首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
IL (interleukin)-8 [CXCL8 (CXC chemokine ligand 8)] exerts its role in inflammation by triggering neutrophils via its specific GPCRs (G-protein-coupled receptors), CXCR1 (CXC chemokine receptor 1) and CXCR2, for which additional binding to endothelial HS-GAGs (heparan sulphate-glycosaminoglycans) is required. We present here a novel approach for blocking the CXCL8-related inflammatory cascade by generating dominant-negative CXCL8 mutants with improved GAG-binding affinity and knocked-out CXCR1/CXCR2 activity. These non-signalling CXCL8 decoy proteins are able to displace WT (wild-type) CXCL8 and to prevent CXCR1/CXCR2 signalling thereby interfering with the inflammatory response. We have designed 14 CXCL8 mutants that we subdivided into three classes according to number and site of mutations. The decoys were characterized by IFTs (isothermal fluorescence titrations) and SPR (surface plasmon resonance) to determine GAG affinity. Protein stability and structural changes were evaluated by far-UV CD spectroscopy and knocked-out GPCR response was shown by Boyden chamber and Ca2+ release assays. From these experiments, CXCL8(Δ6F17KF21KE70KN71K) emerged with the most promising in vitro characteristics. This mutant was therefore further investigated in a murine model of mBSA (methylated BSA)-induced arthritis in mice where it showed strong anti-inflammatory activity. Based on these results, we propose that dominant-negative CXCL8 decoy proteins are a promising class of novel biopharmaceuticals with high therapeutic potential in inflammatory diseases.  相似文献   

3.
Chemokine CXCL8 and its receptor CXCR1 are key mediators in combating infection and have also been implicated in the pathophysiology of various diseases including chronic obstructive pulmonary disease (COPD) and cancer. CXCL8 exists as monomers and dimers but monomer alone binds CXCR1 with high affinity. CXCL8 function involves binding two distinct CXCR1 sites – the N‐terminal domain (Site‐I) and the extracellular/transmembrane domain (Site‐II). Therefore, higher monomer affinity could be due to stronger binding at Site‐I or Site‐II or both. We have now characterized the binding of a human CXCR1 N‐terminal domain peptide (hCXCR1Ndp) to WT CXCL8 under conditions where it exists as both monomers and dimers. We show that the WT monomer binds the CXCR1 N‐domain with much higher affinity and that binding is coupled to dimer dissociation. We also characterized the binding of two CXCL8 monomer variants and a trapped dimer to two different hCXCR1Ndp constructs, and observe that the monomer binds with ~10‐ to 100‐fold higher affinity than the dimer. Our studies also show that the binding constants of monomer and dimer to the receptor peptides, and the dimer dissociation constant, can vary significantly as a function of pH and buffer, and so the ability to observe WT monomer peaks is critically dependent on NMR experimental conditions. We conclude that the monomer is the high affinity CXCR1 agonist, that Site‐I interactions play a dominant role in determining monomer vs. dimer affinity, and that the dimer plays an indirect role in regulating monomer function.  相似文献   

4.
We recently reported that CXCL8((3-73))K11R is a high affinity agonist of neutrophil activation and chemotactic responses. In this report we employed CXCL8((3-73))K11R as a template to generate CXCL8/IL-8 analogues with antagonist activities, using site-directed mutagenesis to introduce conservative amino acid substitutions into the first turn within the molecule's beta-pleated sheet region (G31P, P32G) and, in association with these, into the putative receptor-recognition site (T12S, H13F, F17S). We then examined their impact on the analogues' biological activities and found that a G31P substitution rendered CXCL8((3-73))K11R a high affinity antagonist of CXCL8/IL-8. The ranking (in the order of decreasing CXCL8/IL-8 antagonist activities) of the CXCL8((3-73))K11R analogues we generated was, G31P>T12S/G31P>H13F/G31P>T12S/H13F/G31P>P32G approximately T12S/P32G approximately H13F/P32G>T12S/H13F/P32G; CXCL8((3-73))K11R/F17S did not inhibit CXCL8/IL-8-dependent responses. CXCL8((3-73))K11R/G31P had no discernible agonist (beta-glucuronidase release, chemotactic) activity, but at 12.5 ng/ml it bound to purified neutrophils more avidly than did 1.25 microg/ml CXCL8/IL-8. Furthermore, CXCL8((3-73))K11R/G31P competitively antagonized the binding of CXCR1- and CXCR2-specific antibodies to these receptors. Taken together, these data thus provide further impetus to the study of the potential efficacy of CXCL8((3-73))K11R/G31P as a broad-spectrum antagonist of the ELR-CXC chemokines in experimental and clinical settings.  相似文献   

