首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R. Dana Ono 《Zoomorphology》1982,99(2):131-144
Summary Modified branchiostegal rays 1 through 3 support the proximal end of the paired hyoid barbels in the beardfish (Beryciformes: Polymixiidae). The polymixiid barbel is unusual in that it has an unique intrinsic muscular system. Using silver impregnation and electron microscopic techniques, unencapsulated, free nerve endings were located within the tendon of the third modified branchiostegal ray. Branchiostegal rays 1 and 2 do not have any free nerve endings associated with their tendons, however. It is suggested that the free nerve endings are proprioceptors acting as stretch-sensitive mechanoreceptors, and that branchiostegal ray 3 acts as part of a sensory apparatus for monitoring the positional state of the barbel. Branchiostegal rays 1 and 2 merely provide support for the barbel.Abbreviations used in Figures BA barbel - br r 3 branchiostegal ray 3 - IM intermandibularis - IOP interoperculum - LIM interoperculomandibular ligament - MD mandible - MX maxilla - OP operculum - PM premaxilla - POP preoperculum - SOP suboperculum  相似文献   

2.
The photophores of the presumably mesopelagic deep-sea teleost Thysanactis dentex are described. The entire chin barbel and the isolated first pectoral fin ray and its filaments contain aggregations of photocytes of the same type as those present in the body-photophores and the limbus-photophores of the eyeball. The chin barbel and the first pectoral fin ray are consequently thought to be luminous.  相似文献   

3.
Summary The morphology and fine structure of the vibratile anterior dorsal fin of the rockling Gaidropsarus mediterraneus are described. 60–80 fin rays project as a fringe from a reduced fin web; their lateral movement maintains the fin in almost constant rapid undulation, at a frequency of 3–4 beats per second. The fin can be laid back and with-drawn into a groove. Erector and depressor muscles, which are histologically distinct, move each ray. The fin support is modified, incorporating elastic cartilage, and enclosed in a capsule of collagenous connective tissue. The epidermis at the frontal and caudal aspect of each ray contains numerous receptor cells, over 100,000 per mm2, which have an apical microvillus and synaptic connections with nerve fibres. The recurrent facial nerve sends a major branch to the dorsal fins, which is joined by dorsal ramuli of spinal nerves. It is calculated that there are three to six million receptor cells on the vibratile fin and in the epidermis of the dorsal groove, in individuals of average size. Taste buds do not occur in the skin of the groove, contrary to a previous report, nor on the vibratile fin rays, although they are present on the prominent most anterior fin ray and elsewhere on the fins and barbels. The undulatory motion of the fin draws sea water towards and through the vibratile rays and backwards as a perceptible current. The fin constitutes a specific sensory organ, a water sampler, peculiar to this rockling and related species.Abbrevations used in figures a aperture - am axial muscles - bl base of lepidotrichion - cc collagenous capsule - dlc dorsal longitudinal canal - dr distal radial - drs dorsal ramulus of a spinal nerve - e epidermal cell(s) - ec elastic cartilage - en extracapsular branch of the recurrent facial nerve - fm fin membrane - fr fin ray - frn fin ray nerve - in intracapsular branches of the recurrent facial nerve - l lepidotrichia - n nerve plexus - ns neural spine - pr proximal radial - rc receptor cell(s) - rdm radial depressor muscle - rem radial erector muscle - s scales - t tendons Dedicated to Professor Konrad Lorenz on the occasion of his 80th birthday  相似文献   

4.
Mechanosensation is fundamental to many tetrapod limb functions, yet it remains largely uninvestigated in the paired fins of fishes, limb homologues. Here we examine whether membranous fins may function as passive structures for touch sensation. We investigate the pectoral fins of the pictus catfish (Pimelodus pictus), a species that lives in close association with the benthic substrate and whose fins are positioned near its ventral margin. Kinematic analysis shows that the pectoral fins are held partially protracted during routine forward swimming and do not appear to generate propulsive force. Immunohistochemistry reveals that the fins are highly innervated, and we observe putative mechanoreceptors at nerve fibre endings. To test for the ability to sense mechanical perturbations, activity of fin ray nerve fibres was recorded in response to touch and bend stimulation. Both pressure and light surface brushing generated afferent nerve activity. Fin ray nerves also respond to bending of the rays. These data demonstrate for the first time that membranous fins can function as passive mechanosensors. We suggest that touch-sensitive fins may be widespread in fishes that maintain a close association with the bottom substrate.  相似文献   

