首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
recA protein promoted DNA strand exchange   总被引:9,自引:0,他引:9  
recA protein and circular single-stranded DNA form a stable complex in the presence of single-stranded DNA binding protein (SSB), in which one recA protein monomer is bound per two nucleotides of DNA. These complexes are kinetically significant intermediates in the exchange of strands between the single-stranded DNA and an homologous linear duplex. After completion of strand exchange, the recA protein remains tightly associated with the circular duplex product of the reaction and the SSB is bound to the displaced linear single strand. Upon addition of ADP, the recA protein-duplex DNA complex dissociates. RecA protein also interacts with single-stranded DNA in the absence of SSB; however, the amount of recA protein bound is substantially reduced. These findings provide direct physical evidence for the participation of SSB in the formation of the recA protein-single-stranded DNA complexes inferred earlier from kinetic analysis. Moreover, they confirm the ability of recA protein to equilibrate between bound and free forms in the absence of SSB.  相似文献   

2.
RecO is a recombination mediator protein (RMP) important for homologous recombination, replication repair and DNA annealing in bacteria. In all pathways, the single-stranded (ss) DNA binding protein, SSB, plays an inhibitory role by protecting ssDNA from annealing and recombinase binding. Conversely, SSB may stimulate each reaction through direct interaction with RecO. We present a crystal structure of Escherichia coli RecO bound to the conserved SSB C-terminus (SSB-Ct). SSB-Ct binds the hydrophobic pocket of RecO in a conformation similar to that observed in the ExoI/SSB-Ct complex. Hydrophobic interactions facilitate binding of SSB-Ct to RecO and RecO/RecR complex in both low and moderate ionic strength solutions. In contrast, RecO interaction with DNA is inhibited by an elevated salt concentration. The SSB mutant lacking SSB-Ct also inhibits RecO-mediated DNA annealing activity in a salt-dependent manner. Neither RecO nor RecOR dissociates SSB from ssDNA. Therefore, in E. coli, SSB recruits RMPs to ssDNA through SSB-Ct, and RMPs are likely to alter the conformation of SSB-bound ssDNA without SSB dissociation to initiate annealing or recombination. Intriguingly, Deinococcus radiodurans RecO does not bind SSB-Ct and weakly interacts with the peptide in the presence of RecR, suggesting the diverse mechanisms of DNA repair pathways mediated by RecO in different organisms.  相似文献   

3.
Human single-stranded DNA binding protein (human SSB) is a multisubunit protein containing polypeptides of 70, 34, and 11 kDa that is required for SV40 DNA replication in vitro. In this report we identify the functions of the SSB and its individual subunits in SV40 DNA replication. The 70 kDa subunit was found to bind to single-stranded DNA, whereas the other subunits did not. Four monoclonal antibodies against human SSB were isolated which inhibited SV40 DNA replication in vitro. The antibodies have been designated alpha SSB70A, alpha SSB70B, alpha SSB70C, and alpha SSB34A to indicate which subunits are recognized. Immunolocalization experiments indicated that human SSB is a nuclear protein. Human SSB is required for the SV40 large tumor antigen-catalyzed unwinding of SV40 DNA and stimulates DNA polymerases (pol) alpha and delta. The DNA unwinding reaction and stimulation of pol delta were blocked by alpha SSB70C, whereas the stimulation of pol alpha by human SSB was unaffected by this antibody. Conversely, alpha SSB70A, -70B, and -34A inhibited the stimulation of pol alpha, but they had no effect on DNA unwinding and pol delta stimulation. None of the antibodies inhibited the binding of SSB to single-stranded DNA. These results suggest that DNA unwinding and stimulation of pol alpha and pol delta are required functions of human SSB in SV40 DNA replication. The human SSB 70-kDa subunit appears to be required for DNA unwinding and pol delta stimulation, whereas both the 70- and 34-kDa subunits may be involved in the stimulation of pol alpha.  相似文献   