5.
Interleukin‐8 (CXCL8, IL‐8) is a proinflammatory chemokine important for the regulation of inflammatory and immune responses via its interaction with G‐protein coupled receptors, including CXC receptor 1 (CXCR1). CXCL8 exists as both a monomer and as a dimer at physiological concentrations, yet the molecular basis of CXCL8 interaction with its receptor as well as the importance of CXCL8 dimer formation remain poorly characterized. Although several biological studies have indicated that both the CXCL8 monomer and dimer are active, biophysical studies have reported conflicting results regarding the binding of CXCL8 to CXCR1. To clarify this problem, we expressed and purified a peptide (hCXCR1pep) corresponding to the N‐terminal region of human CXCR1 (hCXCR1) and utilized nuclear magnetic resonance (NMR) spectroscopy to interrogate the binding of wild‐type CXCL8 and a previously reported mutant (CXCL8M) that stabilizes the monomeric form. Our data reveal that the CXCL8 monomer engages hCXCR1pep with a slightly higher affinity than the CXCL8 dimer, but that the CXCL8 dimer does not dissociate upon binding hCXCR1pep. These investigations also showed that CXCL8 is dynamic on multiple timescales, which may help explain the versatility in this interleukin for engaging its target receptors.  相似文献   

6.
Persistent infection or chronic inflammation contributes significantly to tumourigenesis and tumour progression. C-X-C motif ligand 8 (CXCL8) is a chemokine that acts as an important multifunctional cytokine to modulate tumour proliferation, invasion and migration in an autocrine or paracrine manner. Studies have suggested that CXCL8 and its cognate receptors, C-X-C chemokine receptor 1 (CXCR1) and C-X-C chemokine receptor 2 (CXCR2), mediate the initiation and development of various cancers including breast cancer, prostate cancer, lung cancer, colorectal carcinoma and melanoma. CXCL8 also integrates with multiple intracellular signalling pathways to produce coordinated effects. Neovascularisation, which provides a basis for fostering tumour growth and metastasis, is now recognised as a critical function of CXCL8 in the tumour microenvironment. In this review, we summarize the biological functions and clinical significance of the CXCL8 signalling axis in cancer. We also propose that CXCL8 may be a potential therapeutic target for cancer treatment.  相似文献   

7.
All chemokines share a common structural scaffold that mediate a remarkable variety of functions from immune surveillance to organogenesis. Chemokines are classified as CXC or CC on the basis of conserved cysteines, and the two subclasses bind distinct sets of GPCR class of receptors and also have markedly different quaternary structures, suggesting that the CXC/CC motif plays a prominent role in both structure and function. For both classes, receptor activation involves interactions between chemokine N-loop and receptor N-domain residues (Site-I), and between chemokine N-terminal and receptor extracellular/transmembrane residues (Site-II). We engineered a CC variant (labeled as CC-CXCL8) of the chemokine CXCL8 by deleting residue X (CXC → CC), and found its structure is essentially similar to WT. In stark contrast, CC-CXCL8 bound poorly to its cognate receptors CXCR1 and CXCR2 (Ki > 1 μm). Further, CC-CXCL8 failed to mobilize Ca2+ in CXCR2-expressing HL-60 cells or recruit neutrophils in a mouse lung model. However, most interestingly, CC-CXCL8 mobilizes Ca2+ in neutrophils and in CXCR1-expressing HL-60 cells. Compared with the WT, CC-CXCL8 binds CXCR1 N-domain with only ∼5-fold lower affinity indicating that the weak binding to intact CXCR1 must be due to its weak binding at Site-II. Nevertheless, this level of binding is sufficient for receptor activation indicating that affinity and activity are separable functions. We propose that the CXC motif functions as a conformational switch that couples Site-I and Site-II interactions for both receptors, and that this coupling is critical for high affinity binding but differentially regulates activation.  相似文献   

