首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
2.
Urotensin II (UII), first identified from goby urophysis, is a potent vasoactive peptide hormone and an endogenous ligand for an orphan G protein-coupled receptor GPR14, now named urotensin II receptor (UT-R). In addition to its vascular actions, UII has been shown to have mitogenic effects on tumor growth and some regulatory effects on adrenal steroidogenesis. In the present study, we examined expression of UII and UT-R in human adrenal tumors and attached non-neoplastic adrenal tissues by immunohistochemistry. Both UII and UT-R were immunolocalized in tumor cells of all adrenal tumors examined: 8 cases of cortisol-producing adenomas, 8 cases of aldosterone-producing adenomas, 2 cases of non-functioning adenomas, 17 cases of adrenocortical carcinomas, and 8 cases of pheochromocytomas. In attached adrenals, immunoreactivity for UII was detected in medulla, but much weaker in the cortex than in cortical tumors, suggesting that expression of UII was up-regulated in neoplastic adrenocortical tissues. No significant differences were found in the degree of immunoreactivity for UT-R between the tumors and the attached adrenal tissues. The present study showed that both UII and UT-R were expressed in the adrenal tumors and attached non-neoplastic adrenal tissues, and suggests possible roles of UII and UT-R in tumor growth and/or secretory activities of these tumors.  相似文献   

3.
Transforming growth factor-beta (TGF-beta) is a potent growth suppressor. Acquisition of TGF-beta resistance has been reported in many tumors, and has been associated with reduced TGF-beta receptor expression. In this study, we examined TGF-beta 1, TGF-beta type I receptor (TbetaRI) and TGF-beta type II receptor (TbetaRII) expression in SW-13 adrenocortical carcinoma cells by Northern and Western blot analysis. SW-13 cells did not express TbetaRII mRNA or protein. We have investigated the role of TbetaRII in modulating tumorigenic potential using stably transfected SW-13 cells with TbetaRII expression plasmid. TbetaRII-positive SW-13 cell growth was inhibited by exogenous human TGF-beta1 (hTGF-beta1) in a dose-dependent manner. In contrast, SW-13 cells and control clones transfected with empty vector remained hTGF-beta1-insensitive. Xenograft examination in athymic nude mice demonstrated that TbetaRII-positive SW-13 cells reduced tumor-forming activity. Reconstructing the TbetaRII can lead to reversion of the malignant phenotype of TbetaRII-negative human adrenocortical carcinoma, which contains SW-13 cells. Reduced TbetaRII expression may play a critical role in determining the malignant phenotype of human adrenocortical carcinoma.  相似文献   

4.
Urotensin II-related peptide (URP) is a novel vasoactive peptide that shares urotensin II receptor (UT) with urotensin II. In order to clarify possible changes of URP expression in hypertension and chronic renal failure (CRF), the expressions of URP and UT were studied by quantitative RT-PCR and immunohistochemistry in kidneys obtained from spontaneous hypertensive rats (SHR), Wistar-Kyoto rats (WKY), and WKY with CRF due to 5/6 nephrectomy. Expression levels of URP mRNA and UT mRNA were significantly higher in the kidneys obtained from SHR compared with age-matched WKY (at 5-16 and 16 weeks old, respectively). A dissection study of the kidney into three portions (inner medulla, outer medulla and cortex) showed that the expression levels of URP mRNA and UT mRNA were highest in the inner medulla and the outer medulla, respectively, in both SHR and WKY. The expression levels of URP and UT mRNAs were greatly elevated in the remnant kidneys of CRF rats at day 56 after nephrectomy, compared with sham-operated rats (about 6.5- and 11.9-fold, respectively). Immunohistochemistry showed that URP immunostaining was found mainly in the renal tubules, vascular smooth muscle cells and vascular endothelial cells. UT immunoreactivity was localized in the renal tubules and vascular endothelial cells. These findings suggest that the expressions of URP and UT mRNAs in the kidney are enhanced in hypertension and CRF, and that URP and its receptor have important pathophysiological roles in these diseases.  相似文献   

