppresses variegation of both adult morphological characters and chromatin compaction observed in rearranged chromosomes. In contrast, SuUR+ in extra doses and its overexpression enhance variegation. Thus, SuUR affects PEV silencing in a dose-dependent manner. However, its effect is expressed weaker than that of the strong modifier Su(var)2-5.  相似文献   

4.
Iurlova AA  Makunin IV  Zhimulev IF 《Genetika》2010,46(9):1272-1275
Different genome regions differ in replication timing during the S phase. Late-replicating sequences are often underreplicated in the Drosophila salivary-gland polytene chromosomes. The SuUR gene, whose mutation changes the replication time of late-replicating regions in salivary-gland cells, has been identified in Drosophila melanogaster. The SUUR protein lacks homologs by a BLAST search, and only moderate homology is observed between its N-terminal end and chromatin-remodeling proteins of the SWI2/SNF2 family. The gene and the protein were analyzed in insects. Orthologs of the SuUR gene were found in all annotated Drosophila species. The number of amino acid substitutions in the SUUR protein proved to be extremely high, corresponding to that of rapidly evolving genes. Orthologs with low homology were found in mosquitoes Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus. No orthologs of the SuUR gene were detected beyond Diptera.  相似文献   

5.
In the Suppressor of Underreplication( SuUR) mutant strain of Drosophila melanogaster, the heterochromatin of polytene chromosomes is not underreplicated and, as a consequence, a number of beta-heterochromatic regions acquire a banded structure. The chromocenter does not form in these polytene chromosomes, and heterochromatic regions, normally part of the chromocenter, become accessible to cytological analysis. We generated four genomic DNA libraries from specific heterochromatic regions by microdissection of polytene chromosomes. In situ hybridization of individual libraries onto SuUR polytene chromosomes shows that repetitive DNA sequences spread into the neighboring euchromatic regions. This observation allows the localization of eu-heterochromatin transition zones on polytene chromosomes. We find that genomic scaffolds from the eu-heterochromatin transition zones are enriched in repetitive DNA sequences homologous to those flanking the suppressor of forked gene [ su(f) repeat]. We isolated and sequenced about 300 clones from the heterochromatic DNA libraries obtained. Most of the clones contain repetitive DNA sequences; however, some of the clones have unique DNA sequences shared with parts of unmapped genomic scaffolds. Hybridization of these clones onto SuUR polytene chromosomes allowed us to assign the cytological localizations of the corresponding genomic scaffolds within heterochromatin. Our results demonstrate that the SuUR mutant renders possible the mapping of heterochromatic scaffolds on polytene chromosomes.  相似文献   

6.
The Suppressor of Underreplication ( SuUR) gene contributes to the regulation of DNA replication in regions of intercalary heterochromatin in salivary gland polytene chromosomes. In the SuUR mutant these regions complete replication earlier than in wild type and, as a consequence, undergo full polytenization. Here we describe the effects of ectopic expression of SuUR using the GAL4-UAS system. We demonstrate that ectopically expressed SuUR exerts qualitatively distinct influences on polyploid and diploid tissues. Ectopic expression of SuUR inhibits DNA replication in polytene salivary gland nuclei, and reduces the degree of amplification of chorion protein genes that occurs in the follicle cell lineage. Effects caused by ectopic SuUR in diploid tissues vary considerably; there is no obvious effect on eye formation, but apoptosis is observed in the wing disc, and wing shape is distorted. The effect of ectopic SuUR expression is enhanced by mutations in the genes E2F and mus209 ( PCNA). Differential responses of polyploid and diploid cells to ectopic SuUR may reflect differences in the mechanisms underlying mitotic cell cycles and endocycles.Communicated by G. P. Georgiev  相似文献   

7.
The Suppressor of UnderReplication (SuUR) gene controls the DNA underreplication in intercalary and pericentric heterochromatin of Drosophila melanogaster salivary gland polytene chromosomes. In the present work, we investigate the functional importance of different regions of the SUUR protein by expressing truncations of the protein in an UAS–GAL4 system. We find that SUUR has at least two separate chromosome-binding regions that are able to recognize intercalary and pericentric heterochromatin specifically. The C-terminal part controls DNA underreplication in intercalary heterochromatin and partially in pericentric heterochromatin regions. The C-terminal half of SUUR suppresses endoreplication when ectopically expressed in the salivary gland. Ectopic expression of the N-terminal fragments of SUUR depletes endogenous SUUR from polytene chromosomes, causes the SuUR phenotype and induces specific swellings in heterochromatin.  相似文献   