4.
The most abundant single-stranded DNA binding protein (SSB) found in ovaries of the frog, Xenopus laevis, was purified to electrophoretic homogeneity. Under physiological conditions, the purified SSB lowered the Tm of poly[d(A-T)] and stimulated DNA synthesis by the homologous DNA polymerase DNA primase alpha complex on single-stranded DNA templates. These properties are characteristic of a bona fide single-stranded DNA binding protein. The Stokes radius of native SSB was calculated to be 45 A, corresponding to a molecular mass of about 140 kDa. On SDS polyacrylamide gels, the SSB migrated as a single band with a molecular mass of 36 kDa. We assumed, therefore, that the SSB was a tetramer of 36 kDa subunits. We subsequently discovered that the SSB was LDH, D-lactate dehydrogenase, EC 1.1.1.28. Purified SSB has high LDH specific activity. Following electrophoresis on SDS polyacrylamide gels, the 36 kDa subunits were renatured and exhibited LDH activity. The amino-acid composition of X. laevis SSB/LDH was similar to that of LDH from other species and to other reported single-stranded DNA binding proteins. Mammalian SSB/LDH also preferentially bound single-stranded DNA. Mammalian SSB/LDH bound to RNA as demonstrated by affinity chromatography on poly(A)-agarose and by its effect on translation of mRNA in vitro.  相似文献   

5.
Summary Measurements of the water proton spin-lattice relaxation rate for aqueous solutions of the palindromic dodecamer, d(CGCGAATTCGCG)2, are reported as a function of the magnetic field strength. The magnitude of the relaxation rates at low magnetic field strengths and the shape of the relaxation dispersion curve permit assessment of the number of water molecules which may be considered bound to the DNA for a time equal to or longer than the rotational correlation time of the duplex. The data are examined using limiting models that arbitrarily use the measured rotational correlation time of the polynucleotide complex as a reference point for the water molecule lifetime. If it is assumed that water molecules are bound at DNA sites for times as long as or longer than the rotational correlation time of the duplex, then the magnitude of the relaxation rates at low field require that there may be only two or three such water sites. However, if the lifetime constraints is relaxed, and we assume that the number of water molecules bound to the DNA is more nearly the number identified in the X-ray structures, then the average water molecule lifetime is on the order of 1 ns. Measurements of 1H NOESY spectra demonstrate that some water molecules must have lifetimes sufficiently long that negative Overhauser effects are observed. Taken together, these results suggest a distribution of water molecule lifetimes in which most of the DNA-bound water molecule lifetimes are shorter than the rotational correlation time of the duplex, but where some have lifetimes of at least 1 ns under these concentrated conditions.Abbreviations DNA deoxyribonucleic acid - NOE nuclear Overhauser enhancement - NOESY nuclear Overhauser enhancement spectroscopy  相似文献   

6.
C Urbanke  A Schaper 《Biochemistry》1990,29(7):1744-1749
The time course of the reaction of Escherichia coli single-stranded DNA binding protein (E. coli SSB) with poly(dT) and M13mp8 single-stranded DNA has been measured by fluorescence stopped-flow experiments. For poly(dT), the fluorescence traces follow simple bimolecular behavior up to 80% saturation of the polymer with E. coli SSB. A mechanistic explanation of this binding behavior can be given as follows: (1) E. coli SSB is able to translocate very rapidly on the polymer, forming cooperative clusters. (2) In the rate-limiting step of the association reaction, E. coli SSB is bound to the polymer only by one or two of its four contact sites. As compared to poly(dT), association to single-stranded M13mp8 phage DNA is slower by at least 2 orders of magnitude. We attribute this finding to the presence of secondary structure elements (double-stranded structures) in the natural single-stranded DNA. These structures cannot be broken by E. coli SSB in a fast reaction. In order to fulfill its physiological function in reasonable time, E. coli SSB must bind newly formed single-stranded DNA immediately. The protein can, however, bind to such pieces of the newly formed single-stranded DNA which are too short to cover all four binding sites of the E. coli SSB tetramer.  相似文献   