5.
Ong KL  Wong LY  Cheung BM 《Peptides》2008,29(5):859-867
Urotensin II is a potent vasoconstrictive peptide that mediates both endothelium-independent vasoconstriction and endothelium-dependent vasodilatation. Its plasma level correlates positively with body weight and is raised in diabetes, renal failure, hypertension, and other cardiovascular diseases including congestive heart failure and carotid atherosclerosis. It can inhibit glucose-induced insulin secretion, and genetic variants in urotensin II gene are associated with insulin resistance and type 2 diabetes. Urotensin II also affects lipid metabolism in fish and food intake in mice. Recent studies have also demonstrated a role of urotensin II in inflammation and endothelial dysfunction. These findings suggest a close relationship between urotensin II and at least some components of the metabolic syndrome, including hypertension, insulin resistance, hyperglycemia, and inflammation.  相似文献   

6.
Coy DH  Rossowski WJ  Cheng BL  Taylor JE 《Peptides》2002,23(12):2259-2264
Urotensin II is the latest of a growing list of peptides exhibiting potent cardiovascular effects. It is an extremely potent vasoconstrictor in primates; its excretion is elevated in hypertensive patients thus suggesting therapeutic potential for urotensin II analogues, particularly receptor antagonists. In the present study, a number of interesting structural features pertaining to the N-terminus of urotensin II have been evaluated for binding to cloned human and rat urotensin II receptors and functional effects on rat upper thoracic aorta smooth muscle preparations. Shortened octapeptides retained full binding affinities and functional activities, did not require a free N-terminal amino group, and could tolerate an amidated C-terminus. The N-terminal Asp residue present in the octapeptides did not require a negatively charged side chain, merely one which contained a hydrogen bond acceptor CO group which could be present at a variety of positions on the side chain. The side chain could be constrained into a trans-olefinic configuration with full retention of potency, but potency was lost in the cis configuration. N-terminal aromatic amino substituted with polar groups such as OH and NO2 also resulted in high affinity analogues. Overall, the correlation between binding affinities for the human and rat receptors was quite good. These findings could be of value in the development of more potent urotensin II receptor antagonists based on the previously identified somatostatin antagonist octapeptides which we have recently found, function as relatively weak urotensin II antagonists.  相似文献   

7.
Ghrelin is expressed in normal human adrenocortical cells and induces their proliferation through growth hormone secretagogue receptor 1a (GHS-R1a). Consequently, it was of interest to us to determine whether acylated ghrelin and its predominant serum isoform, unacylated ghrelin, also act as factors for adrenocortical carcinoma cell growth. To examine a potential ghrelin-regulated system in adrenocortical tumors, we measured proliferative effects of acylated and unacylated ghrelin in the adrenocortical carcinoma cell lines SW-13 and NCI-H295R. We also examined the expression of ghrelin, GHS-R1a, and corticotrophin-releasing factor receptor 2 (CRF-R2). Acylated and unacylated ghrelin in the nanomolar range dose-dependently induced adrenocortical cell growth up to 200% of untreated controls, as measured by thymidine uptake and WST1 assay. The proliferative effects of acylated and unacylated ghrelin in SW-13 cells was blocked by [D-Lys(3)]growth hormone-releasing peptide 6 (GHRP6), but a CRF-R2 antagonist had no effect on unacylated ghrelin growth stimulation. Cell cycle analysis suggests that acylated and unacylated ghrelin suppress the sub-G(0)/apoptotic fraction by up to 50%. Measurement of DNA fragmentation and caspase-3 and -7 activity in SW-13 cells confirmed that acylated and unacylated ghrelin suppress apoptotic rate. SW-13 cells express preproghrelin mRNA and secrete ghrelin, and [D-Lys(3)]GHRP6 suppresses their basal proliferation rate, strongly suggesting that ghrelin could act as an auto/paracrine growth factor. Acylated and unacylated ghrelin are potential auto/paracrine factors acting through an antiapoptotic pathway to stimulate adrenocortical tumor cell growth. Unacylated ghrelin-stimulated growth is suppressed by an antagonist of GHS-R1a, suggesting either that unacylated ghrelin is acylated before its action or that ghrelin, unacylated ghrelin, and [D-Lys(3)]GHRP-6 bind to a novel receptor in these cells.  相似文献   