8.
CXCR1 is a receptor for the chemokine interleukin-8 (IL-8), a mediator of immune and inflammatory responses. Strategically located in the cell membrane, CXCR1 binds to IL-8 with high affinity and subsequently transduces a signal across the membrane bilayer to a G-protein-activated second messenger system. Here, we describe NMR studies of the interactions between IL-8 and human CXCR1 in lipid environments. Functional full-length and truncated constructs of CXCR1 and full-length IL-8 were uniformly 15N-labeled by expression in bacteria followed by purification and refolding. The residues responsible for interactions between IL-8 and the N-terminal domain of CXCR1 were identified by specific chemical shift perturbations of assigned resonances on both IL-8 and CXCR1. Solution NMR signals from IL-8 in = 0.1 isotropic bicelles disappeared completely when CXCR1 in lipid bilayers was added in a 1:1 molar ratio, indicating that binding to the receptor-containing bilayers immobilizes IL-8 (on the ∼ 105 Hz timescale) and broadens the signals beyond detection. The same solution NMR signals from IL-8 were less affected by the addition of N-terminal truncated CXCR1 in lipid bilayers, demonstrating that the N-terminal domain of CXCR1 is mainly responsible for binding to IL-8. The interaction is tight enough to immobilize IL-8 along with the receptor in phospholipid bilayers and is specific enough to result in well-aligned samples in oriented sample solid-state NMR spectra. A combination of solution NMR and solid-state NMR studies of IL-8 in the presence of various constructs of CXCR1 enables us to propose a model for the multistep binding process.  相似文献   

9.
The constitutively active G-protein-coupled receptor and viral oncogene ORF74, encoded by Kaposi sarcoma-associated herpesvirus (human herpesvirus 8), binds a broad range of chemokines, including CXCL1 (agonist), CXCL8 (neutral ligand), and CXCL10 (inverse agonist). Although chemokines interact with the extracellular N terminus and loops of the receptor, we demonstrate that helix 8 (Hx8) in the intracellular carboxyl tail (C-tail) of ORF74 directs chemokine binding. Partial deletion of the C-tail resulted in a phenotype with reduced constitutive activity but intact regulation by ligands. Complete deletion of the C-tail, including Hx8, resulted in an inactive phenotype that lacks CXCL8 binding sites and has an increased number of binding sites for CXCL10. Similar effects were obtained with the single R7.61(322)W or Q7.62(323)P mutations in Hx8. We propose that the conserved charged or polar side chain at position 7.61 has a specific role in stabilizing the end of transmembrane domain 7 (TM7). Disruption of Hx8 by deletion or mutation distorts an H-bonding network, involving highly conserved amino acids within TM2, TM7, and Hx8, that is crucial for positioning of the TM domains, coupling to Galphaq, and CXCL8 binding. Thus, Hx8 appears to exert a key role in receptor stabilization through the conserved residue R7.61, directing the ligand binding profile of ORF74 and likely also that of other class A G-protein-coupled receptors.  相似文献   