7.
Single-stranded DNA (ssDNA) binding protein (SSB) is an essential protein to protect ssDNA and recruit specific ssDNA-processing proteins. Escherichia coli SSB forms a tetramer at neutral pH, comprising a structurally well-defined ssDNA binding domain (OB-domain) and a disordered C-terminal domain (C-domain) of ∼64 amino acid residues. The C-terminal eight-residue segment of SSB (C-peptide) has been shown to interact with the OB-domain, but crystal structures failed to reveal any electron density of the C-peptide. Here we show that SSB forms a monomer at pH 3.4, which is suitable for studies by high-resolution nuclear magnetic resonance (NMR) spectroscopy. The OB-domain retains its 3D structure in the monomer, and the C-peptide is shown by nuclear Overhauser effects and lanthanide-induced pseudocontact shifts to bind to the OB-domain at a site that harbors ssDNA in the crystal structure of the SSB–ssDNA complex. 15N relaxation data demonstrate high flexibility of the polypeptide segment linking the C-peptide to the OB-domain and somewhat increased flexibility of the C-peptide compared with the OB-domain, suggesting that the C-peptide either retains high mobility in the bound state or is in a fast equilibrium with an unbound state.  相似文献   

8.
The effect of Mg2+ on the binding of the Streptococcus pneumoniae single-stranded DNA binding (SSB) proteins, SsbA and SsbB, to various dT(n) oligomers was examined by polyacrylamide gel electrophoresis. The results were then compared with those that were obtained with the well characterized SSB protein from Escherichia coli, SsbEc. In the absence of Mg2+, the results indicated that the SsbEc protein was able to bind to the dT(n) oligomers in the SSB(35) mode, with only two of the four subunits of the tetramer interacting with the dT(n) oligomers. In the presence of Mg2+, however, the results indicated that the SsbEc protein was bound to the dT(n) oligomers in the SSB(65) mode, with all four subunits of the tetramer interacting with the dT(n) oligomers. The SsbA protein behaved similarly to the SsbEc protein under all conditions, indicating that it undergoes Mg2+ -dependent changes in its DNA binding modes that are analogous to those of the SsbEc protein. The SsbB protein, in contrast, appeared to bind to the dT(n) oligomers in an SSB(65)-like mode in either the presence or the absence of Mg2+, suggesting that it may not exhibit the pronounced negative intrasubunit cooperativity in the absence of Mg2+ that is required for the formation of the SSB(35) mode. Additional experiments with a chimeric SsbA/B protein indicated that the structural determinants that govern the transitions between the different DNA binding modes may be contained within the N-terminal domains of the SSB proteins.  相似文献   

9.
A single-stranded DNA-binding protein (SSB) affinity column was prepared by optimizing the coupling of Escherichia coli single-stranded DNA-binding protein to Affi-Gel 10. The bound SSB retained its ability to specifically bind single-stranded DNA. When nuclease-treated cell extracts were incubated with the SSB beads overnight at 4 degrees C, a major protein of Mr = 25,000 was bound. At shorter incubation times, two additional proteins of Mr = 32,000 and 36,000 were also detected. In the absence of nuclease treatment, eight additional proteins ranging from Mr = 14,000 to 160,000 also bound to the affinity column. The major Mr = 25,000 protein has been shown to be a folded chromosome-associated protein. Its binding to SSB is strongly enhanced by the addition of DNA polymerase III or DNA polymerase III holoenzyme.  相似文献   

10.
Primosome assembly protein PriA functions in the assembly of the replisome at forked DNA structures. Whereas its N-terminal DNA binding domain (DBD) binds independently to DNA, the affinity of DBD protein for forked structures is relatively weak. Although the PriA helicase domain (HD) is required for high affinity fork binding, HD protein had very low affinity for DNA. It had only low levels of ATPase activity, and it hydrolyzed ATP when DNA was absent whereas PriA did not. HD catalyzed unwinding of a minimal substrate composed of a duplex with a 3' single-stranded tail. Single-strand binding protein (SSB) bound to the tail of this substrate inhibited this reaction by full-length PriA but enhanced the reaction by HD. SSB stabilized binding of PriA but not of DBD or HD to duplexes with a 5' or 3' single-stranded tail. On forked substrates SSB enhanced helicase action on the lagging-strand arm by PriA but not by HD. The results indicate that synergy of the DBD and HD allows stable binding at the interface between duplex and single-stranded DNA bound by SSB. This mode of binding may be analogous to fork binding, which orients the helicase to act on the lagging-strand side of the fork.  相似文献   