8.
9.
P. Zhang  A. C. Spradling 《Genetics》1995,139(2):659-670
Peri-centromeric regions of Drosophila melanogaster chromosomes appear heterochromatic in mitotic cells and become greatly underrepresented in giant polytene chromosomes, where they aggregate into a central mass called the chromocenter. We used P elements inserted at sites dispersed throughout much of the mitotic heterochromatin to analyze the fate of 31 individual sites during polytenization. Analysis of DNA sequences flanking many of these elements revealed that middle repetitive or unique sequence DNAs frequently are interspersed with satellite DNAs in mitotic heterochromatin. All nine Y chromosome sites tested were underrepresented >20-fold on Southern blots of polytene DNA and were rarely or never detected by in situ hybridization to salivary gland chromosomes. In contrast, nine tested insertions in autosomal centromeric heterochromatin were represented fully in salivary gland DNA, despite the fact that at least six were located proximal to known blocks of satellite DNA. The inserted sequences formed diverse, site-specific morphologies in the chromocenter of salivary gland chromosomes, suggesting that domains dispersed at multiple sites in the centromeric heterochromatin of mitotic chromosomes contribute to polytene β-heterochromatin. We suggest that regions containing heterochromatic genes are organized into dispersed chromatin configurations that are important for their function in vivo.  相似文献   

10.
The morphological characteristics of intercalary heterochromatin (IH) are compared with those of other types of silenced chromatin in the Drosophila melanogaster genome: pericentric heterochromatin (PH) and regions subject to position effect variegation (PEV). We conclude that IH regions in polytene chromosomes are binding sites of silencing complexes such as PcG complexes and of SuUR protein. Binding of these proteins results in the appearance of condensed chromatin and late replication of DNA, which in turn may result in DNA underreplication. IH and PH as well as regions subject to PEV have in common the condensed chromatin appearance, the localization of specific proteins, late replication, underreplication in polytene chromosomes, and ectopic pairing.  相似文献   

11.
12.
13.
Microdissection of the chromocenter of D. virilis salivary gland polytene chromosomes has been carried out and the region-specific DNA library (DvirIII) has been obtained. FISH was used for DvirIII hybridization with salivary gland polytene chromosomes and ovarian nurse cells of D. virilis and D. kanekoi. Localization of DvirIII in the pericentromeric regions of chromosomes and in the telomeric region of chromosome 5 was observed in both species. Moreover, species specificity in the localization of DNA sequences of DvirIII in some chromosomal regions was detected. In order to study the three-dimensional organization of pericentromeric heterochromatin region of polytene chromosomes of ovarian nurse cells of D. virilis and D. kanekoi, 3S FISH DvirIII was performed with nurse cells of these species. As a result, species specificity in the distribution of DvirIII signals in the nuclear space was revealed. Namely, the signal was detected in the local chromocenter at one pole of the nucleus in D. virilis, while the signal from the telomeric region of chromosome 5 was detected on another pole. At the same time, DvirIII signals in D. kanekoi are localized in two separate areas in the nucleus: the first belongs to the pericentromeric region of chromosome 2 and another to pericentromeric regions of the remaining chromosomes.  相似文献   

14.
The distribution of four retrotransposon families (MDG1, MDG3, MDG4 and copia) on polytene chromosomes of different (from 9 to 15) Drosophila simulans strains is studied. The mean number of MDG1 and copia euchromatic hybridization sites (3 sites for each element) is drastically decreased in D. simulans in comparison with D. melanogaster (24 and 18 sites respectively). The mean number of MDG3 sites of hybridization is 5 in D. simulans against 12 in D. melanogaster. As for MDG4 both species have on the average about 2-3 euchromatic sites. The majority of MDG1 and copia and about a half of MDG3 euchromatic copies are localized in restricted number of sites (hot spots) on D. simulans polytene chromosomes. In D. melanogaster these elements are scattered along the chromosomes though there are some hot spots too. It appears that euchromatic copies of MDG1 and copia are considerably less mobile in D. simulans in contrast to D. melanogaster. Some common hot spots of retrotransposon localization in D. simulans and D. melanogaster were earlier described as intercalary heterochromatin regions in D. melanogaster. The level of interstrain variability of MDG4 hybridization sites is comparable in both species. Comparative blot-analysis of adult and larval salivary gland DNA shows that MDG1 and copia are situated mainly in euchromatic regions of D. melanogaster chromosomes. In D. simulans genome they are located mainly in heterochromatic regions underreplicated in salivary gland polytene chromosomes. There are interspecies differences in the distribution of retrotransposons in beta-heterochromatic chromosome regions.  相似文献   

