首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rates of uridine-5-3H incorporation into RNA and the rates of uridine uptake into the acid-soluble pool during the cell cycle of V79 Chinese hamster cells were examined. Cells cultured on Eagle''s minimal essential medium supplemented with fetal calf serum, lactalbumin hydrolysate, glutamine, and trypsin displayed rates of incorporation and uptake which increased only slightly during G1 and accelerated sharply as DNA synthesis commenced. In contrast, cells cultured on minimal essential medium supplemented only with calf serum exhibited rates of incorporation and uptake which increased linearly through both G1 and S. The transition from one pattern to the other can be induced within 24 hr and is completely reversible. The nonlinear pattern exhibited by cells grown on the supplemented fetal calf serum medium can also be overcome with high exogenous uridine concentrations. In the presence of 200 µM uridine, these cells display a linear pattern of increase in rates of uridine incorporation and uptake. It is concluded that at lower uridine concentrations the pattern of increase in the rate of uridine incorporation into RNA during the cell cycle for a given population of cells is dependent upon the rate of uridine entry into the cell, and that this pattern is not rigidly determined but can be modified by culture conditions.  相似文献   

2.
The incorporation of 5-3H-uridine and 5-3H-cytidine into nucleolar and nonnucleolar RNA in the nucleus of monkey and pig kidney cells was measured in vitro during the cell life cycle. Time-lapse cinematographic records were made of cells during asynchronous exponential proliferation, in order to identify the temporal position of individual cells in relation to the preceding mitosis. Immediately following cinematography, cells were labeled with uridine-3H and cytidine-3H for a short period, fixed, and analyzed by radioautography. Since the data permit correlation of the rate of RNA labeling with the position of a cell within the cycle, curves could be constructed describing the rate of RNA synthesis over the average cell cycle. RNA synthesis was absent in early telophase, and rose very abruptly in rate in late telophase and in very early G1 in both the nucleus and the reconstituting nucleolus. Thereafter, through the G1 and S periods the rate of nuclear RNA synthesis rose gradually. When we used a 10-min pulse, there was no detectable change in the rate for nucleolar RNA labeling in monkey kidney cells during G1 or S. When we used a 30-min labeling time, the rate of nucleolar RNA labeling rose gradually in pig kidney cells. With increasing time after mitosis, the data became more variable, which may, in part, be related to the variation in generation times for individual cells.  相似文献   

3.
Our previous studies have implied that prostaglandins inhibit cell growth independent of cAMP. Recent reports, however, have suggested that prostaglandin arrest of the cell cycle may be mediated through protein kinase A. In this report, in order to eliminate the role of c-AMP in prostaglandin mediated cell cycle arrest, we use the-49 lymphoma variant (cyc?) cells that lack adenylate cyclase activity. We demonstrate that dimethyl prostaglandin A1 (dmPGA1) inhibits DNA synthesis and cell growth in cyc? cells. DNA synthesis is inhibited 42% by dmPGA1 (50 μM) despite the fact that this cell line lacks cellular components needed for cAMP generation. The ability to decrease DNA synthesis depends upon the specific prostaglandin structure with the most effective form possessing the α,β unsaturated ketone ring. Dimethyl PGA1 is most effective in inhibiting DNA synthesis in cyc? cells, with prostaglandins PGE1 and PGB1 being less potent inhibitors of DNA synthesis. DmPGE2 caused a significant stimulation of DNA synthesis. S-49 cyc- variant cells exposed to (30–50 μm) dmPGA1, arrested in the G1 phase of the cell cycle within 24 h. This growth arrest was reversed when the prostaglandin was removed from the cultured cells; growth resumed within hours showing that this treatment is not toxic. The S-49 cyc? cells were chosen not only for their lack of adenylate cyclase activity, but also because their cell cycle has been extensively studied and time requirements for G1, S, G2, and M phases are known. Within hours after prostaglandin removal the cells resume active DNA synthesis, and cell number doubles within 15 h suggesting rapid entry into S-phase DNA synthesis from the G1 cell cycle block. The S-49 cyc? cells are known to have a G1/S boundary through M phase transition time of 14.8 h, making the location of the prostaglandin cell cycle arrest at or very near the G1/S interface. The oncogenes, c-fos and c-myc which are normally expressed during G1 in proliferating cells have a 2–3 fold enhanced expression in prostaglandin G1 arrested cells. These data using the S-49 variants demonstrate that dmPGA1 inhibits DNA synthesis and arrests the cell cycle independent of cAMP-mediated effects. The prostaglandin arrested cells maintain the gene expression of a G1 synchronous cell which suggests a unique molecular mechanism for prostaglandin action in arresting cell growth. These properties indicate that this compound may be an effective tool to study molecular mechanisms of regulation of the cell cycle.  相似文献   

