首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 278 毫秒
1.
P16~(ink4)是CDK抑制蛋白,参与调控细胞G1期至S期的转换。目前发现P16`(ink4)基因损伤与多种肿瘤的发生、发展有关,可能是功能上非常重要的抑癌基因。为了研究该基因的功能,以及突变对该基因功能的影响,本文应用RT-PCR方法,从Hela细胞中克隆了P16~(ink4)cDNA。扩增得到556bp片段(包括引物两端酶切位点的16bp)克隆于M13载体,测定了其DNA序列。该序列包括了P16~(ink4)cDNA编码区全部471bp,以及3’端69bp序列。表明P16~(ink4)cDNA已成功地得到克隆。  相似文献   

2.
p16INK4a基因的功能及其调控   总被引:1,自引:0,他引:1  
p16INK4a蛋白能抑制CDK4和CDK6的活性,使pRb处于非磷酸化或低磷酸化状态而能与转录因子E2Fs结合,从而抑制DNA 的合成,阻止细胞由G1期进入S期.p16INK4a的表达受Ets1和Ets2的正调控,受Bmi-1的负调控.p16INK4a基因缺失、突变、甲基化、RNA剪接加工错误可导致细胞周期失控和癌变.应用p16INK4a对某些肿瘤进行基因治疗的研究正在进行中.  相似文献   

3.
链霉菌中表达了透明颤菌血红蛋白(VHb),表明VHb对放线紫素的产生和菌体的生长有促进作用[2].pIJ702质粒上带有与次生代谢有关的酪氨酸酶基因(mel)[3],mel由ORF438启动子(PORF438)带动转录[4].本文尝试利用PORF4328表达vgb.  相似文献   

4.
胶源神经营养因子(Glialcellinederivedneurotrophicfactor,GDNF)是大鼠B49细胞系中分离纯化得到的一种蛋白质[1],由于其对多巴胺神经元的专一性的神经营养作用而被发现。GDNF成熟蛋白由134个氨基酸组成,具有两个N-糖基化位点。它属于TGF-β基因家族但与该家族其它成员的氨基酸序列同源性仅为20%,可能是一个新的亚家族。最近研究表明,它对发育中的运动神经元也有很强的神经营养作用[1]。对啮齿类[3,4],灵长类的弥猴[5]的活体试验表明,胶源神经营养因子是一种治疗神经退化发夹知病如帕金森氏症、肌萎缩性脊髓索硬化症等的非常有效的潜在药物。由于GDNF在体内含量极低而且公在发育早期表达,因而只有通过基因工程方法才能获得大量的GDNF。本文报道采用PCR方法从中国入基因组DNA 中扩增出编码GDNF的基因,并实现在大肠杆菌中的高效表达。这为进一步研究GDNF的结构和生物学功能打下了坚实的基础。  相似文献   

5.
骨形成蛋白(Bone Morphogenetic Protein,BMP)是一类能诱导异位骨及软骨形成,并在动物的发育和分化中起作用的蛋白质[1,2,3]。自Urist及其同事发现骨形成蛋白以来4。已对8种人的BMP进行了克隆,除BMP-1外[5],BMP-2至BMP-8均与TGF-β家族相关,它们能诱导细胞分化,促进骨、软骨及牙本质的形成[1,6]。并在发育、分化和形成过程中起重要作用。最新的研究认为BMP-1是一种胶原蛋白酶[7],进一步揭示了BMP家族成员的生物学作用。人的BMP-3基因定位于第4染色体上,BMP-3蛋白由472个氨基酸组成,包括N端的信号肽、中间的前肽及C端的成熟肽三部分。BMP-3的C末端与MBP-2A及BMP-2B有49%的序列相同[5]。本实验室曾检测了BMP-3和BMP-5在不同 组织和细胞中的表达情况,发现它们在一些与骨形成无关的组织和细胞中均有表达,说明了BMP在动物和人中有着其他重要的作用[8]。在此基础上,我们对BMP-3进行了克隆及在大肠杆菌中高效表达BMP-3-GST融合蛋白,并用Western印迹证明了其活性。  相似文献   