11.
The Escherichia coli single-stranded DNA binding protein (SSB) binds selectively to single-stranded (ss) DNA intermediates during DNA replication, recombination and repair. Each subunit of the homo-tetrameric protein contains a potential ssDNA binding site, thus the protein can bind to ssDNA in multiple binding modes, one of which is the (SSB)(65) mode, in which a 65 nucleotide stretch of ssDNA interacts with and wraps around all four subunits of the tetramer. Previous stopped-flow kinetic studies of (SSB)(65) complex formation using the oligodeoxynucleotide, (dT)70, were unable to resolve the initial binding step from the rapid wrapping of ssDNA around the tetramer. Here we report a laser temperature-jump study with resolution in the approximately 500 ns to 4 ms time range, which directly detects these ssDNA wrapping/unwrapping steps. Biphasic time courses are observed with a fast phase that is concentration-independent and which occurs on a time-scale of tens of microseconds, reflecting the wrapping/unwrapping of ssDNA around the SSB tetramer. Analysis of the slower binding phase, in combination with equilibrium binding and stopped-flow kinetic studies, also provides evidence for a previously undetected intermediate along the pathway to forming the (SSB)(65) complex.  相似文献   

12.
The E. coli single-stranded binding protein (SSB) has been demonstrated in vitro to be involved in a number of replicative, DNA renaturation, and protective functions. It was shown previously that SSB can interact with exonuclease I to stimulate the hydrolysis of single-stranded DNA. We demonstrate here that E. coli SSB can also enhance the DNA deoxyribophosphodiesterase (dRpase) activity of exonuclease I by stimulating the release of 2-deoxyribose-5-phosphate from a DNA substrate containing AP endonuclease-incised AP sites, and the release of 4-hydroxy-2-pentenal-5-phosphate from a DNA substrate containing AP lyase-incised AP sites. E. coli SSB and exonuclease I form a protein complex as demonstrated by Superose 12 gel filtration chromatography. These results suggest that SSB may have an important role in the DNA base excision repair pathway.  相似文献   

13.
X Hang  W Dong    L A Guarino 《Journal of virology》1995,69(6):3924-3928
The Autographa californica nuclear polyhedrosis virus (AcNPV) replicates in the nuclei of infected cells and encodes several proteins required for viral DNA replication. As a first step in the functional characterization of viral replication proteins, we purified a single-stranded DNA-binding protein (SSB) from AcNPV-infected insect cells. Nuclear extracts were chromatographed on single-stranded DNA agarose columns. An abundant protein with an apparent molecular weight of 43,000 was eluted from the columns at 0.9 to 1.0 M NaCl. This protein was not evident in extracts prepared from control cells, suggesting that the SSB was encoded by the virus. SSB bound to single-stranded DNA in solution, and binding was nonspecific with respect to base sequence, as single-stranded vector DNA competed as efficiently as single-stranded DNA containing the AcNPV origin of DNA replication. Competition binding experiments indicated that SSB showed a preference for single-stranded DNA over double-stranded DNA. To determine whether SSB was encoded by the lef-3 gene of AcNPV, the lef-3 open reading frame was cloned under the control of the bacteriophage T7 promoter. Immunochemical analyses indicated that LEF-3 produced in bacteria or in rabbit reticulocyte lysates specifically reacted with antiserum produced by immunization with purified SSB. Immunoblot analyses of infected cell extracts revealed that SSB/LEF-3 was detected by 4 h postinfection and accumulated through 48 h postinfection.  相似文献   