10.
Barter EF  Stone MJ 《Biochemistry》2012,51(6):1322-1331
Interleukin-8 (IL-8 or CXCL8), the archetypal member of the CXC chemokine subfamily, stimulates neutrophil chemotaxis by activating receptors CXCR1/IL8RA and CXCR2/IL8RB. Previous mutational studies have implicated both the N-terminal and third extracellular loop (E3) regions of these receptors in binding to IL-8. To investigate the interactions of these receptor elements with IL-8, we have constructed soluble proteins in which the N-terminal and E3 elements of either CXCR1 or CXCR2 are juxtaposed on a soluble scaffold protein; these are termed CROSS-N(X1)E3(X1) and CROSS-N(X2)E3(X2), respectively. Isothermal titration calorimetry and nuclear magnetic resonance spectroscopy were used to compare the IL-8 binding properties of the receptor mimics to those of control proteins containing only the N-terminal or E3 receptor element. CROSS-N(X2)E3(X2) bound to monomeric IL-8 with the same affinity and induced the same chemical shift changes as the control protein containing only the N-terminal element of CXCR2, indicating that the E3 element of CXCR2 did not contribute to IL-8 binding. In contrast, CROSS-N(X1)E3(X1) bound to IL-8 with ~10-fold increased affinity and induced different chemical shift changes compared to the control protein containing only the N-terminal element of CXCR1, suggesting that the E3 region of CXCR1 was interacting with IL-8. However, a chimeric protein containing the N-terminal region of CXCR1 and the E3 region of CXCR2 (CROSS-N(X1)E3(X2)) bound to IL-8 with thermodynamic properties and induced chemical shift changes indistinguishable from those of CROSS-N(X1)E3(X1) and substantially different from those of CROSS-N(X2)E3(X2). These results indicate that the N-terminal and E3 regions of CXCR1 interact synergistically to achieve optimal binding interactions with IL-8.  相似文献   

11.
We have probed an epitope sequence (His18-Pro19-Lys20-Phe21) in interleukin-8 (IL-8) by site-directed mutagenesis. This work shows that single and double Ala substitutions of His18 and Phe21 in IL-8 reduced up to 77-fold the binding affinity to IL-8 receptor subtypes A (CXCR1) and B (CXCR2) and to the Duffy antigen. These Ala mutants triggered neutrophil degranulation and induced calcium responses mediated by CXCR1 and CXCR2. Single Asp or Ser substitutions, H18D, F21D, F21S, and double substitutions, H18A/F21D, H18A/F21S, and H18D/F21D, reduced up to 431-fold the binding affinity to CXCR1, CXCR2, and the Duffy antigen. Interestingly, double mutants with charged residue substitutions failed to trigger degranulation or to induce wild-type calcium responses mediated by CXCR1. Except for the H18A and F21A mutants, all other IL-8 mutants failed to induce superoxide production in neutrophils. This study demonstrates that IL-8 recognizes and activates CXCR1, CXCR2, and the Duffy antigen by distinct mechanisms.  相似文献   

12.
Human immunodeficiency virus type 1 (HIV-1) entry into CD4(+) cells requires the chemokine receptors CCR5 or CXCR4 as co-fusion receptors. We have previously demonstrated that chemokine receptors are capable of cross-regulating the functions of each other and, thus, affecting cellular responsiveness at the site of infection. To investigate the effects of chemokine receptor cross-regulation in HIV-1 infection, monocytes and MAGIC5 and rat basophilic leukemia (RBL-2H3) cell lines co-expressing the interleukin-8 (IL-8 or CXCL8) receptor CXCR1 and either CCR5 (ACCR5) or CXCR4 (ACXCR4) were generated. IL-8 activation of CXCR1, but not the IL-8 receptor CXCR2, cross-phosphorylated CCR5 and CXCR4 and cross-desensitized their responsiveness to RANTES (regulated on activation normal T cell expressed and secreted) (CCL5) and stromal derived factor (SDF-1 or CXCL12), respectively. CXCR1 activation internalized CCR5 but not CXCR4 despite cross-phosphorylation of both. IL-8 pretreatment also inhibited CCR5- but not CXCR4-mediated virus entry into MAGIC5 cells. A tail-deleted mutant of CXCR1, DeltaCXCR1, produced greater signals upon activation (Ca(2+) mobilization and phosphoinositide hydrolysis) and cross-internalized CXCR4, inhibiting HIV-1 entry. The protein kinase C inhibitor staurosporine prevented phosphorylation and internalization of the receptors by CXCR1 activation. Taken together, these results indicate that chemokine receptor-mediated HIV-1 cell infection is blocked by receptor internalization but not desensitization alone. Thus, activation of chemokine receptors unrelated to CCR5 and CXCR4 may play a cross-regulatory role in the infection and propagation of HIV-1. Since DeltaCXCR1, but not CXCR1, cross-internalized and cross-inhibited HIV-1 infection to CXCR4, the data indicate the importance of the signal strength of a receptor and, as a consequence, protein kinase C activation in the suppression of HIV-1 infection by cross-receptor-mediated internalization.  相似文献   

