首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The zooplankton community was surveyed along the longitudinalaxis of Rimov Reservoir (Czech Republic) on seven occasionsduring the vegetative season of 1996. The dimictic Rimov Reservoirhas a pronounced trophic gradient along its axis. In nearlyall samples, rotifers were dominant by numbers and formed onaverage 60–95% of the total zooplankton (including copepodnauplii). There was a consistent pattern of increasing relativeabundance of rotifers in the upper regions of the reservoircompared with the downstream parts. Very large rotifer populationscould develop in the upper regions, often associated with floodevents, but also coinciding with reduced abundance of crustaceansassociated with stronger wash-out effects and the advent ofturbid conditions. There was a greater similarity between twoadjacent sites in the proportions of crustacean species thanof rotifer species. This is partially due to the greater speciesdiversity of rotifers than of crustaceans. The timing of theseasonal succession of zooplankton species showed a coherentpattern along the whole longitudinal profile. The site-specificzooplankton patchiness seems to be reduced as there was no sitedependence if average data on zooplankton composition from downstreamlacustrine sites were compared.  相似文献   

2.
Species interactions underlie most ecosystem functions and are important for understanding ecosystem changes. Representing one type of species interaction, trophic networks were constructed from biodiversity monitoring data and known trophic links to assess how ecosystems have changed over time. The Baltic Sea is subject to many anthropogenic pressures, and low species diversity makes it an ideal candidate for determining how pressures change food webs. In this study, we used benthic monitoring data for 20 years (1980–1989 and 2010–2019) from the Swedish coast of the Baltic Sea and Skagerrak to investigate changes in benthic invertebrate trophic interactions. We constructed food webs and calculated fundamental food web metrics evaluating network horizontal and vertical diversity, as well as stability that were compared over space and time. Our results show that the west coast of Sweden (Skagerrak) suffered a reduction in benthic invertebrate biodiversity by 32% between the 1980s and 2010s, and that the number of links, generality of predators, and vulnerability of prey have been significantly reduced. The other basins (Bothnian Sea, Baltic Proper, and Bornholm Basin) do not show any significant changes in species richness or consistent significant trends in any food web metrics investigated, demonstrating resilience at a lower species diversity. The decreased complexity of the Skagerrak food webs indicates vulnerability to further perturbations and pressures should be limited as much as possible to ensure continued ecosystem functions.  相似文献   

3.
1. Organisms can impact ecosystems via multiple pathways, often with positive and negative impacts on inhabitants. Understanding the context dependency of these types of impacts remains challenging. For example, organisms may perform different functions at different densities. 2. Anadromous salmon accumulate > 99% of their lifetime growth in marine ecosystems, and then return to spawn, often at high densities, in relatively confined freshwaters. While previous research has focused on how salmon nutrients can fertilize benthic communities, we examined how an ecosystem engineer, sockeye salmon Oncorhynchus nerka, influences seasonal dynamics of stream benthic communities through their nest-digging activities in south-western Alaska, USA. Benthic invertebrate and algal abundance were quantified every 7-14 days during the open water seasons of 10 streams in riffle and run habitats across multiple years, leading to 25 different stream-year combinations that spanned a large gradient of salmon density. 3. In streams with few or no salmon, benthic algal and insect biomass were fairly constant throughout the season. However, in streams with more than 0.1 salmon m(-2), algal and insect biomass decreased by an average of 75-85% during salmon spawning. Algal biomass recovered quickly following salmon disturbance, occasionally reaching pre-salmon biomass. In contrast, in streams with more than 0.1 salmon m(-2), aquatic insect populations did not recover to pre-salmon levels within the same season. We observed no positive impacts of salmon on algae or insects via fertilization from carcass nutrients. 4. Salmon, when their populations exceed thresholds in spawning density, are an important component of stream disturbance regimes and influence seasonal dynamics of benthic communities. Human activities that drive salmon densities below threshold densities, as has likely happened in many streams, will lead to altered seasonal dynamics of stream communities. Human activities that alter animal populations that are sources of biogenic disturbance can result in shifts in community dynamics.  相似文献   