5.
A new genus of Cobitinae, Bibarba gen. n., and a new species, B. bibarba sp. n., were discovered and are described for the Chengjiang River, a tributary of the Hongshuihe River in Guangxi Province of southern China. This river region is characterized by a Karst landscape, and the river that is inhabited by the new genus is a slowly moving stream with arenaceous and cobblestone beds. The new genus resembles Cobitis Linnaeus, 1758 (subfamily Cobitinae) in the shape and pigmentation pattern of their body, the absence of scales on their head, and the presence of a suborbital spine, but differs from it by a single Lamina circularis on the third pectoral fin ray instead of on the base of the second pectoral fin ray; two pairs of barbels (one rostral pair and one maxillo-mandibular pair) instead of three pairs of barbels (one rostral pair, one maxillary pair, and one maxillo-mandibular pair); a relatively thick and short suborbital spine with a strong medio-lateral process instead of a suborbital spine without or with a weakly formed medio-lateral process as in Cobitis; and the lack of a black stripe extending from the occiput through the eye to the insertion of the rostral barbel. The first two characters have not been reported in any other genus of the subfamily Cobitinae. A morphometric character analysis based on PCA reveals differences between B. bibarba and C. sinensis in body size, barbel length, interorbital width, pectoral fin length in males, and the position of the dorsal and ventral fins. Type specimens of the new species are kept in the Freshwater Fishes Museum of the Institute of Hydrobiology at the Chinese Academy of Sciences in Wuhan, Hubei Province.  相似文献   

6.
The organization of tissues in appendages often affects their mechanical properties and function. In the fish family Labridae, swimming behavior is associated with pectoral fin flexural stiffness and morphology, where fins range on a continuum from stiff to relatively flexible fins. Across this diversity, pectoral fin flexural stiffness decreases exponentially along the length of any given fin ray, and ray stiffness decreases along the chord of the fin from the leading to trailing edge. In this study, we examine the morphological properties of fin rays, including the effective modulus in bending (E), second moment of area (I), segmentation, and branching patterns, and their impact on fin ray stiffness. We quantify intrinsic pectoral fin ray stiffness in similarly sized fins of two closely related species that employ fins of divergent mechanics, the flapping Gomphosus varius and the rowing Halichoeres bivittatus. While segmentation patterns and E were similar between species, measurements of I and the number of fin ray branch nodes were greater in G. varius than in H. bivittatus. A multiple regression model found that of these variables, I was always significantly correlated with fin ray flexural stiffness and that variation in I always explained the majority of the variation in flexural stiffness. Thus, while most of the morphological variables quantified in this study correlate with fin ray flexural stiffness, second moment of area is the greatest factor contributing to variation in flexural stiffness. Further, interspecific variation in fin ray branching pattern could be used as a means of tuning the effective stiffness of the fin webbing to differences in swimming behavior and hydrodynamics. The comparison of these results to other systems begins to unveil fundamental morphological features of biological beams and yields insight into the role of mechanical properties in fin deformation for aquatic locomotion.  相似文献   

7.
A new species of spinous loach, Cobitis shikokuensis, is described based on 297 specimens from Shikoku Island, Japan. The new species was formerly known as the Shikoku group of Cobitis takatsuensis. It can be distinguished from other species of Cobitis and closely related genera by a combination of the following characters: dorsal fin with 6 branched soft rays; anal fin with 5 branched soft rays; one brownish streak across eye from the tip of nose, no streak on cheek; a black spot smaller than eye diameter near the dorsal corner of the caudal fin base; 3–5 small brownish speckles on ventral side of caudal peduncle; high caudal peduncle with well-developed fleshy keels on dorsal and ventral side; a lamina circularis at base of dorsal part of pectoral fin absent; first branched soft ray of pectoral fin broad in males; pectoral soft rays widely branched from the approximate midpoint; last anal fin ray with 2 elements; interorbital width 11.2–17.1% of head length.  相似文献   