4.
Time courses of [3H]uridine uptake as a function of uridine concentration were determined at 25° in untreated and ATP-depleted wild-type and uridine kinase-deficient Novikoff cells and in mouse L and P388 cells, Chinese hamster ovary cells and human HeLa cells. Short term uptake was measured by a rapid sampling technique which allows sampling of cell suspensions in intervals as short as one and one-half seconds. The initial segments of the time courses were the same in untreated, wild-type cells in which uridine is rapidly phosphorylated and in cells in which uridine phosphorylation was prevented due to lack of ATP or uridine kinase. The initial rates of uptake, therefore, reflected the rate of uridine transport. Uridine uptake, however, was approximately linear for only five to ten seconds at uridine concentrations from 20–160 μM and somewhat longer at higher concentrations. In phosphorylating cells the rate of uridine uptake (at 80 μM) then decreased to about 20–30% of the initial rate and this rate was largely determined by the rate of phosphorylation rather than transport. At uridine concentrations below 1 μM, however, the rate of intracellular phosphorylation in Novikoff cells approached the transport rate. The apparent substrate saturation of phosphorylation suggests the presence of a low Km uridine phosphorylation system in these cells. The “zero-trans” (zt) Km for the facilitated transport of uridine as estimated from initial uptake rates fell between 50 and 240 μM for all cell lines examined. The zero-trans Vmax values were also similar for all the lines (4–15 pmoles/μ1 cell H2O.sec). The time courses of uridine uptake by CHO cells and the kinetic constants for transport were about the same whether the cells were propagated (and analyzed for uridine uptake) in suspension or monolayer culture. When Novikoff cells were preloaded with 10 μM uridine the apparent Km and Vmax values (infinite-trans) were two to three times higher than the corresponding zero-trans values. Uridine transport was inhibited in a simple competitive manner by several other ribo- and deoxyribonucleosides. All nucleosides seem to be transported by the same system, but with different efficiencies. Uridine transport was also inhibited by hypoxanthine, adenine, thymine, Persantin, papaverin, and o-nitrobenzylthioinosine, and by pretreatment of the cells with p-chloromercuri-benzoate, but not by high concentrations of cytosine, D-ribose or acronycin. The inhibition of uridine transport by Persantin involved changes in both V and K. Because of the rapidity of transport, some loss of intracellular uridine occurred when cells were rinsed in buffer solution to remove extracellular substrate, even at 0°. This loss was prevented by the presence of a transport inhibitor, Persantin, in the rinse fluid or by separating suspended cells from the medium by centrifugation through oil. Metabolic conversion of intracellular uridine were also found to continue during the rinse period. The extent of artifacts due to efflux and metabolism during rinsing increased with duration of the rinse.  相似文献   

5.
An investigation of the rate of incorporation of [5-3H]ur dine into mitochondrial RNA in synchronized HeLa cells in different phases of the cell cycle has revealed a considerable acceleration of this incorporation in cells in S and especially in G2 phase. An analysis of the labeling of the intramitochondrial UTP pool has shown that this acceleration reflects a true increase in the rate of synthesis of mitochondrial RNA: this increase is considerably greater than can be accounted for by the expected doubling of mit-DNA templates during the S and G2 phases.  相似文献   