8.
Urotensin II and its receptor are coexpressed in the heart and up-regulated during cardiac dysfunction. In cultured neonatal cardiomyocytes, we mimicked this up-regulation using an adenovirus to increase expression of the urotensin receptor. In this model system, urotensin II promoted strong hypertrophic growth and phenotypic changes, including cell enlargement and sarcomere reorganization. Urotensin II potently activated the MAPKs, ERK1/2 and p38, and blocking these kinases with PD098059 and SB230580, respectively, significantly inhibited urotensin II-mediated hypertrophy. In contrast, urotensin II did not activate JNK. The activation of ERK1/2 and p38 as well as cellular hypertrophy was independent of protein kinase C, and calcium and phosphoinositide 3-kinase, yet dependent on the capacity of the urotensin receptor to trans-activate the epidermal growth factor receptor. Urotensin II promoted the tyrosine phosphorylation of epidermal growth factor receptors, which was inhibited by the selective epidermal growth factor receptor kinase inhibitor, AG1478. These data indicate that perturbations in cardiac homeostasis, which lead to up-regulation of urotensin II receptors, promote urotensin II-mediated cardiomyocyte hypertrophy via ERK1/2 and p38 signaling pathways in an epidermal growth factor receptor-dependent manner.  相似文献   

9.
Urotensin II is a cyclic neuropeptide recently shown to play a role via its receptor GPR14 in regulating vascular tone in the mammalian cardiovascular system. The existence of GPR14 in rat heart has been validated by ligand binding assay and RT-PCR. In the present study, we investigated the cellular distribution of GPR14 protein in rat heart by using immunohistochemistry and confocal microscopic immunofluorescence double staining with antipeptide polyclonal antibodies against GPR14 and cell type markers for myocytes and endothelial cells. The direct effect of urotensin II on left ventricular contractility was further evaluated in isolated left ventricular papillary muscles of the rat. In paraffin-embedded heart sections, positive immunohistochemical staining was observed in the left ventricle but not in the right ventricle and atria. Immunofluorescence double staining revealed the cardiac myocyte as the only cell type expressing GPR14 protein in frozen heart sections as well as in isolated cardiac myocytes. There was no visible signal for GPR14 in intramyocardial coronary arteries and capillaries. The existence of GPR14 protein in rat heart was further validated by immunoprecipitation and Western blot analysis. In isolated rat left ventricular papillary muscle preparations, urotensin II induced an increase in active contractile force. GPR14 mRNA was also detected in rat heart by RT-PCR. These data provide the first direct evidence for the cellular localization of GPR14 receptor protein and a positive inotropic effect of urotensin II in normal rat heart.  相似文献   

10.
Sugo T  Mori M 《Peptides》2008,29(5):809-812
Urotensin II (UII), which was originally isolated from the teleost urophysis, was identified as an endogenous ligand for orphan G protein-coupled receptor 14 (GPR14). The structure of mammalian UII was confirmed by isolation from spinal cord in porcine, or was easily predicted from the sequence of prepro-UII in human. For rat and mouse, however, only the tentative sequences of UII peptides have been demonstrated because the typical processing sites are absent from the amino-terminal region of the mature peptides. Isolation of UII-like immunoreactivity in rat brain revealed the presence of a novel peptide, designated urotensin II-related peptide (URP). URP binds and activates the human and rat urotensin II receptors (GPR14) and has a hypotensive effect when administrated to anesthetized rats. Based on the DNA sequences of the cloned prepro-URP gene, the amino acid sequences of mature URP for mouse and human are identical to that for rat URP. These results suggest that URP is the endogenous and functional ligand for urotensin II receptor in the rat and mouse, and possibly in the human.  相似文献   

