首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamate synthesis in Streptomyces coelicolor.   总被引:3,自引:2,他引:1       下载免费PDF全文
Both glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH) are involved in glutamate synthesis in Streptomyces coelicolor. The highest levels of GDH were seen in extracts of cells grown with high levels of ammonium as the nitrogen source. GOGAT activity was reduced two- to threefold in extracts of cells grown with good sources of glutamate. S. coelicolor mutants deficient in GOGAT (Glt-) required glutamate for growth with L-alanine, asparagine, arginine, or histidine as the nitrogen source but grew like wild-type cells when ammonium, glutamine, or aspartate was the nitrogen source. The glt mutations were tightly linked to hisA1. Mutants deficient in both GOGAT and GDH (Gdh-) required glutamate for growth in all media. The gdh-5 mutation was mapped to the left region of the S. coelicolor chromosomal map, between proA1 and uraA1.  相似文献   

2.
The gene encoding Rhizobium meliloti isocitrate dehydrogenase (ICD) was cloned by complementation of an Escherichia coli icd mutant with an R. meliloti genomic library constructed in pUC18. The complementing DNA was located on a 4.4-kb BamHI fragment. It encoded an ICD that had the same mobility as R. meliloti ICD in nondenaturing polyacrylamide gels. In Western immunoblot analysis, antibodies raised against this protein reacted with R. meliloti ICD but not with E. coli ICD. The complementing DNA fragment was mutated with transposon Tn5 and then exchanged for the wild-type allele by recombination by a novel method that employed the Bacillus subtilis levansucrase gene. No ICD activity was found in the two R. meliloti icd::Tn5 mutants isolated, and the mutants were also found to be glutamate auxotrophs. The mutants formed nodules, but they were completely ineffective. Faster-growing pseudorevertants were isolated from cultures of both R. meliloti icd::Tn5 mutants. In addition to lacking all ICD activity, the pseudorevertants also lacked citrate synthase activity. Nodule formation by these mutants was severely affected, and inoculated plants had only callus structures or small spherical structures.  相似文献   

3.
浑球红细菌谷氨酸合酶基因(glt)的克隆和图谱分析   总被引:4,自引:1,他引:4  
利用转座子Tn5随机插入诱变筛选得到12株浑球红细菌(Rhodobacter sphaeroides)氨同化缺陷突变株(Asm~-)。这些突变株胞内均无GOGAT活性,同时它们均无固氮酶活性(Nif~-),并且具有氮代谢多效性缺失表型(Ntr~-)。将含有Azorhizobium sesbaniae ORS571的完整glt基因的质粒pHB10转入突变株中能互补上述表型。通过筛选携带Tn5的R-prime质粒克隆了glt::Tn5片段。Southern杂交证明所克隆glt::Tn5片段与E. coli的gltBD基因有同源性。用此片段与以pLAFR3为载体所构建的R. sphaeroides 601基因文库进行菌落原位杂交筛选到了携带glt基因的cosmid pLT27。pLT27能互补所有12株R.sphaeroides氨同化缺陷突变株。酶切分析表明在该cosmid中插人的染色体DNA片段大小约为26.5kb。以pRK415为载体亚克隆了4.0kb与10.5kh的pLT27的Hindlll酶切片段,分别命名为pLTRK271与pLTRK272。pLTRK272能互补变种GT6、GT10、GT11,pLTRK…  相似文献   

4.
gltBDF operon of Escherichia coli.   总被引:14,自引:10,他引:4       下载免费PDF全文
A 2.0-kilobase DNA fragment carrying antibiotic resistance markers was inserted into the gltB gene of Escherichia coli previously cloned in a multicopy plasmid. Replacement of the chromosomal gltB+ gene by the gltB225::omega mutation led to cells unable to synthesize glutamate synthase, utilize growth rate-limiting nitrogen sources, or derepress their glutamine synthetase. The existence of a gltBDF operon encoding the large (gltB) and small (gltD) subunits of glutamate synthase and a regulatory peptide (gltF) at 69 min of the E. coli linkage map was deduced from complementation analysis. A plasmid carrying the entire gltB+D+F+ operon complemented cells for all three of the mutant phenotypes associated with the polar gltB225::omega mutation in the chromosome. By contrast, plasmids carrying gltB+ only complemented cells for glutamate synthase activity. A major tricistronic mRNA molecule was detected from Northern (RNA blot) DNA-RNA hybridization experiments with DNA probes containing single genes of the operon. A 30,200-dalton polypeptide was identified as the gltF product, the lack of which was responsible for the inability of cells to use nitrogen-limiting sources associated with gltB225::omega.  相似文献   