8.
A new species of blenny,Atrosalarias hosokawai is described on the basis of 15 specimens from the western Pacific. It is distinguished from the only known congeneric species,A. fuscus (=A. fuscus fuscus+A. fuscus holomelas), by the following: supraorbital cirrus broad and flat (vs. slender and thread-like inA. fuscus); dorsal fin broadly contacting caudal fin (vs. narrow contact); anal fin narrowly contacting caudal fin (vs. usually free or (rarely) very narrow contact); posteriormost dorsal and anal fin rays long (vs. short); first or posteriormost soft dorsal fin ray shortest (vs. posteriormost ray shortest); first soft anal fin ray shortest (vs. posteriormost ray shortest); caudal fin rays branched in specimens over 36.0 mm SL (vs. unbranched); a large dark spot on base of pectoral fin absent (vs. present or absent); a red margin on anterior dorsal fin absent (vs. present). Futhermore,A. hosokawai differs fromA. f. fuscus in having a lower number of dorsal fin spines (ten vs. eleven) and geographical distribution (western Pacific Ocean vs. Indian Ocean and Red Sea). AlthoughA. hosokawai occurs sympatrically withA. f. holomelas, it can be further distinguished from the latter in lacking a large dark spot on base of pectoral fin.  相似文献   

9.
A pelagic juvenile (74.0 mm in standard length) of Lepidion inosimae was collected by midwater trawl (0–20 m depth) from the transition waters between the Kuroshio and Oyashio fronts off northeastern Japan. The specimen is characterized by an elongate body, a chin barbel, a minute first ray and non-elongated second ray of first dorsal fin, combination of 55 second dorsal fin rays and 52 anal fin rays, and no ventral luminous organ. This is the first report of early life stages in the genus Lepidion.  相似文献   

10.
The zebrafish maxillary barbel is an integumentary organ containing skin, glands, pigment cells, taste buds, nerves, and endothelial vessels. The maxillary barbel can regenerate (LeClair & Topczewski 2010); however, little is known about its molecular regulation. We have studied fibroblast growth factor (FGF) pathway molecules during barbel regeneration, comparing this system to a well‐known regenerating appendage, the zebrafish caudal fin. Multiple FGF ligands (fgf20a, fgf24), receptors (fgfr1‐4) and downstream targets (pea3, il17d) are expressed in normal and regenerating barbel tissue, confirming FGF activation. To test if specific FGF pathways were required for barbel regeneration, we performed simultaneous barbel and caudal fin amputations in two temperature‐dependent zebrafish lines. Zebrafish homozygous for a point mutation in fgf20a, a factor essential for caudal fin blastema formation, regrew maxillary barbels normally, indicating that the requirement for this ligand is appendage‐specific. Global overexpression of a dominant negative FGF receptor, Tg(hsp70l:dn‐fgfr1:EGFP)pd1 completely blocked fin outgrowth but only partially inhibited barbel outgrowth, suggesting reduced requirements for FGFs in barbel tissue. Maxillary barbels expressing dn‐fgfr1 regenerated peripheral nerves, dermal connective tissue, endothelial tubes, and a glandular epithelium; in contrast to a recent report in which dn‐fgfr1 overexpression blocks pharyngeal taste bud formation in zebrafish larvae (Kapsimali et al. 2011), we observed robust formation of calretinin‐positive tastebuds. These are the first experiments to explore the molecular mechanisms of maxillary barbel regeneration. Our results suggest heterogeneous requirements for FGF signaling in the regeneration of different zebrafish appendages (caudal fin versus maxillary barbel) and taste buds of different embryonic origin (pharyngeal endoderm versus barbel ectoderm).  相似文献   