6.
固定化技术研究的新进展   总被引:2,自引:0,他引:2  
固定化生物催化剂的研究近一、二十年来发展非常迅速。它已由原来的单一固定化酶、固定化微生物细咆发展到动植物细胞、组织器官、微生物孢子[1]、细胞与酶[2]、好氧微生物与厌氧微生物[3]的混合固定化等,其应用研究巳涉及发酵、食品、化工、分析、医疗、生化、环境净化等各个领域[4],展示了广阔的发展前景。  相似文献   

7.
纤溶酶原激活剂(Plasminogen Activator,PA)对血液中蛋白水解酶的活性有重要的调节作用。纤溶酶原激活剂的抑制物(Plasminogen Activator Inhibitor,PAI)可物异地抑制PA(t-PA和u-PA),其作用迅速,是PA活性的重要调节因子。很多证据表明,PAI、Pat和体内许多生理反应有密节的关系,如炎症[1]、组织重塑[2]、肿瘤生长及恶性细胞的转移[3,4]等。目前已发现了四种类型的PAI,PAI-2是基中的一种,它可由人胎盘滋养层细胞合成,在孕妇血浆中大理存在[5].该蛋白具有两种形式:一种分子量为43~47kDa的非糖基化形式:另一种分子量为58~60kDa的糖基化形式[6,7].对其结构与功能深入的研究将有助于了解许多生于现象,但由于PAI-2基因在大肠杆菌和哺乳动物细胞中的表达都不理想,不能获得足够量的该活性蛋白,本文在以轩状病毒为载体在昆虫细胞中成功地表达了该基因。  相似文献   

8.
生黑醋菌可以将D-山梨醇转化为L-山梨塘,用微生物将D-山梨醇氧化为L-山梨糖是维生素C生产的一个重要部分,目前工业上用的都是游离菌批式生产工艺。由于固定化活细胞作为生物催化剂具有生产的连续性和稳定性.操作简便.产物易于分离纯化等优点[1],已有不少实验室研究甩固定化微生物细胞将D-山梨醇转化为L-山梨糖[1-6],国内也有用海藻酸固定化生黑醋菌Acetobacteriummelanogenum的报道[2,3]。用海藻酸钙[1-3]、聚丙烯酰胺[4]、铝处理的海藻酸钙[5]、水合聚丙烯酰胺与海藻酸钙混合固定化的微生物细胞[6]转化D-山梨醇成为L-山梨糖,都有因机械强度差,而不适合在搅拌式发酵罐中生产的弱点。聚乙烯醇制备的固定化微生物细胞具有机械强度好、类似于橡皮的弹性、成低等特性[7]。因此,我们选择聚乙烯醇作为固定化生黑醋菌的材料。  相似文献   

9.
分于伴侣(Chaperohe)是细胞内催化及维持其他蛋白质正确梅象的一类蛋白质分子[1,2]。研究表明,分子伴侣参与细胞内许多蛋白质的折叠、聚合以及跨膜运输[3,4],通过瞬时稳定其他蛋白质折叠中间体,阻止了蛋白中间体的聚集,帮助其形成正确构象[5,6]。SecB是一个胞质酸性蛋白.单体分子量为17kDa,在体内以4~6个相同亚基组成的寡聚体形式存在。它在大肠杆菌中参与蛋白质分泌系统,纯化后进行离体试验表明,它可以阻止抗蛋白酶的pre-MBP的出现,能稳定地结合前体蛋白.使其处于适合运输的构型[7],它的作用是使蛋白质可以在正确折叠前跨过细胞膜,运输到细胞周质中。SecB通过与前体蛋白结合.从而阻止前体蛋自由于不正确折叠发生的聚集,属于分子伴侣家族的成员。分子伴侣的这些特性使得它们在基因工程中具有广阔的应用前景。外源蛋白在大肠杆菌中高表达时往往形成无活性的包涵体,包涵体大多是蛋白质在过量表达过程中不正确折叠形成的[8],正确构象的形成需要在体外进行变性和复性。蛋白质的复性过程十分复杂,在方法上缺少一定的规律可循,特别是分子量较大以及二硫键较多的分子,复性更加困难,有的甚至根本难以复性。分子伴侣可以促进其它蛋白质的正确折叠,设想在基因工程中如果将分子伴侣基因与外源蛋白基因共存表达,可能会有效地促进外源蛋白形成正确的构象.提高其活性,减少包涵体的形成,对基因工程下游的处理带来很大方便。根 据这个思路,我们将克隆的SecB基因与重组人淋巴毒索(Lymphotoxin,简称LT)基因在同一个大肠杆菌细胞中共存表达,来研究分子伴侣SecB对外源基因表达的影响。  相似文献   