11.
The production and secretion of peptides by adrenocortical tumors have not been well studied. We therefore studied the production and secretion of two vasoactive peptides, adrenomedullin and endothelin-1 in SW-13 human adrenocortical carcinoma cells by radioimmunoassay and Northern blot analysis. Both immunoreactive-adrenomedullin and immunoreactive-endothelin were detected in the culture medium of SW-13 cells (27.7 +/- 1.6 fmol/10 (5) cells/24 h and 11.0 +/- 0.8 fmol/10 (5) cells/24 h, respectively, mean +/- SEM, n = 6). Northern blot analysis showed the expression of adrenomedullin mRNA and endothelin-1 mRNA in SW-13 cells. On the other hand, no significant amount of calcitonin gene-related peptide, corticotropin-releasing hormone, neuropeptide Y, or urocortin was secreted by SW-13 cells. Treatment with ACTH (10(-9)-10(-7) mol/l), angiotensin II (10(-9)-10(-7) mol/l), or dexamethasone (10(-8)-10(-6) mol/l) for 24 h had no significant effects on immunoreactive-adrenomedullin levels and immunoreactive-endothelin levels in the culture medium of SW-13. Treatment with tumor necrosis factor (TNF)-alpha (20 ng/ml) increased significantly both immunoreactive-adrenomedullin levels and immunoreactive-endothelin levels in the culture medium. Interferon-gamma (100 U/ml) increased the immunoreactive-endothelin levels, but not immunoreactive-adrenomedullin levels, whereas interleukin-1 (IL-1)beta (10 ng/ml) increased immunoreactive-adrenomedullin levels, but not immunoreactive-endothelin levels. These findings indicate that SW-13 human adrenocortical carcinoma cells produce and secrete two vasoactive peptides, adrenomedullin, and endothelin-1 and that the secretion of these two peptides is modulated differently by cytokines.  相似文献   

12.
13.
The neural neurosecretory system of fishes produces two biologically active neuropeptides, i.e. the corticotropin-releasing hormone paralog urotensin I (UI) and the somatostatin-related peptide urotensin II (UII). In zebrafish, we have recently characterized two UII variants termed UIIalpha and UIIbeta. In the present study, we have investigated the distribution of UI, UIIalpha and UIIbeta mRNAs in different organs by quantitative RT-PCR analysis and the cellular localization of the three mRNAs in the spinal cord by in situ hybridization (ISH) histochemistry. The data show that the UI gene is mainly expressed in the caudal portion of the spinal cord and, to a lesser extent, in the brain, while the UIIalpha and the UIIbeta genes are exclusively expressed throughout the spinal cord. Single-ISH labeling revealed that UI, UIIalpha and UIIbeta mRNAs occur in large cells, called Dahlgren cells, located in the ventral part of the caudal spinal cord. Double-ISH staining showed that UI, UIIalpha and UIIbeta mRNAs occur mainly in distinct cells, even though a few cells were found to co-express the UI and UII genes. The differential expression of UI, UIIalpha and UIIbeta genes may contribute to the adaptation of Dahlgren cell activity during development and/or in various physiological conditions.  相似文献   