11.
Effects of two fin‐ray sampling methods on swimming performance, growth and survival were evaluated for hatchery‐reared sub‐adult white sturgeon Acipenser transmontanus. Fish were subjected to either a notch removal treatment in which a small section was removed from an anterior marginal pectoral‐fin ray, or a full removal treatment in which an entire marginal pectoral‐fin ray was removed. Control fish did not have fin rays removed, but they were subjected to a sham operation. A modified 3230 l Brett‐type swim tunnel was used to evaluate 10 min critical station‐holding speeds (SCSH) of A. transmontanus, immediately after the fin ray biopsies were obtained with each method. Survival and growth were evaluated over a 6 month period for a separate group of fish subjected to the same biopsy methods. Mean ± s.e . 10 min SCSH were 108·0 ± 2·3, 110·0 ± 2·6 and 115·0 ± 3·5 cm s?1 for the notch removal group, full removal group and control group, respectively, and were not significantly different among treatments. Behavioural characteristics including tail‐beat frequency and time spent hunkering were also not significantly different among treatment groups swimming at the same speeds. There were no mortalities and relative growth was similar among treatment groups. Average biopsy time for the notch removal method was lower and the wounds appeared to heal more quickly compared with the full removal method.  相似文献   

12.
 A taxonomic review of seven-spined Polynemus species recognizes two species as valid: P. hornadayi Myers, 1936, currently known only from western Sarawak, Kalimantan, Malaysia, and P. paradiseus Linnaeus, 1758, distributed from India to Thailand and regarded as a senior synonym of P. aureus Hamilton, 1822, P. longifilis Cuvier in Cuvier and Valenciennes, 1829, P. risua Hamilton, 1822, and P. toposui Hamilton, 1822. Polynemus hornadayi differs from P. paradiseus in having a strongly protruded occipital profile (vs. nearly straight in the latter), lower counts of anal fin soft rays (mode 11 vs. 12) and gill rakers (26 vs. 32 or 33), higher counts of pectoral fin rays (18 vs. 17), scales above and below the lateral line (11 and 18 vs. 7 and 11, respectively), and pored lateral line scales (94 vs. 70), the fifth pectoral filament longest (vs. sixth), the fourth pectoral filament longer (extending well beyond the posterior central margin of the caudal fin vs. not reaching posterior central margin), a longer pectoral fin ray (posterior tip of pectoral fin reaching to midpoint of anal fin base vs. not reaching), a deeper maxilla posterior margin (mean 5% of SL vs. 4% of SL), and a well-developed swimbladder (vs. absent).  相似文献   

13.
A new loach, Oreonectes elongatus sp. nov. is described based on collections from Mulun Township, Huanjiang County, Guangxi in China. It is distinguished from its congeners by the combination of the following characters: most elongate body (body depth/SL 8.62–10.68%), blind, a forked caudal fin, obvious adipose dorsal crest and ventral crest; entire body naked and de-pigmented. Although the new species has a similar distribution with O. macrolepis, it can be distinguished by scales (absent in O. elongatus vs. present in O. macrolepis), shape of snout (elongate vs. round), the opposite position of the dorsal and pelvic fins origins (behind vs. front). The new species shares the same possession of dorsal and ventral crests, a forked caudal fin, eyeless, naked body and incomplete lateral line with O. translucens, but can be distinguished from the latter by caudal fin crest (more developed and translucent in O. translucens), longer anterior nostril tube and barbel, extreme of pectoral fin reaching 2/3 of the distance between origin of pectoral and pelvic fins, more vertebrae (4 + 38–39 vs. 4 + 32).  相似文献   