6.
Growing pig oocytes (≤90 μm in diameter) are unable to resume meiosis in vitro. The objective of our present experiments has been to identify the reasons for meiotic competence in these cells. By comparing histone H1 kinase activity in growing and fully grown oocytes we demonstrate that incompetence is associated with an inability to activate H1 kinase in growing oocytes. Immunoblotting was used to determine whether this kinase inactivity resulted from a lack of either p34cdc2 protein or B-type cyclin. The results established that each of these cell cycle molecules are present in comparable amounts in both growing and fully grown oocytes. In the third series of studies experiments were carried out in an attempt to induce p34cdc2 activation during growth. Treatment with okadaic acid, an inhibitor of phosphatase 1 and 2A known to stimulate and accelerate the transition into M-phase of the meiotic cycle in a number of different species, was able to induce p34cdc2 kinase activity and facilitated the G2- to M-phase in growing oocytes. We conclude that although growing oocytes in pigs have sufficient key cell cycle components for the G2 to M transition, they remain incapable of converting these components to active maturation-promoting factor (MPF) until growth is virtually completed. Inhibition of phosphatase 1 or 2A induces the formation of active MPF during growth by an as yet unidentified pathway. © 1994 Wiley-Liss, Inc.  相似文献   

7.
8.
Transport changes in synchronously growing CHO and L cells   总被引:10,自引:0,他引:10  
A reduced rate of transport of 2-amino-isobutyric acid (AIB), was found to be associated with M and early G1 periods in synchronized populations of CHO and L cells. A doubling of the transport rate occurred with progress of CHO cells further into G1, and the specific transport activity remained constant during the rest of the cycle, The rate of uridine and thymidine transport also doubled at this point in the cell cycle. There was no change in Km values. The rise in transport rate was blocked by cycloheximide, or when the cells were prevented from leaving metaphase by colcemid.  相似文献   

9.
Tritium-labelled uridine ([3H]UdR) perturbs progression of L1210 cells through the mitotic cycle. the main effect manifests as a slowdown or arrest of a portion of cells in G2 and is already observed 2 hr after addition of 0.5–5.0 μCi/ml of [3H]UdR into cultures. At 2.5–5.0 μCi/ml of [3H]UdR a slowdown of cell progression through S is also apparent. Additionally, there is an increase in the number of cells with DNA values higher than 4C in cultures growing in the presence of [3H]UdR for 8–24 hr. A pulse of [3H]UdR of 2 hr duration labels predominantly (95%) cellular RNA. the first cell-cycle effects (G2 slowdown) are observed when the amount of the incorporated [3H]UdR is such that, on average there are fewer than thirty-six [3H] decays per cell which corresponds to approximately 12–19 rads of radiation. the S-phase slowdown is seen at a dose of incorporated [3H]UdR twice as high as that inducing G2 effects. the specific localization of [3H]UdR in nucleoli, peripheral nucleoplasm and in cytoplasm, as well as differences in the kinetics of the incorporation in relation to phases of the cell cycle are discussed in the light of the differences between the effects of [3H]UdR and [3H]thymidine. Mathematical modelling of the cell-cycle effects of [3H]UdR is provided.  相似文献   

10.
Tritium suicide was shown to be a highly effective method for isolating mutants defective in uridine-cytidine kinase in the Chinese hamster lung cell line V79. The tritium suicide procedure consisted of three kill cycles. Survivors of one kill cycle were used for the next kill cycle. The kill cycles involved incorporation of [3H]uridine for 10 min, followed by storage of 3H-labelled cells at −70 °C for 4–7 days. Nine clones that survived the third kill cycle were tested for incorporation of [3H]uridine and for uridine kinase activity in extracts. Eight of these clones were defective in whole-cell uridine incorporation and in uridine kinase activity. A kinetic study was made on the uridine-cytidine kinase activity of three of the mutants. The apparent Vmax of the mutants was reduced approx. 10-fold when either uridine or cytidine was used as substrate. In contrast, the apparent Km of uridine was reduced approx. 12-fold in the mutants with only a 2-fold (probably insignificant) reduction in Km's for cytidine or for ATP.  相似文献   

