首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Several dominantly inherited, late onset, neurodegenerative diseases are due to expansion of CAG repeats, leading to expansion of glutamine repeats in the affected proteins. These proteins are of very different sizes and, with one exception, show no sequence homology to known proteins or to each other; their functions are unknown. In some, the glutamine repeat starts near the N-terminus, in another near the middle and in another near the C-terminus, but regardless of these differences, no disease has been observed in individuals with fewer than 37 repeats, and absence of disease has never been found in those with more than 41 repeats. Protein constructs with more than 41 repeats are toxic to E. coli and to CHO cells in culture, and they elicit ataxia in transgenic mice. These observations argue in favour of a distinct change of structure associated with elongation beyond 37–41 glutamine repeats. The review describes experiments designed to find out what these structures might be and how they could influence the properties of the proteins of which they form part. Poly- -glutamines form pleated sheets of β-strands held together by hydrogen bonds between their amides. Incorporation of glutamine repeats into a small protein of known structure made it associate irreversibly into oligomers. That association took place during the folding of the protein molecules and led to their becoming firmly interlocked by either strand- or domain-swapping. Thermodynamic considerations suggest that elongation of glutamine repeats beyond a certain length may lead to a phase change from random coils to hydrogen-bonded hairpins. Possible mechanisms of expansion of CAG repeats are discussed in the light of looped DNA model structures.  相似文献   

2.
In both Drosophila wings and vertebrate limbs, signaling between dorsal and ventral cells establishes an organizer that promotes limb formation. Significant progress has been made recently towards characterizing the signaling interactions that occur at the dorsal—ventral limb border. Studies of chicks have indicated that, as in Drosophila, this signaling process requires the participation of Fringe. Studies of Drosophila have indicated that Fringe functions by inhibiting the ability of Notch to be activated by one ligand, Serrate, while potentiating the ability of Notch to be activated by another ligand, Delta. Recent studies of both Drosophila and vertebrates have also shed new light on the signaling activity of the dorsal—ventral boundary limb organizer, and have highlighted how this organizer is maintained by feedback mechanisms with neighboring cells.  相似文献   

3.
Flowers and shoots are derived from specialized groups of stem cells termed meristems. Recent studies in Arabidopsis have identified factors that contribute to meristem structure and identity, such as CLAVATA1, CLAVATA3, and SHOOTMERISTEMLESS, which act in both shoot and flower meristems, as well as LEAFY and APETALA1 which specifically determine a floral fate.  相似文献   

4.
5.
Our understanding of the genetic basis of reproductive isolation in Drosophila has progressed rapidly over the past decade. Details of the genetic structure of hybrid sterility have been revealed and a general consensus has been reached concerning the genetic bases of Haldane's rule. Genetic analyses now reach beyond hybrid sterility and inviability, allowing us to make important comparisons across different traits involved in reproductive isolation. Expansion of genetic studies to include rescue of hybrid incompatibilities has opened the door for more detailed molecular and developmental analyses of reproductive isolation than has ever before been possible.  相似文献   

6.
Trypanosoma brucei and Trypanosoma cruzi cause different human diseases. As strategies for immune evasion. T. brucei undergoes antigenic variation whereas T. cruzi becomes an intracellular organism. This fundamental difference is reflected by major differences in their genome organizations. Recent comparisons of their gene sequences indicate that these two trypanosome species are highly divergent evolutionarily.  相似文献   

7.
Members of the Pax gene family are expressed in various tissues during ontogenesis. Evidence for their crucial role in morphogenesis, organogenesis, cell differentiation and oncogenesis is provided by rodent mutants and human diseases. Additionally, recent experimental in vivo and in vitro approaches have led to the identification of molecules that interact with Pax proteins.  相似文献   

8.
9.
Hepatocytes and biliary epithelia are phenotypically very dissimilar, but share a common ancestry. Hepatocytes regenerate very efficiently, and their division potential indicates that many of them are functional stem cells. When hepatocyte-damaging agents also impair the regenerative ability of surviving hepatocytes, a potential stem cell system of biliary origin is activated to generate new hepatocytes — a reversal of ontogeny. Now both bile duct derived cells and hepatocytes can be isolated from the liver, genetically modified in vitro and returned to their in vivo origins where, after considerable population expansion, they can function as hepatocytes — paving the way for ex vivo gene therapy.  相似文献   

10.
Random peptide libraries displayed on phage are used as a source of peptides for epitope mapping, for the identification of critical amino acids responsible for protein—protein interactions and as leads for the discovery of new therapeutics. Efficient and simple procedures have been devised to select peptides binding to purified proteins, to monoclonal and polyclonal antibodies and to cell surfaces in vivo and in vitro.  相似文献   

11.
The release of the complete genome sequence of the yeast Saccharomyces cerevisiae has ushered in a new phase of genome research in which sequence function will be assigned. The goal is to determine the biological function of each of the >6,000 open reading frames in the yeast genome. Innovative approaches have been developed that exploit the sequence data and yield information about gene expression levels, protein levels, subcellular localization and gene function for the entire genome.  相似文献   