4.
Deep-sea hydrothermal vents are associated with seafloor tectonic and magmatic activity, and the communities living there are subject to disturbance. Eruptions can be frequent and catastrophic, raising questions about how these communities persist and maintain regional biodiversity. Prior studies of frequently disturbed vents have led to suggestions that faunal recovery can occur within 2–4 years. We use an unprecedented long-term (11-year) series of colonization data following a catastrophic 2006 seafloor eruption on the East Pacific Rise to show that faunal successional changes continue beyond a decade following the disturbance. Species composition at nine months post-eruption was conspicuously different than the pre-eruption ‘baseline'' state, which had been characterized in 1998 (85 months after disturbance by the previous 1991 eruption). By 96 months post-eruption, species composition was approaching the pre-eruption state, but continued to change up through to the end of our measurements at 135 months, indicating that the ‘baseline'' state was not a climax community. The strong variation observed in species composition across environmental gradients and successional stages highlights the importance of long-term, distributed sampling in order to understand the consequences of disturbance for maintenance of a diverse regional species pool. This perspective is critical for characterizing the resilience of vent species to both natural disturbance and human impacts such as deep-sea mining.  相似文献   

5.
6.
The concepts of phylogenetic community structure (PCS) and phylogenetic niche conservatism (PNC) allow ecologists to address the role of species’ evolutionary history in community assembly. It is important to test the role of historical legacies relative to environmental constraints at local scales, where communities are assembled. We studied phylogenetic structure and niche conservatism for palms (Arecaceae) in the 64-km2 Ducke Reserve in the central Amazon, near Manaus. The 72 study plots, each covering 0.1 ha, were distributed regularly in a terra firme forest along a hydro-edaphic gradient. We compared the observed palm PCS with assemblages generated by null models. We also analyzed whether morphological and ecological traits are labile or conserved along the phylogeny and quantified the spatial structure of morphological traits in each plot. We found an overall neutral PCS in combination with low PNC (labile traits), suggesting that evolutionary history poses little constraint on palm community assembly in this Amazonian landscape. Still, there was a tendency towards phylogenetic overdispersion in bottomlands, suggesting competitive exclusion among close relatives or, more likely, environmental filtering acting on convergent traits that affect co-occurrence in flood-prone areas. We conclude that (1) PCS of local communities is random as a whole and morphological traits are overall labile, but that (2) the hydro-edaphic gradient within terra firme forests leads to differences in species co-occurrence so that closely related species occur less often than expected in bottomlands due to diffuse competition among close relatives or environmental filtering on convergent traits.  相似文献   

7.
The virioplankton community structure along a salinity gradient from near seawater (40 per thousand ) to saturated sodium chloride brine (370 per thousand ) in a solar saltern was investigated by pulsed-field gel electrophoresis. Viral populations with genome sizes varying from 10 kb to 533 kb were detected. The viral community structure changed along the salinity gradient. Cluster analysis of the viral genome-banding pattern resulted in two main clusters. The virioplankton diversity within the samples with salinity from 40 per thousand to 150 per thousand was on the same cluster of a cladogram. The other group consisted of virioplankton from samples with salinity above 220 per thousand. The virioplankton diversity in the different samples was calculated using the Shannon index. The diversity index demonstrated an increase in diversity in the samples along the gradient from 40 per thousand to 150 per thousand salinity, followed by a decrease in the diversity index along the rest of the salinity gradient. These results demonstrate how viral diversity changes from habitats that are considered one of the most common (seawater) to habitats that are extreme in salt concentrations (saturated sodium brine). The diversity index was highest in the environments that lie in between the most extreme and the most common.  相似文献   