10.
云南红豆杉培养细胞系的建立   总被引:10,自引:0,他引:10  
紫杉醇(Taxol)最初是从红豆杉属植物短叶红豆杉(Taxus brevifolia)树皮中分离出的一种二萜类化合物[1].对卵巢癌,转移性乳腺癌和恶性黑色寮瘤等患者疗效显著[2],全世界红豆杉属植物有近11种,都含紫杉醇成分.但含量很低,加之现存数量很少,生长极为缓慢.造成了紫杉醇原料供应的危机[3]。紫杉醇化学合成已经成功[4-6],但繁杂的反应过程及前体化合物来源的限制使得它们无法实现商业化生产。最近从短叶红豆杉中分离出一种生产紫杉醇的内寄生真菌Tgromyer andreanae[7].由于紫杉醇含量仅为24~50ng/L.没有实用价值。植物细胞和组织培养可能是解决天然抗肿瘤药物长期供应的有效方法之一[8]。自1991年Christen等人申请利用红豆杉细胞培养物生产紫杉醇专利以来[9].有关红豆杉细胞培养的研究已有不少报[10-12]。但云南红豆杉(T.yunnanensis)仅见愈伤组织诱导的报道[13]。本文报道云南红豆杉愈伤组织诱导和细胞培养的初步结果,并分析了细胞培养物中紫杉醇含量。  相似文献   

11.
酶曾-度被认为只能在水介质中起催化作用,而有机溶剂则会使其失活。由于大量化学反应都是在有机深剂中进行的,使得酶催化在有机合成中的应用受到极大限制。近年来少研究表明,只要条件合适,酶催化在有机介质中也可进行[1.2],并已在实际应用中显示其优点,如肽的合成[3,4]、旋光性物质的合成[5,6]、不溶于水的化学物质的酶法分析[7]、酯和酯交换反应[8,9]、甾体氧化[10]、脱氢的应[10]、酚类聚合反应[12].与一般化学催化相比,生物催化剂(酶)除了催化效率高,反应秉公执法曙和外,它具有亚格的选择性。例如对反应的专一性,化学基团的选择性,位置的选择性和对映选择性,因此,酶催化物别适合那些一般化学方法难以实现的手性化合物的选择性转化[13,14].  相似文献   

12.
热带假丝酵母(Candida tropicalis)是一种可以利用多种非糖碳源代谢的微生物,在石油发酵、石油化工生产领域已得到长期应用[1]。随着分子生物学研究技术的发展。通过代谢工程技术改变热带假丝酵母的代谢途径和流向.发展出能够把石油中的烃类物质发酵转化成各种重要化工原料、中间体的新型生产菌株,已普遍受到国内外研究机构的重视。另一方面,热带假丝酵母具有细胞生长密度高,分泌蛋白能力强等特点,可以发展成一个重要的异源蛋白表达体系。建立稳定高效的热带假丝酵母载体一宿主系统是实现上述构想的前提和关键。迄今为止,在热带假丝酵母细胞内尚未发现能游离于染色体外自主复制的天然质粒存在。目前已有20余种热带假丝酵母基因被克隆和鉴定。大部分与热带假丝酵母的氧化代谢过程有关,其中5个过氧物酶体蛋白基因的结构和2个细胞色素P450系统基因的表达调控规律巳被阐明[2-5],与DNA复制过程有关的基因或功能序列均未见报道。本文研究和探索Candida属其他微生物基因元件在热带假酵母中的功能作用,选用热带假丝酵母细胞色素P450单加氧酶基因的启动子和侧翼调控序列[3],构建了一套新的热带假丝酵母载体一宿主系统,并成功地表达了小鼠CYPlAl基因。  相似文献   