5.
6.
A universal chemical assay used to detect the production of siderophores in a range of Rhizobium strains showed that production is strain specific. Iron nutrition bioassays carried out on Rhizobium meliloti strains to determine cross-utilization of their siderophores showed that R. meliloti 2011, 220-5, and 220-3 could each use the siderophores produced by the other two but not the siderophore produced by R. meliloti DM4 (and vice versa). Mutants of R. meliloti 2011 and 220-5 defective in siderophore production were isolated by Tn5-mob mutagenesis. The Tn5-mob-containing EcoRI fragment of mutant R. meliloti 220-5-1 was cloned into pUC19. By using this fragment as a probe, the presence of a homologous region was observed in R. meliloti 2011 and 220-3 but not in R. meliloti DM4. A complementing cosmid from a gene bank of R. meliloti 2011 was identified by using the same probe. Introduction of this cosmid into R. meliloti 102F34, a strain not producing a siderophore, resulted in the ability of this strain to produce a siderophore and also in the ability to utilize the siderophores produced by R. meliloti 2011, 220-5, and 220-3 but not the siderophore produced by R. meliloti DM4. A comparative analysis of the outer membrane proteins prepared from iron-deficient cultures of R. meliloti 102F34 and 102F34 harboring the cosmid revealed the presence, in the latter, of a low-iron-induced outer membrane protein corresponding to a low-iron-induced protein in R. meliloti 2011, 220-5, and 220-3. This protein is not present in R. meliloti DM4. The results suggest that R. meliloti 2011, 220-5, and 220-3 produce siderophores that are identical or sufficiently similar in structure to be transported by the membrane transport system of each strain while also indicating that utilization of a particular siderophore is correlated with the presence of specific outer membrane proteins.  相似文献   

7.
8.
9.
Ammonium assimilation in Rhizobium meliloti   总被引:9,自引:7,他引:2       下载免费PDF全文
We have characterized a mutant of Rhizobium meliloti strain 2011 which cannot use ammonium as a nitrogen source. This mutant, RTm2620, was found to have significantly altered glutamate synthase activity. Both the mutant and the wild-type strains had glutamate dehydrogenase activity, which, although stimulated in the presence of glutamate and ammonium, was apparently insufficient to allow ammonium assimmilation. We conclude that the glutamine synthetase-glutamate synthase pathway may be the normal mode of ammonium assimilation by this strain in the free-living state. Independent revertants of Rm2620 were isolated and fell into two classes. Class I revertants regained partial glutamate synthase activity and had the same levels of glutamate dehydrogenase activity as Rm2620. Class II revertants retained the altered glutamate synthase activity but acquired a very high level of assimilatory glutamate dehydrogenase activity. Both classes were found to be altered in their symbiotic properties, although the original Rm2620 mutant was normal in this regard.  相似文献   

10.
The growth of Rhizobium meliloti 1021 in an experimental alfalfa (Medicago sativa L.) rhizosphere was stimulated by adding nanomolar amounts of biotin. To overcome this biotin limitation, R. meliloti strains were constructed by conjugating the Escherichia coli biotin synthesis operon into biotin auxotroph R. meliloti 1021-B3. Transconjugant strains Rm1021-WS10 and Rm1021-WS11 grew faster in vitro and achieved a higher cell density than did R. meliloti 1021 and overproduced biotin on a defined medium. The increase in cell yield was associated with as much as a 99% loss in viability for Rm1021-WS11, but data suggested that a separate stabilizing factor in the E. coli DNA reduced cell death in Rm1021-WS10. In rhizosphere tests, the recombinant strains showed delayed growth and competed poorly against Rm1021.  相似文献   

11.
12.
13.
We have previously isolated ineffective (Fix-) mutants of Rhizobium meliloti 104A14 requiring both arginine and uracil, and thus probably defective in carbamoylphosphate synthetase. We describe here the molecular and genetic analysis of the R. meliloti genes coding for carbamoylphosphate synthetase. Plasmids that complement the mutations were isolated from a R. meliloti gene bank. Restriction analysis of these plasmids indicated that complementation involved two unlinked regions of the R. meliloti chromosome, carA and carB. Genetic complementation between the plasmids and mutants demonstrated a single complementation group for carA, but two overlapping complementation groups for carB. The cloned R. meliloti genes hybridize to the corresponding E. coli carA and carB genes which encode the two subunits of carbamoylphosphate synthetase. Transposon Tn5 mutagenesis was used to localize the carA and carB genes on the cloned R. meliloti DNA. The cloned R. meliloti carA and carB genes were unable to complement E. coli carA or carB mutants alone or in combination. We speculate on the mechanism of the unusual pattern of genetic complementation at the R. meliloti carB locus.  相似文献   