14.
Ray‐finned fishes are notable for having flexible fins that allow for the control of fluid forces. A number of studies have addressed the muscular control, kinematics, and hydrodynamics of flexible fins, but little work has investigated just how flexible ray‐finned fish fin rays are, and how flexibility affects their response to environmental perturbations. Analysis of pectoral fin rays of bluegill sunfish showed that the more proximal portion of the fin ray is unsegmented while the distal 60% of the fin ray is segmented. We examined the range of motion and curvatures of the pectoral fin rays of bluegill sunfish during steady swimming, turning maneuvers, and hovering behaviors and during a vortex perturbation impacting the fin during the fin beat. Under normal swimming conditions, curvatures did not exceed 0.029 mm?1 in the proximal, unsegmented portion of the fin ray and 0.065 mm?1 in the distal, segmented portion of the fin ray. When perturbed by a vortex jet traveling at approximately 1 ms?1 (67 ± 2.3 mN s.e. of force at impact), the fin ray underwent a maximum curvature of 9.38 mm?1. Buckling of the fin ray was constrained to the area of impact and did not disrupt the motion of the pectoral fin during swimming. Flexural stiffness of the fin ray was calculated to be 565 × 10?6 Nm2. In computational fluid dynamic simulations of the fin‐vortex interaction, very flexible fin rays showed a combination of attraction and repulsion to impacting vortex dipoles. Due to their small bending rigidity (or flexural stiffness), impacting vortices transferred little force to the fin ray. Conversely, stiffer fin rays experienced rapid small‐amplitude oscillations from vortex impacts, with large impact forces all along the length of the fin ray. Segmentation is a key design feature of ray‐finned fish fin rays, and may serve as a means of making a flexible fin ray out of a rigid material (bone). This flexibility may offer intrinsic damping of environmental fluid perturbations encountered by swimming fish. J. Morphol. 274:1044–1059, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
16.
The morphological development, including the fins, body proportions and pigmentation, of laboratory-reared larval and juvenile Pangasianodon hypophthalmus was described and their behavioral features were observed under rearing conditions. Body lengths (BL) of larvae and juveniles were 3.0 ± 0.2 (mean ± SD) mm just after hatching, and 12.9 ± 1.1 mm on day 13, reaching 23.4 ± 1.8 mm on day 25 after hatching. Aggregate fin ray numbers (for caudal fin, principal soft ray number) attained their full complements in specimens larger than 12.8 mm BL. Notochord flexion began in yolksac larvae on day 0 (10.5 h after hatching), with teeth buds and barbels appearing with jaw formation in yolksac flexion larvae on day 1. Melanophores on the body increased with growth, with a broad vertical band forming on the lateral line and an oblique band extending from above the pectoral fin base towards the forepart of the anal fin during the postflexion larval and juvenile stages. Body proportions became relatively constant in juveniles, except for maxillary barbel length (MBL), which continued to decrease. Yolksac flexion larvae started feeding on day 2 with the onset of intense cannibalism. Yolks were completely absorbed by day 3, and cannibalism ended by day 6. Subsequently, fish displayed a schooling behavior with growth, preferring relatively dark areas during the juvenile stage.  相似文献   

17.
Labriform locomotion is the primary swimming mode for many fishesthat use the pectoral fins to generate thrust across a broadrange of speeds. A review of the literature on hydrodynamics,kinematics, and morphology of pectoral fin mechanisms in fishesreveals that we lack several kinds of morphological and kinematicdata that are critical for understanding thrust generation inthis mode, particularly at higher velocities. Several needsinclude detailed three-dimensional kinematic data on speciesthat are pectoral fin swimmers across a broad range of speeds,data on the motor patterns of pectoral fin muscles, and thedevelopment of a mechanical model of pectoral fin functionalmorphology. New data are presented here on pectoral fin locomotionin Gomphosus varius, a labrid fish that uses the pectoral finsat speeds of 1 –6 total body lengths per second. Three-dimensionalkinematic data for the pectoral fins of G. varius show thata typical "drag-based" mechanism is not used in this species.Instead, the thrust mechanics of this fish are dominated bylift forces and acceleration reaction forces. The fin is twistedlike a propeller during the fin stroke, so that angles of attackare variable along the fin length. Electromyographic data onsix fin muscles indicate the sequence of muscle activity thatproduces antagonistic fin abduction and adduction and controlsthe leading edge of the fin. EMG activity in abductors and adductorsis synchronous with the start of abduction and adduction, respectively,so that muscle mechanics actuate the fin with positive work.A mechanical model of the pectoral fin is proposed in whichfin morphometrics and computer simulations allow predictionsof fin kinematics in three dimensions. The transmission of forceand motion to the leading edge of the fin depends on the mechanicaladvantage of fin ray levers. An integrative program of researchis suggested that will synthesize data on morphology, physiology,kinematics, and hydrodynamics to understand the mechanics ofpectoral fin swimming.  相似文献   