8.
Temperature is known to influence ecosystem processes through its direct effect on biological rates such as respiration and nutrient cycling. These changes can then indirectly affect ecologically processes by altering trophic dynamics, the persistence of a species in a given environment, and, consequently, its distribution. However, it is not known if this direct effect of temperature on biological rates is singularly the most important factor for the functioning of ecosystems, or if trophic structure and the adaptation of a species to the local environment also play an essential role. Understanding the relative importance of these factors is crucial for predicting the impact that climate change will have on species and ecosystems. To achieve a more complete understanding of the impact of changing temperatures, it is necessary to integrate perspectives from biogeography, such as the influences of species distribution and local adaptation, with ecosystem and community ecology. By using the microbial community inhabiting the water‐filled leaves of Sarracenia purpurea, we tested the importance of temperature, trophic structure, and local adaptation on ecosystem functioning. We accomplished this by collecting communities along a natural temperature gradient and maintaining these communities in a common garden, factorial experiment. To test for the importance of local adaptation and temperature, the origin of each community was crossed with the temperature from each site. Additionally, to test the importance of top‐down trophic regulation for ecosystem functioning, the presence of the mosquito larvae top predator was manipulated. We found that temperature has a greater effect on ecosystem functioning than origin, and that top‐down trophic regulation increased with temperature. Our results emphasize the synergistic effects of temperature and biotic interactions when predicting the consequences of global warming on ecosystem functioning.  相似文献   

9.
10.
11.
The application of salt is the primary means of deicing roads and highways in colder regions of north-eastern North America. This has increased the chloride concentrations of many lake and stream ecosystems. While this salinization has been documented, less is known about how increased salinity alters benthic communities in downstream ecosystems. Natural thresholds, at which there are large scale changes in community composition, have not yet been established for many types of contaminants, including chloride. The diatom community, which is sensitive to small changes in the ambient environment, has the potential to be a strong indicator of salinization effects on stream ecosystems. In this study, we sampled diatom communities in 41 streams across a salinity gradient throughout south central Ontario, Canada. We sampled benthic diatom assemblages in early May following complete snowmelt, when stream water chloride concentrations ranged from 5 to 502 mg/L. Based on redundancy analysis, we confirmed a strong association between the species composition of the diatom community and water conductivity, a commonly used index of stream salinity. Taxa indicator threshold analyses (TITAN) indicated the community changed substantially at chloride concentrations greater than 35 mg/L. We also found that, an indicator taxa, Meridion circulare, was extremely sensitive to high concentrations of salt and negatively correlated with chloride. In a wide synoptic survey of streams of our region, we found that streams in most developed watersheds exceed tolerance thresholds for benthic diatom communities. This work suggests that current chloride concentrations in urban watersheds are greatly exceeding the benthic community thresholds, for which improved management and regulatory practices are needed. Salinization thus appears to be an important feature of urban streams and needs to be considered as an important ecological driver in future studies.  相似文献   

12.
The hyporheic zone of a river is nonphotic, has steep chemical and redox gradients, and has a heterotrophic food web based on the consumption of organic carbon entrained from downwelling surface water or from upwelling groundwater. The microbial communities in the hyporheic zone are an important component of these heterotrophic food webs and perform essential functions in lotic ecosystems. Using a suite of methods (denaturing gradient gel electrophoresis, 16S rRNA phylogeny, phospholipid fatty acid analysis, direct microscopic enumeration, and quantitative PCR), we compared the microbial communities inhabiting the hyporheic zone of six different river sites that encompass a wide range of sediment metal loads resulting from large base-metal mining activity in the region. There was no correlation between sediment metal content and the total hyporheic microbial biomass present within each site. However, microbial community structure showed a significant linear relationship with the sediment metal loads. The abundances of four phylogenetic groups (groups I, II, III, and IV) most closely related to alpha-, beta-, and gamma-proteobacteria and the cyanobacteria, respectively, were determined. The sediment metal content gradient was positively correlated with group III abundance and negatively correlated with group II abundance. No correlation was apparent with regard to group I or IV abundance. This is the first documentation of a relationship between fluvially deposited heavy-metal contamination and hyporheic microbial community structure. The information presented here may be useful in predicting long-term effects of heavy-metal contamination in streams and provides a basis for further studies of metal effects on hyporheic microbial communities.  相似文献   