11.
The zero-trans influx of 500 μM uridine by CHO, P388, L1210 and L929 cells was inhibited by nitrobenzylthioinosine (NBTI) in a biphasic manner; 60–70% of total uridine influx by CHO cells and about 90% of that in P388, L1210 and L929 cells was inhibited by nmolar concentrations of NBTI (ID50 = 3?10 nM) and is designated NBTI-sensitive transport. The residual transport activity, designated NBTI-resistant transport, was inhibited by NBTI only at concentrations above 1 μM (ID50 = 10?50 μM). S49 cells exhibited only NBTI-sensitive uridine transport, whereas Novikoff cells exhibited only NBTI-resistant uridine transport. In all instances NBTI-sensitive transport correlated with the presence of between 7·104 and 7·105 high-affinity NBTI binding sites/cell (Kd = 0.3?1 nM). Novikoff cells lacked such sites. The two types of nucleoside transport, NBTI-resistant and NBTI-sensitive, were indistinguishable in substrate affinity, temperature dependence, substrate specificity, inhibition by structurally unrelated substances, such as dipyridamole or papaverine, and inhibition by sulfhydryl reagents or hypoxanthine. We suggest, therefore, that a single nucleoside transporter can exist in an NBTI-sensitive and an NBTI-resistant form depending on its disposition in the plasma membrane. The sensitive form expresses a high-affinity NBTI binding site(s) which is probably made up of the substrate binding site plus a hydrophobic region which interacts with the lipophilic nitrobenzyl group of NBTI. The latter site seems to be unavailable in NBTI-resistant transporters. The proportion of NBTI-resistant and sensitive uridine transport was constant during proportion of NBTI-resistant and sensitive uridine transport was constant during progression of P388 cells through the cell cycle and independent of the growth stage of the cells in culture. There were additional differences in uridine transport between cell lines which, however, did not correlate with NBTI sensitivity and might be related to the species origin of the cells. Uridine transport in Novikoff cells was more sensitive to inhibition by dipyridamole and papaverine than that in all other cell lines tested, whereas uridine transport in CHO cells was the most sensitive to inactivation by sulfhydryl reagents.  相似文献   

12.
Chloramphenicol sensitive [3H]leucine incorporation into protein (due to mitochondrial protein synthesis) in synchronized HeLa cells has been found to continue throughout interphase, its rate per cell approximately doubling from the G1 to the G2 phase. This increase in the rate of [3H]leucine incorporation during the cycle does not seem to parallel closely the increase in cell mass. In fact, the observations made on cultures incubated at 34.5 °C, where the G1 and S phases are better resolved than at 37 °C, indicate that the rate remains constant during the G1 phase, and starts to accelerate with the onset of nuclear DNA synthesis. Correspondingly, on a per unit mass basis, there appears to be a slight decline in the rate of [3H]leucine incorporation into protein during the G1 phase, which is compensated by an increase in the early S phase. No significant variations were observed in the mitochondrial leucine pool labeling during the cell cycle; therefore, the observed pattern of [3H]leucine incorporation into protein should reflect fairly accurately the behavior of mitochondrial protein synthesis. Evidence has been obtained indicating a depression in the rate of incorporation of [3H]leucine into protein in mitochondria of mitotic cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the products of mitochondrial protein synthesis has not revealed any differences in the size distribution of the proteins synthesized in the various portions of the cell cycle.  相似文献   