18.
A new species of the gobiid genus Gobius (Gobiidae, Perciformes), Gobius incognitus sp. nov. is described from the Mediterranean Sea, and its most morphologically similar species Gobius bucchichi is redescribed. The new species is distinguished from its congeners by: scales in lateral series 51–59; predorsal scales 25–35; opercle scaled in adults with 10–16 scales present; pectoral fin with ray count 18–20 and free tips on upper rays well developed and on the first ray longer than two thirds of the entire ray length; pelvic disc complete and with well‐developed anterior membrane without lateral lobes; anterior oculoscapular canal with pore α at rear of orbit; oculoscapular row x1 not extending forwards to pore β; suborbital row d discontinuous with large gap below suborbital rows 3 and 4; eye diameter 1·08–1·32 in snout length; by pigment rows on cheek and pigmentation on pectoral‐fin base.  相似文献   

19.
Axonally transported protein labeled many trigeminal nerve endings in subepithelial regions of the anterior hard palate of the rat. Sensory endings were most numerous in the lamina propria near the tips of the palatal rugae where large connective tissue and epithelial papillae interdigitated. Two kinds of sensory ending were found there: “free” endings, and a variety of corpuscular endings. The “free” sensory endings consisted of bundles of unmyelinated axons separated from the connective tissue by relatively unspecialized Schwann cells covering part or all of their surface and a completely continuous basal lamina; they were commonly found running parallel to the epithelium or near corpuscular endings. The corpuscular sensory endings all had a specialized nerve form, specialized Schwann cells, and axonal fingers projecting into the corpuscular basal lamina or connective tissue. There were at least four distinct types of corpuscular ending: Ruffini-like endings were found among dense collagen bundles, and they had a flattened nerve ending with a flattened Schwann lamella on either side. Meissner endings had an ordered stack of flattened nerve terminals with flattened Schwann cells and much basal lamina within and around the corpuscle. Simple corpuscles were single nerve endings surrounded by several layers of concentric lamellar Schwann processes. Glomerular endings were found in lamina propria papillae or encircling epithelial papillae; they were a tangle of varied neural forms each of which had apposed flattened Schwann cells, and a layer of basal lamina of varied thickness. Fibroblasts often formed incomplete partitions around Meissner and simple corpuscles.

The axoplasm of all kinds of subepithelial sensory endings contained numerous mitochondria and vesicles, as well as occasional multivesicular bodies and lysosomes; the axoplasm of all endings was pale with few microtubules and neurofilaments. The specialized lamellar Schwann cells had much pinocytotic activity. Four kinds of junctions were found between the corpuscular sensory endings and the lamellar Schwann cells: (1) symmetric densities that resemble desmosomes; (2) asymmetric densities with either the neuronal or glial membrane more dense; (3) neural membrane densities adjacent to Schwann parallel inner and outer membrane densities; and (4) sites of apparent Schwann endocytosis associated with neural blebs. The “free” sensory endings only made occasional desmosome-like junctions with their Schwann cells.

These observations are discussed in relation to possible mechanosensory transduction mechanisms, with particular attention to axoplasmic structure, axonal fingers, and neural and nonneural cell associations.  相似文献   

20.
This study investigated the morphology of the recurrent facial taste neurons and their organization in the recurrent ganglion of the sea catfish Plotosus japonicus. The recurrent ganglion is independent of the anterior ganglion, which consists of trigeminal, facial and anterior lateral line neurons that send peripheral fibres to the head region. The recurrent taste neurons are round or oval and bipolar, with thick peripheral and thin central fibres, and completely wrapped by membranous layers of satellite cells. Two peripheral nerve branches coursing to the trunk or pectoral fin originate from the recurrent ganglion. The results presented here show that the trunk and pectoral‐fin neurons are independently distributed to form various sizes of groups, and the groups are intermingled throughout the ganglion. No distinct topographical relationship of the two nerve branches occurs in the ganglion. Centrally, the trunk and pectoral‐fin branches project somatotopically in the anterolateral and intermediate medial regions of the trunk tail lobule of the facial lobe, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号