14.
The Sinorhizobium fredii HH103 rkp-1 region, which is involved in capsular polysaccharides (KPS) production, was isolated and sequenced. The organization of the S. fredii genes identified, rkpUAGHIJ and kpsF3, was identical to that described for S. meliloti 1021 but different from that of S. meliloti AK631. The long rkpA gene (7.5 kb) of S. fredii HH103 and S. meliloti 1021 appears as a fusion of six clustered AK631 genes, rkpABCDEF. S. fredii HH103-Rif(r) mutants affected in rkpH or rkpG were constructed. An exoA mutant unable to produce exopolysaccharide (EPS) and a double mutant exoA rkpH also were obtained. Glycine max (soybean) and Cajanus cajan (pigeon pea) plants inoculated with the rkpH, rkpG, and rkpH exoA derivatives of S. fredii HH103 showed reduced nodulation and severe symptoms of nitrogen starvation. The symbiotic capacity of the exoA mutant was not significantly altered. All these results indicate that KPS, but not EPS, is of crucial importance for the symbiotic capacity of S. fredii HH103-Rif(r). S. meliloti strains that produce only EPS or KPS are still effective with alfalfa. In S. fredii HH103, however, EPS and KPS are not equivalent, because mutants in rkp genes are symbiotically impaired regardless of whether or not EPS is produced.  相似文献   

15.
用鸟枪法从3株紫云英根瘤菌107菌株的胞外多糖合成缺陷变种(Exo-)NA-05、NA-07和NA-08中克隆获得含有107菌株exo基因及Tn5的exo::Tn5片段。以pRK415为载体构建107菌株EcoRI酶切后DNA片段的部分基因库,用exo::Tn5做探针原位杂交得到一个阳性克隆。该克隆的外源片段4.2kb能恢复3个变种的多糖表型及结瘤固氮能力。酶切分析和Southern杂交表明,3株变种中Tn5插入位点相近。  相似文献   

16.
Earlier, we showed that Rhizobium meliloti nodM codes for glucosamine synthase and that nodM and nodN mutants produce strongly reduced root hair deformation activity and display delayed nodulation of Medicago sativa (Baev et al., Mol. Gen. Genet. 228:113-124, 1991). Here, we demonstrate that nodM and nodN genes from Rhizobium leguminosarum biovar viciae restore the root hair deformation activity of exudates of the corresponding R. meliloti mutant strains. Partial restoration of the nodulation phenotypes of these two strains was also observed. In nodulation assays, galactosamine and N-acetylglucosamine could substitute for glucosamine in the suppression of the R. meliloti nodM mutation, although N-acetylglucosamine was less efficient. We observed that in nodules induced by nodM mutants, the bacteroids did not show complete development or were deteriorated, resulting in decreased nitrogen fixation and, consequently, lower dry weights of the plants. This mutant phenotype could also be suppressed by exogenously supplied glucosamine, N-acetylglucosamine, and galactosamine and to a lesser extent by glucosamine-6-phosphate, indicating that the nodM mutant bacteroids are limited for glucosamine. In addition, by using derivatives of the wild type and a nodM mutant in which the nod genes are expressed at a high constitutive level, it was shown that the nodM mutant produces significantly fewer Nod factors than the wild-type strain but that their chemical structures are unchanged. However, the relative amounts of analogs of the cognate Nod signals were elevated, and this may explain the observed host range effects of the nodM mutation. Our data indicate that both the nodM and nodN genes of the two species have common functions and confirm that NodM is a glucosamine synthase with the biochemical role of providing sufficient amounts of the sugar moiety for the synthesis of the glucosamine oligosaccharide signal molecules.  相似文献   