13.
Temporal relationships between hydroxymethylglutaryl-CoA reductase activity, biosynthesis of C27 sterols, and [3H]thymidine incorporation into DNA were studied in a rat embryo fibroblast cell line synchronized by double thymidine block and cultured in cholesterol-containing medium. Cyclic variations of HMG-CoA reductase activity and C27 sterols occurred, with two maxima in S and G2M phases; the relative shortness of the G1 phase (3 h) in these cells could be responsible for the shift of sterol synthesis in the S phase. No noticeable variation of the individual C27 sterols was observed during the entire cell cycle. In each experiment, there was a good linear correlation between HMG-CoA reductase activity and C27 sterol synthesis, but from one experiment to another, a given level of enzymatic activity led to varying levels of [2-14C]acetate incorporation into sterols. In our experimental conditions, total HMG-CoA reductase activity is measured, and the preceding observation could be explained by a varying degree of phosphorylation of the enzyme depending on the metabolic state of the cells at the start of the experiment. The cyclic variations of the enzyme activity seem to be due more to increased synthesis at given times of the cycle than to periodic dephosphorylation. We question the existence of a relationship between cell division and cyclic sterol synthesis occurring in cells cultured in cholesterol-containing medium.  相似文献   

14.
The transit time distribution at various points in the cell cycle of synchronized Chinese hamster ovary cells was determined from the mitotic index, [3H]thymidine labeling index and increase in cell number monitored at regular intervals after mitotic selection. Variation in G1 transit time compared with that for the total cell cycle indicates that variation in cell cycle transit time occurs mainly during G1 phase. the cycloheximide (5.0 μg/ml) and actinomycin D (3.0 μg/ml) restriction points occur 0.2 and 1.7 hr prior to entry into S phase, respectively. the transit time distributions are further characterized by the moments of the distributions. the variance (2nd moment about the mean) of the transit time distribution at the actinomycin D restriction point is similar to the variance of the transit time distribution at the G1/S border, thus variation in cell cycle transit time originates earlier than 1.7 hr prior to entry into S phase (i.e., the first 3/4 of G1). If G1 transit time variability and cell cycle control are related, then the results presented here indicate that the major regulatory events do not occur during late G1 phase.  相似文献   

15.
Seven different tissue culture cells have been cultured with and without mycoplasma (M. hyorhinis) in the presence of various precursors of RNA. Total cellular RNA was isolated and analysed by electrophoresis on polyacrylamide gels. The results obtained with mycoplasma-infected cells can be summarized as follows:
1. 1. When cells are labelled with [8-3H]guanosine or [5-3H]uridine there is some incorporation into host cell 28S and 18S rRNA, but it is less than into mycoplasma 23S and 16S rRNA. [8-3H]guanosine or [5-3H]uridine are also incorporated into host cell and mycoplasma tRNA and mycoplasma 4.7S RNA, but the incorporation into host cell 5S rRNA and low molecular weight RNA components (LMW RNA) is reduced.
2. 2. [5-3H]uracil is not incorporated into host cell RNA but into mycoplasma tRNA, 4.7S RNA, a mycoplasma low molecular weight RNA component M1 and 23S and 16S rRNA.
3. 3. [3H]methyl groups are incorporated into mycoplasma tRNA, 23S and 16S rRNA, but not into host cell 28S, 18S, 5S rRNA nor into mycoplasma 4.7S RNA.
4. 4. With [32P]orthophosphate or [3H]adenosine as precursors, the labelling is primarily in the host RNA.
Mycoplasma infection influences the labelling of RNA primarily by an effect on the utilization of the exogenously added radioactive RNA precursors, since the generation time of mycoplasma infected cells is about the same as that of uninfected cells. Mycoplasma infection may completely prevent the identification of LMW RNA components.  相似文献   