13.
14.
15.
Chemokines elicit their function by binding receptors of the G-protein-coupled receptor class, and the N-terminal domain (N-domain) of the receptor is one of the two critical ligand-binding sites. In this study, the thermodynamic basis for binding of the chemokine interleukin-8 (IL-8) to the N-domain of its receptor CXCR1 was characterized using isothermal titration calorimetry. We have shown previously that only the monomer of IL-8, and not the dimer, functions as a high-affinity ligand, so in this study we used the IL-8(1-66) deletion mutant which exists as a monomer. Calorimetry data indicate that the binding is enthalpically favored and entropically disfavored, and a negative heat capacity change indicates burial of hydrophobic residues in the complex. A characteristic feature of chemokine receptor N-domains is the large number of acidic residues, and experiments using different buffers show no net proton transfer, indicating that the CXCR1 N-domain acidic residues are not protonated in the binding process. CXCR1 N-domain peptide is unstructured in the free form but adopts a more defined structure in the bound form, and so binding is coupled to induction of the structure of the N-domain. Measurements in the presence of the osmolyte, trimethylamine N-oxide, which induces the structure of unfolded proteins, show that formation of the coupled N-domain structure involves only small DeltaH and DeltaS changes. These results together indicate that the binding is driven by packing interactions in the complex that are enthalpically favored, and are consistent with the observation that the N-domain binds in an extended form and interacts with multiple IL-8 N-loop residues over a large surface area.  相似文献   

16.
The V3 loop of the glycoprotein 120 (gp120) is a contact point for cell entry of HIV-1 leading to infection. Despite sequence variability and lack of specific structure, the highly flexible V3 loop possesses a well-defined role in recognizing and selecting cell-bound coreceptors CCR5 and CXCR4 through a mechanism of charge complementarity. We have performed two independent molecular dynamics (MD) simulations to gain insights into the dynamic character of two V3 loops with slightly different sequences, but significantly different starting crystallographic structures. We have identified highly populated trajectory-specific salt bridges between oppositely charged stem residues Arg9 and Glu25 or Asp29. The two trajectories share nearly identical correlated motions within the simulations, despite their different overall structures. High occupancy salt bridges play a key role in the major cross-correlated motions in both trajectories, and may be responsible for transient structural stability in preparation for coreceptor binding. In addition, the two V3 loops visit conformations with similarities in spatial distributions of electrostatic potentials, despite their inherent flexibility, which may play a role in coreceptor recognition. It is plausible that cooperativity between overall electrostatic potential, charged residue interactions, and correlated motions could be associated with a coreceptor selection and binding.  相似文献   

17.
Chemokines play a fundamental role in trafficking of immune cells and in host defense against infection. The role of chemokines in the recruitment process is highly regulated spatially and temporally and involves interactions with G protein-coupled receptors and cell surface glycosaminoglycans. The dynamic equilibrium between chemokine monomers and dimers, both free in solution and in cell surface-bound forms, regulates different components of recruitment such as chemotaxis and receptor signaling. The binding and activity of the chemokine interleukin-8 (IL-8) for its receptors, previously studied using "trapped" non-associating monomers and non-dissociating dimers, show that the monomer has a native-like function but support conflicting roles for the dimer. We have measured the binding of native IL-8 to the CXCR1 N-domain, using isothermal titration calorimetry and sedimentation equilibrium techniques. The N-domain constitutes a critical binding site, and IL-8 binding affinity to the receptor N-domain is in the same concentration range as the IL-8 monomerdimer equilibrium. We observed that only the IL-8 monomer, and not the dimer, is competent in binding the receptor N-domain. Based on our results, we propose that IL-8 dimerization functions as a negative regulator for the receptor function and as a positive regulator for binding to glycosaminoglycans and that both play a role in the neutrophil recruitment process.  相似文献   