13.
1 The effects of disturbances, in the form of storm events, on phytoplankton community structure were examined over the course of four years in Eau Galle Reservoir, Wisconsin, USA.
2 Disturbances consistently brought about significant, but highly transient, increases in apparent phytoplankton species richness. It is likely that these resulted from temporary increases in the biomass of previously undetected rare species.
3 Substantial shifts in community dominance were confined to large, early season events, and were seldom long-lived. Later 'climax' communities were highly resistant to any changes in dominance, even when increases in species richness occurred.
4 Regardless of when they occurred, disturbances tended to favour species from a narrow range of the successional sequence.  相似文献   

14.
15.
16.
刘莹  李晓晨 《生态学杂志》2006,25(2):166-169
为研究海拔对缓步动物群落结构的影响,对地处秦岭北坡的南五台山缓步动物群落进行了初步调查研究.调查设置3个样区、45个样方,共采集缓步动物919个,个体密度平均816.89个·m-2,隶属缓步动物门2纲2目3科7属11种.其中Macrobiotus hufelandi和M.harmsworthi共占总采量的92.93%,为优势类群.采用Simpson指数、Shannon-Wiener信息指数、Pielou均匀度指数和修正的Hill指数来计算各生境缓步动物群落结构特点.研究表明,海拔对缓步动物群落结构有一定的影响.随着海拔的下降其物种的个体数量、群落优势类群的数量和优势物种数都呈下降趋势;物种多样性的变化趋势为中海拔地区>低海拔地区>高海拔地区,而群落优势度的变化趋势完全相反;不同海拔样区的群落相似性较低.  相似文献   

17.
18.
Kanamori  Yuki  Fukaya  Keiichi  Noda  Takashi 《Population Ecology》2017,59(4):301-313
Population Ecology - Here we considered two fundamental questions in community ecology regarding the relationship between seasonal changes in community structure and environmental gradients: (i)...  相似文献   

19.
Floristic composition, diversity, dominance and distribution pattern of species and tree population structure were studied in three stands of a sub-tropical wet hill broad-leaved forest of Meghalaya, India, along a disturbance gradient. Tree species diversity declined with increasing disturbance. Disturbed stands showed low equitability or high dominance and the undisturbed stand exhibited high equitability or low dominance. Contagious distribution among the tree species increased with increasing intensity of disturbance. Species showing regular distribution were restricted only to the undisturbed stand. Effect of disturbance on tree population structure was analysed using density-diameter curves. In the disturbed stands tree species showed reverse J-shaped and/or negative exponential curves, while those in the undisturbed stand exhibited sigmoid to bimodal mound shaped curves.  相似文献   

20.
A total of 165 taxa have been recorded in the zooperiphyton of the Sestra River, among which larvae of chironomids (40), nematodes (24), and oligochaetes (21) have the highest species richness. The increase in the taxonomic richness of zoocenoses from the river head to its mouth is weakly expressed. The highest diversity of zoocenoses is characteristic for the contact zones of the river water with its tributaries and receiving waters. The discreteness of spatial characteristic of the taxonomic composition of zooperiphyton reflects the heterogeneity and diversity of habitat conditions of invertebrates. In regards to its effect on zoocenoses, anthropogenic pollution can exceed the impact of many environmental factors (including the current velocities) which affect the formation of rheophilic communities in river ecosystems. The dominant complexes of zooperiphyton include all trophic groups of invertebrates, among which the group of detritophages-collectors has the highest taxonomic diversity. The group of phytodetritophages-filterers + collectors mainly includes chironomid larvae of the genus Chironomus, which are associated with strongly polluted zones. Invertebrate filterers, sponges, and bryozoans prevail mainly in zooperiphyton in the lower reaches of the river, which are not subjected to the pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号