14.
Urotensin I (UI) and urotensin II (UII) were demonstrated in the cerebral ganglia of Aplysia californica by applying immunocytochemical and radioimmunoassay procedures. Sequential analysis of adjacent sections of the cerebral ganglia of Aplysia demonstrated that the UI-immunoreactive (UI-IR) neurons of the F cluster of the cerebral ganglia also contained UII immunoreactivity (UII-IR). Both UI-IR and UII-IR were also observed in a cuff-like arrangement of fibers surrounding the proximal portion of the supralabial nerve, as well as in a few fibers in the anterior tentacular nerves. The UI-IR perikarya of the cerebral ganglia appeared to project to the entire CNS of Aplysia, but the UII-IR fibers appeared only in the neuropile and commissure of the cerebral ganglia. The UI-IR staining was abolished by previous immunoabsorption of the UI antiserum with sucker (Catastomus commersoni) UI, but not with ovine corticotropin-releasing factor (CRF), rat/human CRF, or goby (Gillichthys mirabilis) UII. Immunostaining with UII antiserum was quenched by goby UII, but not by sucker UII-A, UII-B, UII-A(6-12), or carp (Cyprinus carpio) UII-alpha and UII-gamma. The UII staining was not abolished by UI or somatostatin. The F cluster was not stained when a somatostatin antiserum was applied. Radioimmunoassay of dilutions of cerebral ganglia extract, using UII antiserum, revealed a parallel displacement curve to synthetic goby UII.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Urotensin II is among the most potent vasoactive hormones known and the urotensin II (UTS2) gene is localized to 1p36-p32, one of the regions reported to show possible linkage with type 2 diabetes in Japanese. When we surveyed genetic polymorphisms in the UTS2 and urotensin II receptor (GPR14) gene, we identified two SNPs with amino acid substitutions (designated T21M and S89N and an SNP in the promotor region (-605G>A) of the UTS2 gene, and two SNPs in the non-coding region of the GPR14 gene. We then studied these three SNPs in the UTS2 gene and two SNPs in the GPR14 gene in 152 Japanese subjects with type 2 diabetes mellitus and two control Japanese populations. The allele frequency of 89N was significantly higher in type 2 diabetic patients than in both elderly normal subjects (P = 0.0018) and subjects with normal glucose tolerance (P = 0.0011), whereas the allele frequency of T21M and -605G>A in the UTS2 gene and those of two SNPs in the GPR14 gene were essentially identical in these three groups. Furthermore, in the subjects with normal glucose tolerance, 89N was associated with significantly higher insulin levels on oral glucose tolerance test, suggesting reduced insulin sensitivity in subjects with 89N. These results strongly suggest that subjects with S89N in the UTS2 gene are more insulin-resistant and thus more susceptible to type 2 diabetes mellitus development.  相似文献   

16.
This study reports on the specific binding of [3H]heparin to human adrenocortical carcinoma cell line SW-13. Heparin binding to SW-13 cells is specific, saturable, and time- and temperature-dependent with maximum binding occurring between 90 and 120 min at 22 degrees C. Scatchard analysis revealed two classes of binding sites. The apparent Kd for high-affinity receptors is 2.14 x 10(-8) M with 1.48 x 10(6) sites per cells. Six other tested mammalian cell lines also have specific binding sites for heparin.  相似文献   

17.
The properties of urotensin II (U-II) receptor (UT receptor) and angiotensin II (ANG II) receptor (AT receptor) in primary human skeletal myoblasts (HSMM) and differentiated skeletal myotubes (HSMMT) were characterized. Radiolabeled U-II and ANG II bound specifically to HSMM with Kd's of 0.31 nM (2311 receptors/cell) and 0.61 nM (18,257 receptors/cell), respectively. The cyclic segment of U-II peptide, CFWKYC, was the minimal sequence required for binding, with the WKY residues essential. Inhibitor studies suggested AT1 is the predominant ANG II receptor. After radioligand binding, under conditions designed to minimize receptor internalization, half the bound U-II was resistant to acid washing suggesting that U-II binds tightly to its receptor in a quasi-irreversible fashion. The AT1 receptor-bound radioligand was completely removed under the same conditions. RT-PCR detected the expression of mRNAs for UT and AT1 receptors. Western blotting showed that U-II and ANG II signaled via ERK1/2 kinase. UT receptor was not lost upon differentiation into myotubes since both mRNA for UT receptor and U-II binding were still present. ANG II receptors were also present as shown by ANG II-induced calcium mobilization.  相似文献   