13.
反胶团是表面活性剂溶解在非极性溶剂中形成的、围绕一个“水核”的纳米级聚集体。液液反胶团萃取蛋白质技术,因对目标物质选择性好、容量大和能保持其活性而得到广泛研究[1-9].在反胶团萃取蛋白质的研究中,多数作者采用单一表面活性剂AOT[2]或季胺盐[3]的反胶团体系。两种体系的共同弱点是:体系受离子强度、pH值等静电因素的影响大,直接影响萃取率,为了克服它们的不足,有人在AOT体系中加亲和试剂增强反胶团对蛋白质的亲和性[4],加磷酸类阴离子表面活性剂[5]、天然表面活性剂磷脂[6]等以增强体系的萃取性能e人在季胺盐的反胶团体系中加非离子表面活性剂作助剂提高蛋白质的萃取率[7],有人则反阴、阳和非离子表面活性剂混合形成反胶团提高某种酶的萃取容量[8],本文用中性磷氧萃取剂三烷基氧膦(TRPO)与阴离子表面活性剂琥珀二辛酯磺酸钠(AOT)混合溶解在异辛烷中形成反胶团萃取牛血红蛋白(BHb),比较AOT、TRPO及AOT三体系对牛血红蛋白(BHb)的萃取性能。  相似文献   

14.
INK4a/ARF基因位于人染色体9p21,是人类肿瘤中最常见的基因失活位点之一.INK4a/ARF基因有两套各自独立的启动子,通过可变阅读框,能够编码两种蛋白质:p16INK4a和p14ARF(ARF在鼠细胞中为p19ARF).p16作为CDK4/6的抑制因子,能够阻断pRb磷酸化,将细胞周期阻断在G1期;而ARF可结合原癌蛋白MDM2,稳定p53,将细胞周期阻断在G1期和G2/M转换期,或诱导细胞凋亡.因此ARF蛋白和p16一样也是一种肿瘤抑制因子.  相似文献   

15.
蚯蚓纤溶酶是由日本宫崎医科大学的Mihara[1]于1982年从蚯蚓的肠和体液中发现的。由于蚯蚓纤溶酶有良好的溶解血检的作用,可以治疗一系列与血栓形成有关的疾病,因而在临床上有很大的应用价值[2],有可能成为一种新型的溶栓药物,继尿激酶、链激酶等之后应用于临床[4].关于蚯蚓纤溶酶的分离纯化,大多采用盐析、凝胶层析及离子交换层析等方法[2-6],也有人采用亲和层析的方法[7].本文以赤子爱胜蚓纤溶酶粗品为对象,对用反相色谱技术分离蚯蚓纤溶酶进行了初步尝试,现将结果报道如下。  相似文献   

16.
枯草杆菌中性蛋白酶基因在大肠杆菌中的表达   总被引:7,自引:0,他引:7  
蛋白酶是枯草杆菌(Bacillus subtilis)产生的具有重要工业价值的水解酶。对蛋白酶基因的分离与高效率表达一直是基因工程研究领域的重要内容之一[1-4]。蛋白酶基因的筛选可采用不同的方法,如“免疫法”、“DNA 杂交法”、“遗传互补法”等。大肠杆菌(Escherichia coli)是基因工程中最常用的宿主菌, 若能以E.Coli作为筛选蛋白酶基因的宿主苗,那么使用E.Coli的常规载体,便可直接获得完整的蛋白 酶基因。枯草杆菌的蛋白酶基因能否在大肠杆菌中表达.则是实现这一目标的关键。Koide等人[5]报道过枯草杆菌的胞内丝氨酸蛋白酶基因在大肠杆菌中的表达。转化细胞在含有脱脂牛奶的平板上可产生十分微弱的水解圈。Ikeraara等人[6]将Subtilisin E(枯草杆菌蛋白酶E)插人大肠杆菌的表达载体,具有活性的Subtilisin E便可分泌到大肠杆菌的细胞周质中。吴汝平撰文指出[7]。克隆的枯草杆菌蛋白酶基因不能在大肠杆菌中表达。是因为大肠杆菌不能转录枯草杆菌的促使生长调节基因。Wang等人[8]则认为,在大肠杆菌中观察不到野生型的中性蛋白酶基因E(nprE)的表达。是因为nprE的表达产物对大肠杆菌有致死作用.除去该基因上的核糖体结合位点,nprE便能在大肠杆菌中低水平表达,并能将表达产 物分泌至胞外。由上可知.枯草杆菌的蛋白酶基因能否在大肠杆菌中表达以及表达的位置仍然是一个众说纷纭的问题,这一问题也正是能否用大肠杆菌作为宿主菌筛选蛋白酶基因的关键。  相似文献   