18.
Chemokine CXCL-8 plays a central role in human immune response by binding to and activate its cognate receptor CXCR1, a member of the G-protein coupled receptor (GPCR) family. The full-length structure of CXCR1 is modeled by combining the structures of previous NMR experiments with those from homology modeling. Molecular docking is performed to search favorable binding sites of monomeric and dimeric CXCL-8 with CXCR1 and a mutated form of it. The receptor-ligand complex is embedded into a lipid bilayer and used in multi ns molecular dynamics (MD) simulations. A multi-steps binding mode is proposed: (i) the N-loop of CXCL-8 initially binds to the N-terminal domain of receptor CXCR1 driven predominantly by electrostatic interactions; (ii) hydrophobic interactions allow the N-terminal Glu-Leu-Arg (ELR) motif of CXCL-8 to move closer to the extracellular loops of CXCR1; (iii) electrostatic interactions finally dominate the interaction between the N-terminal ELR motif of CXCL-8 and the EC-loops of CXCR1. Mutation of CXCR1 abrogates this mode of binding. The detailed binding process may help to facilitate the discovery of agonists and antagonists for rational drug design.  相似文献   

19.
The primary structures of a CXC chemokine (CXCL8) and two CXC receptors (CXCR) have been characterized in fugu, Takifugu rubripes. Unlike mammalian and avian species, CXCL8 of teleosts including fugu lacks the ELR motif that appears to be important in ligand/receptor interactions on neutrophils. Genomic organization shows that fugu CXCL8 gene consists of four exons and three introns. As in other vertebrates, two CXCR genes isolated from fugu encode proteins CXCR1 and CXCR2 that possess characteristic seven transmembrane domains. Each receptor consists of two exons separated by an intron. Synteny analysis indicates that these two CXCRs were derived from whole genome duplication in teleosts, differing from mammalian CXCR1 and CXCR2. All of these genes are primarily expressed in the lymphoid tissues. Immune stimulation with PHA showed that the expression of both CXCL8 and CXCRs in PBL are upregulated even after only a short time period, but downregulated by LPS stimulation, implying that these genes are involved in the regulation of the immune response in fugu.  相似文献   

20.
The recruitment of bone marrow CD34- mesenchymal stem- and progenitor cells (MSC) and their subsequent differentiation into distinct tissues is the precondition for in situ tissue engineering. The objective of this study was to determine the entire chemokine receptor expression profile of human MSC and to investigate their chemotactic response to the selected chemokines CCL2, CXCL8 and CXCL12. Human MSC were isolated from iliac crest bone marrow aspirates and showed a homogeneous population presenting a typical MSC-related cell surface antigen profile (CD14-, CD34-, CD44+, CD45-, CD166+, SH-2+). The expression profile of all 18 chemokine receptors was determined by real-time PCR and immunohistochemistry. Both methods consistently demonstrated that MSC express CC, CXC, C and CX(3)C receptors. Gene expression and immunohistochemical analysis documented that MSC express chemokine receptors CCR2, CCR8, CXCR1, CXCR2 and CXCR3. A dose-dependent chemotactic activity of CXCR4 and CXCR1/CXCR2 ligands CXCL12 and CXCL8 (interleukin-8) was demonstrated using a 96-well chemotaxis assay. In contrast, the CCR2 ligand CCL2 (monocyte chemoattractant protein-1, MCP-1) did not recruited human MSC. In conclusion, we report that the chemokine receptor expression profile of human MSC is much broader than known before. Furthermore, for the first time, we demonstrate that human MSC migrate upon stimulation with CXCL8 but not CCL2. In combination with already known data on MSC recruitment and differentiation these are promising results towards in situ regenerative medicine approaches based on guiding of MSC to sites of degenerated tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号