15.
16.
A comparison of the banding patterns of two homologous polytene chromosome arms from the larval salivary gland and ovarian nurse cell complement of Anopheles stephensi is presented. The homologous chromosomes from the somatic larval salivary glands and germ-line derived ovarian nurse cells have essentially the same band-interband organisation. An analysis of the 3H-uridine labelling patterns of a small chromosome segment from the two tissues indicates that germ-line polytene chromosomes are not radically different from somatic polytene chromosomes in their patterns of gene expression.  相似文献   

17.
18.
M. E. Breuer  C. Pavan 《Chromosoma》1955,7(1):371-386
Summary Polytene chromosomes in cells of salivary gland, Malpighian tubules and intestine of Rhynchosciara angelae are very favorable for study. The polytene chromosomes of the salivary gland are among the largest available for cytogenetics work. The ones in Malpighian tubules and in some parts of the intestine are as large and as favorable for cytological studies as the salivary chromosomes of many species of Drosophila.Two additional characteristics of Rhynchosciara make these flies excellent material for studies on the development of polytene chromosomes. 1.It is possible to observe the banding pattern of the polytene chromosomes at many stages of the larval life for at least 30 days before pupation, and 2. since the gregarious larvae develop simultaneously, one can sample the group at any stage desired. Sampling the group every day, it is possible to follow the development of the chromosomes as though one studied a single individual by observing it every day.We have followed in detail the behavior of the bands in two sections of chromosome B and in one section of chromosome C, at different stages of larval development. Some regions of the chromosomes which are represented by typical euchromatic bands at one stage of the larval development may develop in enormous bulbs, and later on may return to the banded stage again.The formation of the bulbs is not uniform in different sections of the same or of different chromosomes. In section 2 of chromosome B a certain locus swells enormously and then develops an enormous bulb, and later returns to the banded stage. At the point where the bulb was formed there is an accumulation of DNA, in amounts probably several times greater than before the bulb formation. In section 3 of chromosome B and section 3 of chromosome C the extra accumulation of DNA preceeds the formation of the bulb and is maintained during and after it. In the bulb formed in section 3 of chromosome C a single band seems to be responsible for the process.As shown by several authors, experimental evidence suggests that a gene is located within a band. The bulb formation in polytene chromosomes may then be morphological evidence of gene activities. This type of bulb formations and of return to the banded stage is a property of many chromosomes bands, during larval development. This type of behavior of many bands in polytene chromosomes is related to the process of nucleolus formation. However, this behavior may be found in almost all (if not in all) bands of the polytene chromosomes. If so, the behavior of the nucleolus organizer region is only a special case of this general process.The accumulation of DNA in different parts of the chromosome in cells of the same or of different tissues may be an argument against the theory of the constancy of the amount of DNA in all cells of a species. The bulb formations is not peculiar to R. angelae but occurs in several other Diptera.  相似文献   

19.
Forum domains are 50-150 kb DNA fragments that are released during spontaneous fragmentation of chromosomes. They are separated by islands of putative heterochromatin boundary regions. The SuUR protein, which is involved in the control of chromosome organization, is localized exclusively in heterochromatin and often colocalizes on chromosomes with Polycomb group proteins. To test whether the SuUR protein is associated with boundary regions, we used gel retardation assays and found that the SuUR protein binds specifically to boundary regions and that boundary regions are under-replicated. These results suggest that the regular distribution of boundary regions in chromosomes may represent the dispersion of sites designed for chromosomal silencing.  相似文献   

20.
The European cherry fruit fly, Rhagoletis cerasi, is a major agricultural pest for which biological, genetic, and cytogenetic information is limited. We report here a cytogenetic analysis of 4 natural Greek populations of R. cerasi, all of them infected with the endosymbiotic bacterium Wolbachia pipientis. The mitotic karyotype and detailed photographic maps of the salivary gland polytene chromosomes of this pest species are presented here. The mitotic metaphase complement consists of 6 pairs of chromosomes, including one pair of heteromorphic sex chromosomes, with the male being the heterogametic sex. The analysis of the salivary gland polytene complement has shown a total of 5 long chromosomes (10 polytene arms) that correspond to the 5 autosomes of the mitotic nuclei and a heterochromatic mass corresponding to the sex chromosomes. The most prominent landmarks of each polytene chromosome, the "weak points", and the unusual asynapsis of homologous pairs of polytene chromosomes at certain regions of the polytene elements are also presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号