14.
Summary In this paper we address the influence of internal motions on the development of the transferred nuclear Overhauser effect in a ligand undergoing chemical exchange between a free and a bound state. We examine the effects of varying the effective correlation time as well as the motional order parameter for methyl group and phenyl ring rotations in the free and bound ligand conformations. The effect of decreasing the motional order for a proton pair on a methyl group or phenyl ring is to decrease the effective correlation time of the internuclear vector, and thus to decrease the cross-relaxation rate between the proton pair. This functions to dampen the effects of spin diffusion, especially in the bound ligand- where cross-relaxation rates are much faster than in the free ligand. The effect of changing the effective correlation time for methyl group motions has little effect on the build-up behaviour of the transferred nuclear Overhauser effect for small values of fraction bound, but a larger effect on how fast it decays. This effect is greater for internal motions in the free peptide than it is for internal motions in the bound peptide.Dedicated to the memory of Professor V.F. Bystrov  相似文献   

15.
J Flory  C M Radding 《Cell》1982,28(4):747-756
A stoichiometric interaction of RecA protein with single-stranded DNA promotes homologous pairing of the single strand with duplex DNA and subsequent polar formation of a heteroduplex joint. Escherichia coli single-strand-binding (SSB) protein augments these reactions. Electron microscopic observations suggest structural bases for these interactions. Without triphosphates or DNA, RecA protein forms short linear filaments. With added circular single-stranded DNA, it forms extended circular filaments as well as collapsed and aggregated complexes of protein and DNA. The extended circular filaments are stiff and regular in appearance, contrasting with the convoluted structure formed by SSB protein and single-stranded DNA. Together, these two proteins form mixed filaments, which mostly resemble the extended structures containing RecA protein; moreover, SSB protein accelerates formation of extended filaments more than 50-fold, increasing the yield of these structures at the expense of heterogeneous aggregates. Other observations further define the interactions of RecA protein with partially single-stranded DNA, and the effects of ATP gamma S on the tendency of RecA protein to form polymeric structures even in the absence of DNA.  相似文献   

16.
The effect of the Escherichia coli single-stranded DNA binding (SSB) protein on the stability of complexes of E. coli RecA protein with single-stranded DNA has been investigated through direct DNA binding experiments. The effect of each protein on the binding of the other to single-stranded DNA, and the effect of SSB protein on the transfer rate of RecA protein from one single-stranded DNA molecule to another, were studied. The binding of SSB protein and RecA protein to single-stranded phage M13 DNA is found to be competitive and, therefore, mutually exclusive. In the absence of a nucleotide cofactor, SSB protein binds more tightly to single-stranded DNA than does RecA protein, whereas in the presence of ATP-gamma-S, RecA protein binds more tightly than SSB protein. In the presence of ATP, an intermediate result is obtained that depends on the type of DNA used, the temperature, and the magnesium ion concentration. When complexes of RecA protein, SSB protein and single-stranded M13 DNA are formed under conditions of slight molar excess of single-stranded DNA, no effect of RecA protein on the equilibrium stability of the SSB protein-single-stranded DNA complex is observed. Under similar conditions, SSB protein has no observed effect on the stability of the RecA protein-etheno M13 DNA complex. Finally, measurements of the rate of RecA protein transfer from RecA protein-single-stranded DNA complexes to competing single-stranded DNA show that there is no kinetic stabilization of the RecA protein-etheno M13 DNA complex by SSB protein, but that a tenfold stabilization is observed when single-stranded M13 DNA is used to form the complex. However, this apparent stabilizing effect of SSB protein can be mimicked by pre-incubation of the RecA protein-single-stranded M13 DNA complex in low magnesium ion concentration, suggesting that this effect of SSB protein is indirect and is mediated through changes in the secondary structure of the DNA. Since no direct effect of SSB protein is observed on either the equilibrium or dissociation properties of the RecA protein-single-stranded DNA complex, it is concluded that the likely effect of SSB protein in the strand assimilation reaction is on a slow step in the association of RecA protein with single-stranded DNA. Direct evidence for this conclusion is presented in the accompanying paper.  相似文献   