16.
Mitochondrial protein synthesis was measured in line CHO cells after phases of the cell cycle were synchronized by isoleucine deprivation or mitotic selection. Maximum incorporation of [3H] leucine into mitochondrial polypeptides occurred within 2 hours after isoleucine was added to initiate G1 traverse. In cells synchronized in G1 by mitotic selection, the rate of mitochondrial protein synthesis was fairly constant throughout the cell cycle. SDS-polyacrylamide gel electrophoretic profiles of labeled mitochondrial polypeptides were similar in cells synchronized by either isoleucine deprivation or mitotic selection. Obvious changes in the distribution of polypeptides were not detected during various phases of the cell cycle. The increased rate of incorporation of [3H] leucine into mitochondrial polypeptides after reversal of G1-arrest may indicate that mitochondrial protein synthesis and possibly mitochondrial biogenesis are synchronized in CHO cells deprived of isoleucine.  相似文献   

17.
The present study was undertaken to determine whether endometrial cancer cell line HEC-1-A differ from nontransformed cells, in that the cAMP and protein kinase C pathways may enhance IGF-I effects in mitogenesis by acting at the G1 phase of the cell cycle instead of G0. Immunofluorescence staining of HEC-1-A cells using the proliferating cell nuclear antigen (PCNA) monoclonal antibody and flow cytometric analysis determined that HEC-1-A cells do not enter the G0 phase of the cell cycle when incubated in a serum-free medium. Approximately 51% of the cells were in G1, 12% were in S and 37% in G2 phase of the cell cycle prior to treatment. Forskolin and phorbol-12-myristate 13-acetate (PMA) were used to stimulate cAMP production and protein kinase C activity, respectively. IGF-I, forskolin and PMA each increased (P <0.01) [3H]-thymidine incorporation in a dose and time dependent manner. The interaction of forskolin and PMA with IGF-I was then determined. Cells preincubated with forskolin or PMA followed by incubation with IFG-I incorporated significantly more (P <0.01) [3H]-thymidine into DNA than controls or any treatment alone. It is concluded that forskolin and, to a lesser extent, PMA exert their effect at the G1 phase of the cycle to enhance IGF-I effects in cell proliferation.  相似文献   

18.
The rate of RNA synthesis in synchronously growing HeLa S3 cells was determined as a function of position in the cell generation cycle. Measurements throughout the cycle of both the rate of incorporation of radioactively-labeled uridine and of the total amount of RNA indicate that (1) the rate of RNA synthesis is constant (or increases only slightly) during G1, approximately doubles during the first half of S, and then remains constant during the remainder of S and G2, and (2) cells attain the average G1 rate of RNA synthesis very early in G1, and maintain the average G2 rate until mitosis. If the initiation of DNA synthesis is blocked, the acceleration of RNA synthesis is markedly reduced or eliminated. Further experiments in which DNA synthesis was inhibited at different times in S, or to varying degrees from the beginning of S, suggest that the extent to which RNA synthesis is accelerated depends on the amount of DNA duplicated. These data also indicate that duplication of the first half, and in particular the first few per cent, of the DNA complement results in a disproportionate acceleration of RNA synthesis. The possibility that fluctuations in the sizes of precursor pools may lead to misinterpretation of labeled-uridine incorporation data was examined. Experiments indicate that in this system pool fluctuations do not cause invalid measures of RNA synthesis. It is concluded that RNA synthesis occurs throughout interphase, but undergoes a two-fold increase in rate which is dependent on the duplication of DNA.  相似文献   

19.
20.
Intact and excised cultured pea roots (Pisum sativum L. cv Alaska) were treated with chlorsulfuron at concentrations ranging from 2.8 ×10–4 M to 2.8×10–6 M. At all concentrations this chemical was demonstrated to inhibit the progression of cells from G2 to mitosis (M) and secondarily from G1 to DNA synthesis (S). The S and M phases were not directly affected, but the transition steps into those phases were inhibited. Total protein synthesis was unaffected by treatment of intact roots with 2.8×10–6 M chlorsulfuron. RNA synthesis was inhibited by 43% over a 24-h treatment period. It is hypothesized that chlorsulfuron inhibits cell cycle progression by blocking the G2 and G1 transition points through inhibition of cell cycle specific RNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号