12.
We have characterized genomic loci encoding translation elongation factor 1Bα (eEF1Bα) in mice and humans. Mice have a single structural locus (named Eef1b2) spanning six exons, which is ubiquitously expressed and maps close to Casp8 on mouse chromosome 1, and a processed pseudogene. Humans have a single intron-containing locus, EEF1B2, which maps to 2q33, and an intronless paralogue expressed only in brain and muscle (EEF1B3). Another locus described previously, EEF1B1, is actually a processed pseudogene on chromosome 15 corresponding to an alternative splice form of EEF1B2. Our study illustrates the value of comparative mapping in distinguishing between processed pseudogenes and intronless paralogues.  相似文献   

13.
Present in organisms ranging from yeast to man, homologues of the Drosophila Polo kinase control multiple stages of cell division. At the onset of mitosis, Polo-like kinases (Plks) function in centrosome maturation and bipolar spindle formation, and they contribute to the activation of cyclin-dependent kinase (Cdk)1—cyclin B. Subsequently, they are required for the inactivation of Cdk1 and exit from mitosis. In the absence of Plk function, mitotic cyclins fail to be destroyed, indicating that Plks are important regulators of the anaphase-promoting complex/cyclosome (APC/C), a key component of the ubiquitin-dependent proteolytic degradation pathway. Finally, recent evidence implicates Plks in the temporal and spatial coordination of cytokinesis.  相似文献   

14.
The long anticipated ‘genetic revolution’ in neuropsychiatry has yet to have an impact on the practice of clinical medicine. Excitement in the 1980s over major genetic breakthroughs in schizophrenia and manic depression, for example, has been replaced in the late 1990s by the sobering realization that most common neuropsychiatric disorders are multifactorial. Despite considerable effort and resources, no ‘causative’ genetic variation has been identified that plays a definitive major role in any common neuropsychiatric disorder.  相似文献   

15.
Telomeres are guanine-rich regions that are located at the ends of chromosomes and are essential for preventing aberrant recombination and protecting against exonucleolytic DNA degradation. Telomeres are maintained by telomerase, an RNA-dependent DNA polymerase. Because telomerase is known to be expressed in tumor cells, which concurrently have short telomeres, and not in most somatic cells, which usually have long telomeres, telomerase and telomere structures have been recently proposed as attractive targets for the discovery of new anticancer agents. The most exciting current strategies are aimed at specifically designing new drugs that target telomerase or telomeres and new models have been formulated to study the biological effects of inhibitors of telomerase and telomeres both in vitro and in vivo.  相似文献   

16.
17.
In recent years, several major developments have taken place in the biology, physical chemistry and technology of polymorphism of membrane lipids. These include the identification of polymorphic regulation of membrane lipid composition in Escherichia coli, the importance of nonbilayer lipids for protein functioning, the special packing properties of bilayers containing these lipids, and the crystalization of a membrane protein out of three dimensional bilayer networks (lipid cubic phases). These exciting developments bring us closer to understanding the paradox of the lipid bilayer structure of biomembranes and the molecular basis of membrane protein structure and function.  相似文献   

18.
Many genes required for the S-phase and DNA-damage checkpoints have been identified in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. This year many checkpoint genes have been sequenced, providing new information about the mechanism of checkpoint control. Several of these genes are conserved between the two yeasts but others are species-specific.  相似文献   

19.
The understanding of molecular mechanisms regulating the formation, growth and differentiation of haemopoietic stem cells has advanced considerably recently. Particular progress has been made in defining the cytokines, chemokines and extracellular matrix components which retain and maintain primitive haemopoietic cell populations in bone marrow. Furthermore, signal transduction pathways that are critical for haemopoiesis, both in vivo and in vitro, and that are activated by cytokines have also been identified and further characterised. The importance of these processes has, this year, been exemplified by the phenotypes of mice deficient in key signal transduction proteins and the discovery that mutations in the component proteins of some signalling pathways are linked to human diseases. Significant advances in understanding the molecular mechanisms for mobilisation of stem cells from bone marrow have also been made this year; this has potential importance for bone marrow transplantation.  相似文献   

20.
Three hypotheses on the evolutionary/molecular origin of internal eliminated segments (IESs) in the germline of hypotrichous ciliates are discussed in the context of the high rate of mutation accumulation in IESs, shifting of IESs during speciation, and evolutionary scrambling of segments within some hypotrich germline genes. Developmental excision of IESs from the germline in Paramecium suggests that the parental macronucleus may provide nucleic acid sequence information to guide excision of IESs and splicing of macronuclear-destined sequences. In ciliates of the oxytrichid/stylonychid group, such a mechanism could explain the precision of excision of IESs and gene unscrambling. Recently initiated molecular/genetic studies may eventually clarify the role of the parental macronucleus in IES excision and gene unscrambling as well as the molecular mechanisms of these events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号