17.
When E. coli single-stranded DNA binding protein (SSB) coats single-stranded DNA (ssDNA) in the presence of 1 mM MgCl2 it inhibits the subsequent binding of recA protein, whereas SSB binding to ssDNA in 12 mM MgCl2 promotes the binding of recA protein. These two conditions correspond respectively to those which produce 'smooth' and 'beaded' forms of ssDNA-SSB filaments. By gel filtration and immunoprecipitation we observed active nucleoprotein filaments of recA protein and SSB on ssDNA that contained on average 1 monomer of recA protein per 4 nucleotides and 1 monomer of SSB per 20-22 nucleotides. Filaments in such a mixture, when digested with micrococcal nuclease produced a regular repeating pattern, approximately every 70-80 nucleotides, that differed from the pattern observed when only recA protein was bound to the ssDNA. We conclude that the beaded ssDNA-SSB nucleoprotein filament readily binds recA protein and forms an intermediate that is active in the formation of joint molecules and can retain substantially all of the SSB that was originally bound.  相似文献   

18.
S W Morrical  M M Cox 《Biochemistry》1990,29(3):837-843
In vitro recombination reactions promoted by the recA protein of Escherichia coli are enhanced by the single-stranded DNA binding protein (SSB). SSB affects the assembly of the filamentous complexes between recA protein and ssDNA that are the active form of the recA protein. Here, we present evidence that SSB plays a complex role in maintaining the stability and activity of recA-ssDNA filaments. Results of ATPase, nuclease protection, and DNA strand exchange assays suggest that the continuous presence of SSB is required to maintain the stability of recA-ssDNA complexes under reaction conditions that support their recombination activity. We also report data that indicate that there is a functional distinction between the species of SSB present at 10 mM magnesium chloride, which enhances recA-ssDNA binding, and a species present at 1 mM magnesium chloride, which displaces recA protein from ssDNA. These results are discussed in the context of current models of SSB conformation and of SSB action in recombination activities of the recA protein.  相似文献   

19.
Single-stranded DNA binding (SSB) proteins play central roles in genome maintenance in all organisms. Plasmodium falciparum, the causative agent of malaria, encodes an SSB protein that localizes to the apicoplast and likely functions in the replication and maintenance of its genome. P. falciparum SSB (Pf-SSB) shares a high degree of sequence homology with bacterial SSB proteins but differs in the composition of its C-terminus, which interacts with more than a dozen other proteins in Escherichia coli SSB (Ec-SSB). Using sedimentation methods, we show that Pf-SSB forms a stable homo-tetramer alone and when bound to single-stranded DNA (ssDNA). We also present a crystal structure at 2.1 ? resolution of the Pf-SSB tetramer bound to two (dT)(35) molecules. The Pf-SSB tetramer is structurally similar to the Ec-SSB tetramer, and ssDNA wraps completely around the tetramer with a "baseball seam" topology that is similar to Ec-SSB in its "65 binding mode". However, the polarity of the ssDNA wrapping around Pf-SSB is opposite to that observed for Ec-SSB. The interactions between the bases in the DNA and the amino acid side chains also differ from those observed in the Ec-SSB-DNA structure, suggesting that other differences may exist in the DNA binding properties of these structurally similar proteins.  相似文献   

20.
E Van Dyck  F Foury  B Stillman    S J Brill 《The EMBO journal》1992,11(9):3421-3430
It has previously been shown that the mitochondrial DNA (mtDNA) of Saccharomyces cerevisiae becomes thermosensitive due to the inactivation of the mitochondrial DNA helicase gene, PIF1. A suppressor of this thermosensitive phenotype was isolated from a wild-type plasmid library by transforming a pif1 null strain to growth on glycerol at the non-permissive temperature. This suppressor is a nuclear gene encoding a 135 amino acid protein that is itself essential for mtDNA replication; cells lacking this gene are totally devoid of mtDNA. We therefore named this gene RIM1 for replication in mitochondria. The primary structure of the RIM1 protein is homologous to the single-stranded DNA binding protein (SSB) from Escherichia coli and to the mitochondrial SSB from Xenopus laevis. The mature RIM1 gene product has been purified from yeast extracts using a DNA unwinding assay dependent upon the DNA helicase activity of SV40 T-antigen. Direct amino acid sequencing of the protein reveals that RIM1 is a previously uncharacterized SSB. Antibodies against this purified protein localize RIM1 to mitochondria. The SSB encoded by RIM1 is therefore an essential component of the yeast mtDNA replication apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号