17.
The glutamine synthetase (GS)-glutamate synthase pathway is the primary route used by members of the family Rhizobiaceae to assimilate ammonia. Two forms of glutamine synthetase, GSI and GSII, are found in Rhizobium and Bradyrhizobium species. These are encoded by the glnA and glnII genes, respectively. Starting with a Rhizobium meliloti glnA mutant as the parent strain, we isolated mutants unable to grow on minimal medium with ammonia as the sole nitrogen source. For two auxotrophs that lacked any detectable GS activity, R. meliloti DNA of the mutated region was cloned and partially characterized. Lack of cross-hybridization indicated that the cloned regions were not closely linked to each other or to glnA; they therefore contain two independent genes needed for GSII synthesis or activity. One of the cloned regions was identified as glnII. An R. meliloti glnII mutant and an R. meliloti glnA glnII double mutant were constructed. Both formed effective nodules on alfalfa. This is unlike the B. japonicum-soybean symbiosis, in which at least one of these GS enzymes must be present for nitrogen-fixing nodules to develop. However, the R. meliloti double mutant was not a strict glutamine auxotroph, since it could grow on media that contained glutamate and ammonia, an observation that suggests that a third GS may be active in this species.  相似文献   

18.
An immunological assay of root nodule polypeptides was used to analyze the nodules induced by 25 symbiotically defective Rhizobium meliloti mutants. Differences in polypeptide accumulation in these nodules were used to divide the mutants into three subsets. One subset, containing two mutant strains, was further analyzed. Nodules induced by these mutant strains lack both infection threads and bacteria. The kinetics of nodule formation by these mutant strains, by an exoB mutant, and by mixed mutant inocula suggest that the gene products required for nodule invasion may also influence nodule meristem induction. One of the two mutants characterized in this study contains a transposon Tn5 insertion in the ndvB locus, which probably results in the loss of beta-glucan synthesis. The second mutant contains a transposon in a previously uncharacterized locus. RNA analysis suggests that the newly identified locus is transcribed in free-living cultures of ndvB and exoB strains, as well as in the parental R. meliloti strain. Southern blot analysis suggests that at least a portion of this locus is duplicated. This duplication may explain the apparently leaky phenotype of the mutant strain.  相似文献   

19.
To improve symbiotic nitrogen fixation on alfalfa plants, Sinorhizobium meliloti strains containing different average copy numbers of a symbiotic DNA region were constructed by specific DNA amplification (SDA). A DNA fragment containing a regulatory gene (nodD1), the common nodulation genes (nodABC), and an operon essential for nitrogen fixation (nifN) from the nod regulon region of the symbiotic plasmid pSyma of S. meliloti was cloned into a plasmid unable to replicate in this organism. The plasmid then was integrated into the homologous DNA region of S. meliloti strains 41 and 1021, which resulted in a duplication of the symbiotic region. Sinorhizobium derivatives carrying further amplification were selected by growing the bacteria in increased concentrations of an antibiotic marker present in the integrated vector. Derivatives of strain 41 containing averages of 3 and 6 copies and a derivative of strain 1021 containing an average of 2.5 copies of the symbiotic region were obtained. In addition, the same region was introduced into both strains as a multicopy plasmid, yielding derivatives with an average of seven copies per cell. Nodulation, nitrogenase activity, plant nitrogen content, and plant growth were analyzed in alfalfa plants inoculated with the different strains. The copy number of the symbiotic region was critical in determining the plant phenotype. In the case of the strains with a moderate increase in copy number, symbiotic properties were improved significantly. The inoculation of alfalfa with these strains resulted in an enhancement of plant growth.  相似文献   

20.
Glutamate synthase catalyzes glutamate formation from 2-oxoglutarate plus glutamine and plays an essential role when glutamate biosynthesis by glutamate dehydrogenase is not possible. Glutamate synthase activity has been determined in a number of Neurospora crassa mutant strains with various defects in nitrogen metabolism. Of particular interest were two mutants phenotypically mute except in an am (biosynthetic nicotinamide adenine dinucleotide phosphate-glutamate dehydrogenase deficient, glutamate requiring) background. These mutants, i and en-am, are so-called enhancers of am; they have been redesignated herein as en(am)-1 and en(am)-2, respectively. Although glutamate synthase levels in en(am)-1 were essentially wild type, the en(am)-2 strain was devoid of glutamate synthase activity under all conditions examined, suggesting that en(am)-2 may be the structural locus for glutamate synthase. Regulation of glutamate synthase occurred to some extent, presumably in response to glutamate requirements. Glutamate starvation, as in am mutants, led to enhanced activity. In contrast, glutamine limitation, as in gln-1 mutants, depressed glutamate synthase levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号