18.
Ishihata A  Sakai M  Katano Y 《Peptides》2006,27(1):80-86
To elucidate whether aging influences the vascular contractile effect of urotensin II in rat thoracic aorta, and to evaluate the contribution of endothelial vasodilating substances in mediating the effect of urotensin II, the effect of urotensin II was examined in the vessels of young (2-3-month-old) and aged rat. Isolated rat aortic rings incubated in Krebs-Henseleit solution gassed with 95% O2/5% CO2 were stimulated with urotensin II, and the developed tension was measured. Urotensin II increased the developed tension, which was decreased by aging. In 2-3-months-old young aorta without endothelium, urotensin II (10(-10) to 10(-7)) elicited a concentration-dependent aortic contraction to the maximal response almost equivalent to high KCl-induced contraction (79.4+/-11.3% of KCl(max)). In the presence of endothelium, the urotensin II-induced vasoconstriction in young aorta was significantly attenuated to 33.3+/-4.6% of KCl(max). However, the contractile response was greater in the pretreatment with N(G)-nitro-L-arginine (L-NNA) (100 microM) (50.3+/-8.4% of KCl(max) in endothelial denuded aorta), suggesting the vasorelaxing role of endothelial nitric oxide. In 25-27-months-old aged rat aorta, the urotensin II-mediated contraction was remarkably decreased, both in the presence (6.3+/-2.0% of KCl(max)) and absence (11.7+/-3.0% of KCl(max)) of endothelium. A cyclooxygenase inhibitor, diclofenac (10 microM), did not have any effect on the urotensin II-induced contraction. These results suggest that urotensin II can induce vascular smooth muscle contraction in rat aorta, and there was an aging-related decline in the urotensin II-induced contraction. Endothelial production of nitric oxide in response to urotensin II but not cyclooxygenase metabolites such as prostacyclin may play a role in reducing the vascular constriction especially in young aorta.  相似文献   

19.
Yi K  Yu M  Wu L  Tan X 《Peptides》2012,33(1):87-91
Urotensin II (UII) is a potent vasoactive cyclic peptide which has multiple effects on the cardiovascular system. However, the effects of UII on late endothelial progenitor cells (EPCs) are still unclear. The aim of the present study is to investigate whether UII influences the functional activity of late EPCs. Late EPCs were isolated from human umbilical cord blood by Ficoll density gradient centrifugation and treated with UII (10(-10), 10(-9), 10(-8), 10(-7) and 10(-6)M), or vehicle control. Expression of urotensin II receptor (UT) in late EPCs was confirmed by indirect immunofluorescence staining. Late EPCs proliferation, migration and in vitro vasculogenesis activity were assayed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, transwell chamber assay, and matrigel tube formation assay. Late EPCs adhesive assay was performed by replating cells on fibronectin-coated dishes, and then adherent cells were counted. Incubation with UII increased the migratory, adhesive and in vitro vasculogenesis capacity and inhibited the proliferative activity of late EPCs. Furthermore, these UII-mediated effects on late EPCs were attenuated by pretreatment with the UT antagonist urantide. These findings indicate that UII may exert multiple effects on functional activity of late EPCs through UT.  相似文献   

20.
Mori M  Fujino M 《Peptides》2004,25(10):1815-1818
Urotensin II (UII) is a piscine neuropeptide originally isolated from the teleost urophysis. The existence of UII in mammals has been demonstrated by cloning of the mammalian orthologs of UII precursor protein genes. While rat and mouse orthologs have been reported, only the tentative structures of UII peptides of these animals have been demonstrated, since prepro-UII proteins lack the typical processing sites in the amino-terminal region of the mature peptides. A novel peptide, UII-related peptide (URP), was discovered by monitoring UII-immunoreactivity in the rat brain, and its amino acid sequence was determined to be ACFWKYCV. cDNAs encoding rat, mouse, and human precursor proteins for URP were cloned and showed that the sequences of mouse and human URP peptides are identical to that for rat URP. URP was found to bind and activate the human or rat urotensin II receptors [GPR14, UT receptor (UTR)] and showed a hypotensive effect when administrated to anesthetized rats. The prepro-URP gene is expressed in several rat tissues, although with lower levels than the prepro-UII gene and, in the human, is expressed comparably to prepro-UII in several tissues except the spinal cord. These results suggest that URP is the endogenous and functional ligand for urotensin II receptor in the rat and mouse, and possibly in the human.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号