17.
探讨人核糖核酸抑制因子 (hRI)基因在人脐血干细胞中的转染及表达情况 ,及转染后对小鼠B16黑色素瘤生长的影响。用免疫磁珠分离系统 (MACS)分离纯化人脐血CD34+ 细胞后 ,用制备的含hRI基因的逆转录病毒上清转染脐血CD34+ 细胞 ,采用克隆形成法和PCR法检测转染效率 ,Western blot和免疫荧光法检测基因表达 ,同时观察RI对荷瘤C57BL小鼠B16黑色素瘤生长的影响。应用MACS能高度纯化人脐血CD34+ 细胞 ,使分选后的脐血CD34+ 细胞纯度平均达96.15%。hRI基因能够转染到脐血CD34+ 细胞上 ,转染效率达 35% ,Western blot和免疫荧光检测转染后CD34+ 细胞hRI基因有阳性表达。经转hRICD34+ 细胞治疗 ,使小鼠B16黑色素瘤的生长速度减慢 ,成瘤率和瘤重降低 ,成瘤潜伏期延长。  相似文献   

18.
p16INK4a通过抑制CDK4/6的活性而在细胞周期进行中发挥重要的作用,研究发现,组蛋白乙酰转移酶p300能促进p16INK4a启动子活性,而组蛋白去乙酰化酶HDAC3/4能够逆转由p300介导的p16INK4a启动子活性的增加,HDAC3/4能够降低p16INK4a mRNA和蛋白质的水平.染色质免疫沉淀(ChIP)实验结果表明转染p300表达质粒能够逆转由HDAC3/4介导的p16INK4a启动子组蛋白的低乙酰化状态.此外,免疫荧光实验结果表明HDAC4的核质穿梭起着重要的作用.免疫印迹和染色质免疫沉淀实验证明HDAC的抑制剂丁酸钠盐(NaBu)能通过诱导组蛋白的高乙酰化而促进p16INK4a的表达.基于这些实验结果,推测出可逆的组蛋白乙酰化参与p16INK4a基因转录调控的模型.  相似文献   

19.
体细胞胚胎发生已经成为许多植物细胞全能性得以实现的主要途径,黑麦也不例外。许多报道就外源生长素物质(2,4-D、Dicamba[1]、CPA[2]、Picloram[3])、细胞分裂素类(6-BA[4])以及ABA[5.6]等激素物质对体细胞胚胎发生的促进作用作了较为详细的论述。但是,阐明体细胞胚胎发生的内在原因,对这一技术的完善将具有更为实质性的意义。本试验正是基于这一思路,对黑麦体细胞胚胎发生过程中内源IAA和Zt的变化进行了初步研究。  相似文献   

20.
关于厦门的紫水鸡   总被引:1,自引:1,他引:0  
19世纪中叶,英国鸟类学家Robert Swinhoe曾两次报道紫水鸡(Porphyrio porphyrio)在福建厦门的记录:当他本人第一次看到1只饲养在他人笼舍中的个体时,即判定它肯定不是P.poliocephalus[Latham,1801]而有可能是P.smaragdinus[Temminck,1827][1];两年后,当Swinhoe得到1只活体时,他认为该鸟应当是P.smaragdinus之下的一个亚种,同时,考虑到该鸟在形态上与P.smaragdinus略有差异,Swinhoe又"试探性地"将它命名为Porphyrio coelestis sp.nov.[2]。无论Swinhoe当年的分类意见得当与否,他的这两次记录,都应当是发表于正式学术刊物上论证紫水鸡在中国有见的最初记录。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号